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Analytical and computational techniques are developed to carry out stress
analyses for an advanced material system comprising a piezoelectric thin film bonded
to a laterally graded half-plane. The piezoelectric thin film is assumed to be under
electric field loading. Governing partial differential equations are derived in terms of
an inhomogeneity parameter in accordance with the theory of elasticity. Applying the
Fourier transformation technique and enforcing strain compatibility between the thin
film and the laterally graded surface, the problem is reduced to a singular integral
equation. A scheme based on the expansion-collocation approach is applied to gener-
ate the numerical results. The computational technique is developed by utilizing the
finite element method and implemented by means of the general purpose software
ANSYS. Comparisons of various stress components indicate a high level of accuracy
and reliability in the proposed analytical and computational methods. Parametric
analyses illustrate the influences of inhomogeneity, geometry, and elasticity parame-
ters upon interfacial shear stress, thin film normal stress, and lateral normal stress at
the bounding surface of the laterally graded medium. In the previous work on thin film
loading of functionally graded surfaces, the shear modulus is assumed to be a func-
tion of the thickness coordinate. The main novelty in the present study is therefore
the development of analytical and computational methods for surfaces possessing the
shear modulus variation in the lateral direction. The methods presented could partic-
ularly be useful in design, analysis, and optimization studies involving piezoelectric
thin films bonded to laterally graded surfaces.

Key words: piezoelectric thin films, laterally graded materials, singular integral
equations, finite element analysis, interfacial shear stress.

Copyright c© 2025 The Authors.
Published by IPPT PAN. This is an open access article under the Creative Commons
Attribution License CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).

1. Introduction

Functionally graded materials (FGMs) are advanced composites,
which possess spatial variations in the volume fractions of the constituent phases.
The variations engender an inhomogeneous macro-structure whose material
properties are continuous functions of the physical coordinates. These unique
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features of FGMs result in additional degrees of freedom in design and can be
customized for an improved material response under different types of loading
conditions. The main factors associated with this design paradigm are the con-
stituent properties and the variation profiles defining the spatial distributions.
Various studies have shown that continuous variations in material properties
could particularly be useful in reducing stress concentrations and intensities and
suppressing crack initiation and growth in components subjected to high stresses
due to mechanical, thermal, electrical, and magnetic effects [1–5]. Among the po-
tential technological use cases of FGMs one can mention thermal barrier, wear-
resistant and tribological coatings [6–8], lattice structures [9], bone implants [10],
electronic packages [11], and small-scale structures [12, 13]. In recent years, ad-
ditive manufacturing techniques such as laser synchronous preheating [14], laser
metal deposition [15], powder-fed laser directed energy deposition [16], and wire-
arc additive manufacturing [17] have significantly contributed to the development
and design of different types functionally graded components.

Improved tribological behavior of functionally graded surfaces and coatings
gave rise to a large body of work on contact mechanics of inhomogeneous media.
Various analytical methods based on integral transform techniques and compu-
tational approaches such as the finite element analysis and the boundary ele-
ment method were proposed to solve problems involving sliding friction [18–20],
receding contact [21–23], thermal stresses [24, 25], cracking [26] and moving
contact [27, 28]. In all the studies, the loading agent is modelled as a rigid in-
denter with a given geometry. It was shown that the nature of inhomogeneity
may significantly alter the magnitudes of normal contact stress in the contact
zone and the lateral normal stress at the surface. Stress intensity factors at
the tips of cracks existing in a contact stress field were found to be dependent
upon the property distribution profile. The developed methods also allow com-
putation of parameters such as required contact force and sub-surface stresses
as functions of material inhomogeneity. The problems are therefore open to op-
timization and property distributions that minimize contact stress amplitudes
and crack driving forces can be identified.

In addition to crack and contact problems, another type of the mixed-bound-
ary value problem that is of particular interest involves thin films bonded to
elastic surfaces. Thin films are employed in a wide variety of technological appli-
cations such as semiconductor devices [29], solar cells [30], batteries [31], multi-
ferroics [32], cutting tools [33], and piezoelectric energy harvesters and transducers
[34, 35]. Stress fields induced by the interaction of a thin film and a func-
tionally graded elastic surface have been examined in a number research articles.
Guler [36] developed a singular integral equation based procedure for an elastic
thin film bonded to a graded half-plane.Guler et al. [37] extended this approach
and solved a mixed-boundary value problem involving a thin film and a graded
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coating. Chen et al. [38] and Chen et al. [39], respectively, examined interfacial
behavior of a thin film bonded to an FGM coating/substrate system and a finite
thickness graded layer. Peijian et al. [40] carried out the interface analysis for
a piezoelectric thin film on a graded half-plane. The latest work on thin films also
considers the thermoelectric effect [41, 42], thermal loading [43], and material
anisotropy [44].

In all articles examining the behavior of a thin film bonded to an FGM sur-
face, the gradation is assumed to be perpendicular to the interface. However,
especially with the recent developments in additive manufacturing techniques, it
is possible to generate property gradation along the horizontal (lateral) direction
at a surface. Gradation in an FGM component along the horizontal or the axial
direction is considered within the contexts of several applications including hip
prosthesis coatings [45], osseointegrated trans-femoral prostheses [46], and axi-
ally graded beams and plates [47, 48]. The change in the direction of gradation
results in a different set of governing partial differential equations, for which new
procedures are needed for the computation of the required quantities. There is
no prior work investigating the response of a system consisting of a thin film and
a laterally graded surface. The main objective in the present study is therefore to
develop analytical and computational methods for the problem of a piezoelectric
thin film bonded to a surface that possesses gradation in the lateral direction.

The problem considered in the analytical formulation comprises an elastic
piezoelectric thin film bonded to a laterally graded half-plane. The thin film is
subjected to electric field loading in the thickness direction. Governing partial
differential equations for the half-plane are obtained by the application of the
theory of elasticity, and general solutions are derived by means of the Fourier
transformation technique. The formulation is eventually reduced to a singular
integral equation by considering the strain compatibility between the piezoelec-
tric thin film and the half-plane. An expansion-collocation technique is developed
to numerically solve the singular integral equation. The computational approach
is based on the finite element method and integrated into the general purpose
analysis software ANSYS. Comparisons of the results generated by the analyt-
ical method to those obtained through the finite element analysis verify both
approaches. Presented parametric analyses demonstrate the effects of lateral in-
homogeneity, thin film location, modulus ratio, and length-to-thickness-ratio of
the thin film upon interfacial shear, thin film normal, and lateral normal stress
distributions.

The main novel contribution in the present study compared to the state of
the art in respective fields is the development of analytical and computational
solutions for a piezoelectric thin film bonded to a laterally graded surface. To
be able to model the lateral gradation, the shear modulus of the half-plane is
assumed to be an exponential function of the lateral direction. However, in all
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previous articles on thin film problems involving functionally graded materials,
the shear modulus is assumed to be a function of the depth coordinate. Depen-
dence of the shear modulus on the lateral coordinate results in a completely
different set of governing partial differential equations. Novel analytical and fi-
nite element procedures are developed to solve the partial differential equations
and to evaluate stresses due to piezoelectric thin film loading. To the best of
the authors’ knowledge, presented shear and normal stresses as well as thin film
stresses are the first results in the literature regarding thin film loading of later-
ally graded surfaces.

The outline of the paper is as follows: Section 2 describes the analytical
solution and provides the details regarding thin film stresses, the singular in-
tegral equation, and the numerical scheme; Section 3 introduces the finite ele-
ment procedures developed to examine the piezoelectric thin film problem; Sec-
tion 4 presents the verification study and the parametric analyses; and lastly
Section 5 concludes the article.

2. Analytical solution

Section 2 consists of three sub-sections. In Section 2.1, we present the mod-
elling approach for the piezoelectric thin film, and derive the expressions for the
thin film stress and strain. Section 2.2 outlines the derivation for the laterally
graded half-plane and lays out the expressions for the singular integral equa-
tion and the lateral normal stress. Section 2.3. details the numerical solution
procedure and expounds the details of the expansion-collocation technique.

2.1. Thin film stresses

The geometry of the piezoelectric thin film problem considered is depicted in
Fig. 1. A piezoelectric thin film is perfectly bonded to an elastic half-plane, which
is graded in y-direction. The problem is defined in the x-y coordinate system
attached to the half-plane surface. The interface between the thin film and the
half-plane extends from y = a to y = b. The composite medium is in the state of
either plane stress or strain. Assuming the thin film to be transversely isotropic
with poling in x-direction, its constitutive relations are written as follows [49]:

σ(f)xx(y) = Cxxε
(f)
xx(y) + Cxyε

(f)
yy (y)− exxE(f)

x (y),(2.1)

σ(f)yy (y) = Cxyε
(f)
xx(y) + Cyyε

(f)
yy (y)− eyxE(f)

x (y),(2.2)

where the superscript (f) stands for the thin film, σ(f)ij are stresses, ε(f)ij designate

strains, Cij are elastic constants, eij denote piezoelectric constants and E(f)
x is
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Fig. 1. A piezoelectric thin film bonded to a laterally graded half-plane.

electric field in the x-direction. The normal stress, σ(f)xx , is zero for the thin film,
which leads to

σ(f)yy (y) = Efε
(f)
yy (y)− efE(f)

x (y),(2.3)

Ef =
CxxCyy − C2

xy

Cxx
, ef =

Cxxeyx − Cxyexx
Cxx

.(2.4)

The constants Ef and ef are named as effective Young’s modulus and the piezo-
electric constant.

Figure 2 shows the free body diagram of the thin film. The loading is due
to the electric field, E(f)

x . In the modelling of the thin film, membrane stress
analysis approximations are utilized. It is assumed that there is no transverse
loading on the thin film and that variation of normal stresses throughout the
thickness is negligible. Since a thin film is not able to resist bending loads, there
is no transverse loading at its top surface and the normal stress, σ(f)xx , on that
plane is zero. This normal stress does not grow to appreciable magnitudes inside
the thin film due to the small thickness. As a result, the uniformity assumption
in the membrane theoretical framework leads to the conclusion of σ(f)xx being
zero. The membrane model is implemented in numerous research studies on
thin films including those by Guler [36], Peijian et al. [40], and Delale and
Erdogan [50].

Fig. 2. Free body diagram of the piezoelectric thin film.
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The nonzero normal stress, σ(f)yy , is uniformly distributed across the film thick-
ness; and q(y) in Fig. 2 stands for the shear stress at the interface, σ(h)xy (0, y); in
which the superscript, (h), designates the half-plane substrate. Equilibrium of
the thin film requires that,

(2.5) σ(f)yy (y) = −1

h

y∫
a

q(y) dy.

Note that in the free body diagram in Fig. 2, the normal stress at the interface,
σxx, is not shown since it is taken as zero. This assumption is required to have
a configuration consistent with the membrane approximation, i.e., at no point in
the thin film the membrane supports a normal stress in the x-direction; and this
includes the interface as well. The thin film is under the effect of shear stress,
q(y), as shown in Fig. 2. This shear stress has also a counterpart in the x-direction
at the right edge of the thin film. In a detailed fully 2D model, the shear stress at
the right edge balances the neglected component, σ(f)xx . Since this normal stress
is zero the shear stress at the right edge is also neglected and not shown in the
figure. All of these assumptions are utilized in many previous articles on thin
films including [36, 40, 50]. The definition

(2.6) ε(f)yy (y) =
ef
Ef

E(f)
x (y)− 1

hEf

y∫
a

q(y) dy,

then follows from Eqs. (2.3) and (2.5).

2.2. Half-plane solution and singular integral equation

The half-plane shown in Fig. 1 is graded in the y-direction, and its elastic
properties are expressed as:

µ(y) = µ0 exp(γy),(2.7)

κ =

3− 4ν for plane strain,
3− ν
1 + ν

for plane stress,
(2.8)

where µ designates shear modulus, κ is Kolosov’s constant, and ν denotes Pois-
son’s ratio, which is constant. The shear modulus is represented by an exponen-
tial function, and γ is a nonhomogeneity parameter. The constant, µ0, stands
for the value of the shear modulus function at y = 0. In FGMs, Poisson’s ratio
varies between values that are relatively close to each other and this variation
in general does not impart a notable influence on the mechanical behavior. For
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this reason, it is considered as a constant in studies involving contact and thin
film problems [36]. The constitutive relations are of the forms:

σ(h)xx (x, y) =
µ(y)

κ− 1

{
(κ+ 1)

∂u(h)

∂x
+ (3− κ)

∂v(h)

∂y

}
,(2.9)

σ(h)yy (x, y) =
µ(y)

κ− 1

{
(3− κ)

∂u(h)

∂x
+ (κ+ 1)

∂v(h)

∂y

}
,(2.10)

σ(h)xy (x, y) = µ(x, y)

{
∂u(h)

∂y
+
∂v(h)

∂x

}
.(2.11)

The functions u(h) and v(h) represent displacement components in the x- and
y-directions. The governing partial differential equations:

(κ+ 1)
∂2u(h)

∂x2
+ (κ− 1)

∂2u(h)

∂y2
+ 2

∂2v(h)

∂x∂y
(2.12)

+ γ(κ− 1)
∂u(h)

∂y
+ γ(κ− 1)

∂v(h)

∂x
= 0,

(κ− 1)
∂2v(h)

∂x2
+ (κ+ 1)

∂2v(h)

∂y2
+ 2

∂2u(h)

∂x∂y
(2.13)

+ γ(3− κ)
∂u(h)

∂x
+ γ(κ+ 1)

∂v(h)

∂y
= 0,

are derived by substituting Eqs. (2.7) and (2.9)–(2.11) into the equilibrium equa-
tions, σ(h)ij,j = 0, i, j = x, y.

Applying the Fourier transformation in the y-direction to Eqs. (2.12) and
(2.13), general solutions for the displacement components are obtained as:

u(h)(x, y) =
1

2π

∞∫
−∞

( 2∑
j=1

Cj exp(njx)
)

exp(iωy) dω,(2.14)

v(h)(x, y) =
1

2π

∞∫
−∞

( 2∑
j=1

mjCj exp(njx)
)

exp(iωy) dω,(2.15)

mj =
ω(ω − iγ)(κ− 1)− n2j (κ+ 1)

γnj(κ− 1) + 2iωnj
, nj = −

√
tj , j = 1, 2,(2.16)

t1,2 =
−z1 ±

√
z21 − 4z2

2
,(2.17)

z1 = 2iωγ − 2ω2 − γ2 3− κ
κ+ 1

, z2 = ω2(ω2 − 2iωγ − γ2),(2.18)
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where ω is the Fourier transform variable, Cj are unknown functions and i is the
imaginary unit. The mechanical boundary conditions to be satisfied are:

σ(h)xx (0, y) = 0, −∞ < y <∞,

σ(h)xy (0, y) =

{
q(y), a < y < b,

0, y < a, y > b.

(2.19)

ε(f)yy = ε(h)yy (0, y), −∞ < y <∞.(2.20)

Additionally, all field variables must conform to the regularity condition, which
requires boundedness of the field variables as

√
x2 + y2 →∞. Using the consti-

tutive relations and the boundary conditions, the unknown functions are found
as follows:

Cj(ω) =
Ej(ω)

µ0

b∫
a

q1(t) exp(−iωt) dt, j = 1, 2,(2.21)

q1(t) = q(t) exp(−γt).(2.22)

The linear system,

2∑
j=1

(nj(κ+ 1) + iωmj(3− κ))Ej = 0,(2.23)

2∑
j=1

(iω +mjnj)Ej = 1,(2.24)

yields the functions, Ej(ω).
The singular integral equation is to be derived by equating the normal strain,

ε
(h)
yy (0, y), to that obtained for the thin film. After a lengthy procedure involving
asymptotic analyses of the pertaining integrands, the normal strain at the surface
of the half-plane is derived in the following form:

ε(h)yy (0, y) =
1

2πµ0

b∫
a

{
d0
y − t

− c1Ci(A1|y − t|)(2.25)

+ h1(y, t) + h2(y, t)

}
q1(t) dt, −∞ < y <∞,
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h1(y, t) =

A1∫
0

K1(ω) cos(ω(y − t)) dω(2.26)

+

∞∫
A1

(
K1(ω)− c1

ω
− c3
ω3
− c5
ω5

)
cos(ω(y − t)) dω

+

∞∫
A1

(
c3
ω3

+
c5
ω5

)
cos(ω(y − t))dω,

h2(y, t) =

A2∫
0

(K2(ω)− d0) sin(ω(y − t)) dω(2.27)

+

∞∫
A2

(K2(ω)− d0 −
d2
ω2
− d4
ω4

) sin(ω(y − t)) dω

+

∞∫
A1

(
d2
ω2

+
d4
ω4

)
sin(ω(y − t)) dω,

K1(ω) = Φ(ω) + Φ(−ω), K2(ω) = i(Φ(ω)− Φ(−ω)),(2.28)

Φ(ω) = iω
2∑
j=1

mjEj ,(2.29)

where Ci in Eq. (2.25) is the cosine integral. A1 and A2 are integration cut-off
points; and ci and di are determined through asymptotic analyses. The coeffi-
cients are given as:

d0 =
κ+ 1

2
, c1 =

(κ+ 1)γ

4
,(2.30)

d2 = −κγ
2

4
, c3 =

(1− 2κ)γ3

8
,(2.31)

d4 =
(4κ2 + κ− 4)γ4

16(κ+ 1)
, c5 =

(8κ2 + κ− 12)γ5

32(κ+ 1)
.(2.32)

The singular integral equation

(2.33)
1

2πµ0

b∫
a

{
d0
y − t

− c1Ci(A1|y − t|) + h1(y, t) + h2(y, t)

}
q1(t) dt

+
1

Efh

y∫
a

exp(γt)q1(t) dt =
ef
Ef

E(f)
x , a < y < b,



100 S. Dag, M. N. Balci

is obtained by equating the half plane normal strain, ε(h)yy (0, y), given by Eq. (2.25)
to the thin film strain expressed by Eq. (2.6).

Note that the half-plane problem tackled involves mechanical boundary con-
ditions but no electrical conditions. This is due to the fact that the half-plane
does not possess piezoelectric properties. The mechanical boundary conditions
are imposed by Eqs. (2.19) and (2.20). Influence of piezoelectricity is included
through the constitutive relation of the thin film, which is expressed by Eq. (2.1).

In addition to the singular integral equation, the equilibrium condition of the
piezoelectric thin film

(2.34)
b∫
a

exp(γt)q1(t) dt = 0,

is also required in the solution. This condition follows from Eq. (2.5). The un-
known shear stress at the interface of the thin film and the half-plane; and the
normal stress in the thin film can be computed once Eqs. (2.33) and (2.34) are
solved simultaneously.

Another important variable of interest that affects the failure of a laterally
graded half-plane is the normal stress at x = 0, i.e., σ(h)yy (0, y). This stress com-
ponent is derived by utilizing Eq. (2.10) and applying asymptotic analyses on
the integrands of the related kernels. The expression is of the form:

(2.35) σ(h)yy (0, y) =
µ(y)

κ− 1

{
(κ+ 1)ε(h)yy (0, y) + (3− κ)

∂u(h)(0, y)

∂y

}
,

where the normal strain at the surface, ε(h)yy (0, y), is given by Eq. (2.25), and the
normal strain in the x-direction is derived as:

∂u(h)(0, y)

∂x
=

1

2πµ0

b∫
a

{
g0
y − t

− f1Ci(A3|y − t|)(2.36)

+ p1(y, t) + p2(y, t)

}
q1(t) dt, −∞ < y <∞,

p1(y, t) =

A3∫
0

L1(ω) cos(ω(y − t)) dω(2.37)

+

∞∫
A3

(
L1(ω)− f1

ω
− f3
ω3

)
cos(ω(y − t)) dω +

∞∫
A3

f3
ω3

dω,
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p2(y, t) =

A4∫
0

{L2(ω)− g0} sin(ω(y − t)) dω(2.38)

+

∞∫
A4

(
L2(ω)− g0 −

g2
ω2
− g4
ω4

)
sin(ω(y − t)) dω

+

∞∫
A4

{
g2
ω2

+
g4
ω4

}
sin(ω(y − t)) dω,

L1(ω) = Γ(ω) + Γ(−ω), L2(ω) = i(Γ(ω)− Γ(−ω)),(2.39)

Γ(ω) =
2∑
j=1

njEj ,(2.40)

g0 =
κ− 3

2
, f1 =

(κ− 3)γ

4
,(2.41)

g2 =
κ(κ− 3)γ2

4(κ+ 1)
, f3 =

(1− 2κ)(κ− 3)γ3

8(κ+ 1)
,(2.42)

g4 =
(4κ2 + κ− 4)(κ− 3)γ4

16(κ+ 1)2
.(2.43)

The constants, A3 and A4, are integration cut-off points; and gi and fi are
the coefficients that are extracted by means of asymptotic analyses.

2.3. Numerical solution

In order to express the integral equation in terms of dimensionless variables
and constants, we introduce the following definitions:

y =
b− a

2
s+

b+ a

2
, t =

b− a
2

r +
b+ a

2
,(2.44)

q1n(r) =
q1
(
b−a
2 r + b+a

2

)
µ0
( ef
Ef
E

(f)
x

) ,(2.45)

γ1 =
b− a

2
γ, γ2 =

b+ a

2
γ, c̄1 =

κ+ 1

4
γ1, Ā1 =

b− a
2

A1,(2.46)

h̄i(s, r) =
b− a

2
hi

(
b− a

2
s+

b+ a

2
,
b− a

2
r +

b+ a

2

)
, i = 1, 2.(2.47)

The singular integral equation and the equilibrium condition for the piezo-
electric thin film are then written as follows:
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1

2π

1∫
−1

{
d0
s− r

− c̄1Ci(Ā1|s− r|) + h̄1(s, r) + h̄2(s, r)

}
q1n(r) dr(2.48)

+
(b− a)µ0

2Efh

s∫
−1

exp(γ1r + γ2)q1n(r) dr = 1, −1 < s < 1,

1∫
−1

exp(γ1r + γ2)q1n(r) dr = 0.(2.49)

The unknown of the equation system is q1n(r). The Cauchy singularity indicates
that it can be expanded into a series of the form

(2.50) q1n(r) =
1√

1− r2

∞∑
n=0

BnTn(r),

where the square-root singularity at the ends is quantified by the term, 1/
√

1− r2,
Bn’s are unknown coefficients, and Tn(r) is the Chebyshev polynomial of the first
kind of the order n.

Substituting Eq. (2.50) into Eqs. (2.48) and (2.49) and using the properties
of the Chebyshev polynomials [51], the functional equation system

d0
2

∞∑
n=1

BnUn−1(s)−
∞∑
n=0

Bn(k11n(s)(2.51)

+ k12n(s) + k13n(s)) = −1, −1 < s < 1,
∞∑
n=0

Bnk2n = 0,(2.52)

is obtained. Un(s) here is the Chebyshev polynomial of the second kind of the
order n, and

k11n(s) = − c̄1
2π

1∫
−1

Ci(Ā1|s− r|)
Tn(r)√
1− r2

dr,(2.53)

k12n(s) =
1

2π

1∫
−1

(h̄1(s, r) + h̄2(s, r))
Tn(r)√
1− r2

dr,(2.54)

k13n(s) =
µ0(b− a)

2Efh

s∫
−1

exp(γ1r + γ2)
Tn(r)√
1− r2

dr,(2.55)

k2n =

1∫
−1

exp(γ1r + γ2)
Tn(r)√
1− r2

dr.(2.56)
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Equation (2.51) is approximated by truncating the infinite series at n = N, and
using the collocation points,

(2.57) si = cos

(
π(2i− 1)

2N

)
, i = 1, . . . , N.

Then, an (N + 1)×(N + 1) linear system is generated by considering Eqs. (2.51)
and (2.52), the solution of which yields the unknown coefficients, Bn. The shear
stress at the thin film – half-plane interface and the normal stress in the piezo-
electric thin film are computed by

Sxy(s) =
σ
(h)
xy

(
0, b−a2 s+ b+a

2

)
µ0

ef
Ef
E

(f)
x

=
exp(γ1s+ γ2)√

1− s2

N∑
n=0

BnTn(s),(2.58)

Syy(s) =
σ
(f)
yy

(
b−a
2 s+ b+a

2

)
µ0

ef
Ef
E

(f)
x

= −
N∑
n=0

Bnk13n(s).(2.59)

The normal stress in the y-direction at x = 0 in the half-plane is defined by
Eqs. (2.35) and (2.36) and its dimensionless form is expressed as follows:

Ωyy(s) =
σ
(h)
yy

(
0, b−a2 s+ b+a

2

)
µ0

ef
Ef
E

(f)
x

(2.60)

=
exp(γ1s+γ2)

κ−1

{ N∑
n=0

Bn(M1n(s)+M2n(s)+M3n(s))

}
, −∞ < s <∞,

M1n(s) =


− (κ+1)d0+(3−κ)g0

2 Un−1(s), |s| < 1, n > 0,

0, |s| < 1, n = 0,

− (κ+1)d0+(3−κ)g0
2

(
√
s2−1−|s|)n

(−s/|s|)n+1
√
s2−1 , |s| > 1, n > 0,

(2.61)

M2n(s) =(2.62)

− 1

2π

1∫
−1

(κ+1)c̄1Ci(Ā1|s−r|)+(3−κ)f̄1Ci(Ā3|s−r|)
(s−r)

√
1−r2

Tn(r) dr,

M3n(s) =(2.63)

1

2π

1∫
−1

(κ+1)(h̄1(s, r)+h̄2(s, r))+(3−κ)(p̄1(s, r)+p̄2(s, r))

(s−r)
√

1−r2
Tn(r) dr,

f̄1 =
κ−3

4
γ1, Ā3 =

b−a
2
A3,(2.64)

p̄i(s, r) =
b−a

2
pi

(
b−a

2
s+

b+a

2
,
b−a

2
r+

b+a

2

)
, i = 1, 2.(2.65)
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Another quantity of interest in problems involving stress singularities is the
stress intensity factor (SIF). For the thin film problem considered, mode II stress
intensity factors at the end points of the interface are defined as follows:

KII(a) = lim
y→a+

√
2(y − a)σ(h)xy (0, y),(2.66)

KII(b) = lim
y→b−

√
2(b− y)σ(h)xy (0, y).(2.67)

By utilizing the definition given by Eq. (2.50), dimensionless SIFs are derived in
the form:

KIIn(a) =
KII(a)

√
b− aµ0

ef
Ef
E

(f)
x

=
exp(γ2 − γ1)√

2

∞∑
n=0

BnTn(−1),(2.68)

KIIn(b) =
KII(b)√

b− aµ0
ef
Ef
E

(f)
x

=
exp(γ2 − γ1)√

2

∞∑
n=0

BnTn(1).(2.69)

3. Finite element analysis

In addition to the analytical technique described in Section 2, the defined
problem is examined by means of the finite element method. In this section, we
provide the details regarding the finite element approach such as the element
types, number of elements, interface and boundary conditions, and treatment of
gradation.

The developed computational procedure is integrated into the general pur-
pose finite element analysis software ANSYS. Figure 3 depicts the constructed
finite element model, which comprises the piezoelectric thin film and the lat-
erally graded half-plane. The FEA mesh contains a total of 198110 triangular
finite elements. 144858 of these elements are used for the laterally graded half-
plane, and 53252 elements are employed for the discretization of the thin film.
The triangular finite element is generated by merging the three nodes of an
8-noded quadrilateral finite element. The 8-noded quadrilateral element is named
as PLANE223 in ANSYS library. The quadrilateral element, its degenerate tri-
angular form, and the element in the isoparametric coordinate system are shown
in Fig. 4.

Displacement components in two orthogonal directions and the electric po-
tential are the three degrees of freedom at each node of the quadrilateral element.
This element allows modelling of piezoelectric, piezoresistive, and thermoelectric
materials; and can be used in multi-physics simulations involving structural-
thermal or structural-electrical effects. In this study, the piezoelectric option
is considered to simulate the structural response due to the applied electric
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Fig. 3. (a) Entire finite element mesh; (b) close-up view of the thin film and the interface.

Fig. 4. (a) Quadrilateral finite element; (b) triangular form; (c) element in the isoparametric
coordinate system.
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potential. The triangular form of the element is employed in the construction of
the meshes of both the piezoelectric thin film and the laterally graded substrate.
However, the piezoelectric properties of the laterally graded medium are set as
zero since the half-plane displays solely linear elastic mechanical behavior. The
interpolation for each of the displacement components, and the electric potential
in the isoparametric coordinate system is expressed as follows:

(3.1) φ(ξ, η) =

8∑
i=1

Ni(ξ, η)ϕi,

where ϕ represents a displacement component or the electric potential and the
shape functions are given by [52]:

N1(ξ, η) =
1

4
(1− ξ)(1− η)(−ξ − η − 1), N2(ξ, η) =

1

4
(1− ξ)(1− η2),(3.2)

N3(ξ, η) =
1

4
(1− ξ)(1 + η)(−ξ + η − 1), N4(ξ, η) =

1

2
(1− ξ2)(1 + η),(3.3)

N5(ξ, η) =
1

4
(1 + ξ)(1 + η)(ξ + η − 1), N6(ξ, η) =

1

2
(1 + ξ)(1− η2),(3.4)

N7(ξ, η) =
1

4
(1 + ξ)(1− η)(ξ − η − 1), N8(ξ, η) =

1

2
(1− ξ2)(1− η).(3.5)

As depicted in Fig. 3, the dimensions of the laterally graded half-plane are
symbolized by H and L, whereas lf and h designate the length and the thick-
ness of the thin film, respectively. The dimensions H and L are assigned suf-
ficiently large values to be able to simulate the conditions for the half-plane,
whose mathematical definition does not involve remote boundaries. The partic-
ular ratios considered in the implementation are L/lf = 20 and H/lf = 12.5.
In FEA modeling, the piezoelectric thin film is assumed to be perfectly bonded
to the laterally graded surface. This implies continuity of the displacements as
follows:

(3.6) u(f)(y) = u(h)(0, y), v(f)(y) = v(h)(0, y).

The interface between the thin film and the half-plane contains a total of 6808
nodes. The mesh density is significantly refined at the end points of the interface
to be able accurately capture the singularities and stress variations. Note that,
the shear stress at the interface and the lateral normal stress at the surface
of the half-plane both possess singularities at the ends and a sufficient level of
refinement at these points is imperative for an accurate analysis.

The electrical and structural boundary conditions imposed in the analyses
are also depicted in Fig. 3. The red line at the top surface of the piezoelectric
thin film indicates the surface on which an electric potential, Vx, is applied. This
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surface acts as the positive electrode. The blue line at the bottom surface stands
for the electrical ground surface on which the voltage is specified as zero. This
surface can be considered as the negative electrode. Electric potential values are
identical on the nodes of each surface and there is a unique voltage drop across
the thickness of the thin film. The bottom surface of the half-plane is constrained
in the vertical direction. The node at the lower left corner is fixed to prevent
rigid body motion.

An important consideration in the finite element analysis of FGMs is the in-
corporation of smooth spatial variations of the physical properties into the model.
There are primarily two approaches of considering the spatial variations of elas-
tic properties. The first method is known as the graded finite element approach,
which entails computation of all required properties at each Gauss point of a fi-
nite element during the formation of the element stiffness matrix. The second
technique – named as the homogeneous finite element procedure – involves cal-
culation of all properties at the centroid of each finite element. Previous stud-
ies [53, 54] prove that both methods lead to computational results of high accu-
racy, provided that a sufficient level of mesh refinement is present in the model.
In the current study, the homogeneous finite element approach is adopted so
as to account for the smooth spatial variations in the elastic properties of the
laterally graded medium.

4. Numerical results

Section 4 is organized in 3 subsections. In Section 4.1, we present a verification
study, which involves comparisons of analytical and computational results. Sec-
tion 4.2 reports a second validation achieved by a comparison of our results to
those available in the literature for a limiting case. Section 4.3 includes para-
metric analyses, which demonstrate the influences of the problem parameters on
stress distributions and stress intensity factors.

4.1. Verification

A detailed verification study is carried out by comparing the numerical re-
sults evaluated by means of the singular integral equation technique to those
generated by the finite element method. The first set of comparisons given in
Fig. 5 involves, the dimensionless interface shear stress, Sxy(s), whose expres-
sion is provided by Eq. (2.58). The dimensionless coordinate, s, is defined by
Eq. (2.44). The comparisons are provided for 5 different values of the dimension-
less inhomogeneity parameter, γ(b− a). The thin film is symmetrically located
with respect to origin, i.e., b = −a. In all cases, analytical results are in excellent
agreement with those obtained by the finite element method. Note that the load-
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Fig. 5. Comparisons of dimensionless shear stress, Sxy(s): (a) γ(b− a) = −1.5; (b)
γ(b− a) = −1; (c) γ(b− a) = 0; (d) γ(b− a) = 1; (e) γ(b− a) = 1.5; b = −a, µ0/Ef = 0.3,

(b− a)/h = 10, v = 0.25.

ing is due to the electric field, E(f)
x , which is present as a normalization factor in

Eq. (2.58). Shear stress transitions from positive to negative as the normalized
position, s, is increased from −1 to 1. At both ends of the interface, s = ±1,
shear stress possesses the square-root singularity. The shear stress is perfectly
anti-symmetric with respect to the axis, s = 0, when the half-plane is homoge-
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(a)

(b)

(c)

(d)

(e)

Fig. 6. Deformed shapes: (a) γ(b− a) = −1.5; (b) γ(b− a) = −1; (c) γ(b− a) = 0;
(d) γ(b− a) = 1; (e) γ(b− a) = 1.5; b = −a, µ0/Ef = 0.3, (b− a)/h = 10, v = 0.25.

neous, i.e., when γ(b− a) = 0. However, this anti-symmetry is distorted when
γ(b− a) becomes nonzero. Close-up views of the deformed finite element model
displaying the thin film and its proximity are provided in Fig. 6.
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A second set of comparisons is generated by considering the dimensionless
normal stress in the thin film, Syy(s), whose definition is expressed by Eq. (2.59).
The findings are provided in Fig. 7. The computations are again carried out for
five different values of γ(b− a), and the analytical results are found to be in
perfect agreement with those obtained by the finite element method. In finite
element analyses, the normal stress is computed at the bottom surface of the thin

Fig. 7. Comparisons of dimensionless thin-film stress, Syy(s): (a) γ(b− a) = −1.5;
(b) γ(b− a) = −1; (c) γ(b− a) = 0; (d) γ(b− a) = 1; (e) γ(b− a) = 1.5; b = −a, µ0/Ef = 0.3,

(b− a)/h = 10, v = 0.25.
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film. As expected, the normal stress is zero at the stress-free ends, s = ±1. It goes
through a minimum within the thin film; and is symmetric with respect to s = 0
for γ(b− a) = 0. The curves are tilted towards s = −1 for negative values of
γ(b− a) and towards s = 1 for positive values. Comparisons of the dimensionless
lateral normal stress, Ωyy(s), which is computed at the surface of the graded
medium, are provided in Fig. 8. The expression of the normal stress is given by

Fig. 8. Comparisons of dimensionless lateral stress, Ωyy(s): (a) γ(b− a) = −1.5;
(b) γ(b− a) = −1; (c) γ(b− a) = 0; (d) γ(b− a) = 1; (e) γ(b− a) = 1.5; b = −a, µ0/Ef = 0.3,

(b− a)/h = 10, v = 0.25.
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Eqs. (2.60)–(2.65). The analytical results are in excellent agreement with those
calculated by FEA for all γ(b− a) values considered. The lateral normal stress is
of particular significance since a high positive value at a certain location points
to the possibility of crack initiation and growth. It is seen that under the given
electric field loading, the lateral normal stress is always positive at the interface
between the thin film and the half-plane (|s| < 1). The positive singularities at
the ends of the interface zone point out to the probability of fracture failure
at those points. Outside of the interfacial zone (|s| > 1), the lateral normal stress
is always compressive, and its amplitude tends to −∞ as s→ −1− and s→ 1+.
The lateral stress also satisfies the regularity condition, i.e., it approaches zero
as s→ ±∞.

4.2. Analysis of a limiting case

The previous section presents comparisons between our analytical and com-
putational results, and the high level of agreement is a testament to the high level
of accuracy achieved by both methods. A second verification study is conducted
by comparing our analytical results to those provided by Peijian et al. [40] for
a limiting case. The problem tackled by Peijian et al. [40] consists of a piezo-
electric thin film bonded to a homogeneous half-plane. The thin film is assumed
to be under uniform electric field loading. The geometry is therefore exactly the
same as the geometry depicted in Fig. 1. However, there is no gradation and the
shear modulus and Poisson’s ratio take on constant values.

Fig. 9. Comparisons of the analytical results to those given by Peijian et al. [40];
γ(b− a) = 0, γ(b+ a) = 0, ν = 0.3, (b− a)/h = 10, µ0/Ef = 2.28(1− ν)/π.
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The numerical results pertaining to the homogeneous half-plane model can
be generated via our analytical methodology by specifying the inhomogeneity
constant γ(b− a) as zero. In such a case, the parameter γ(b+ a) does not impact
the outcome since for a homogeneous half-plane, the thin film problem is self-
similar, i.e., the location of the thin film does not influence the stress distribution.

Figure 9 presents comparisons of our numerical results for the dimensionless
shear stress at the interface, Sxy(s), to those provided by Peijian et al. [40].
Length-to-thickness and modulus ratios, (b− a)/h and µ0/Ef , are respectively
taken as 10 and 2.28(1− ν)/π. Our analytical results are seen to be in excel-
lent agreement with those given by Peijian et al. [40]. Hence, these findings
are deemed to be another independent verification of the developed analytical
technique.

4.3. Parametric analyses

In this section, we present the results of the analytical and computational
studies carried out to examine the influences of problem parameters on the stress
distributions and stress intensity factors. Analytical results involving the inter-
face shear stress, Sxy(s), and the thin film normal stress, Syy(s), are presented
in Figs. 10–13. SIFs are tabulated in Tables 1–4. Figure 10 illustrates the effect
of the inhomogeneity parameter, γ(b− a), on Sxy(s), and Syy(s), for b = −a/2.
Figure 10(a) shows that, as γ(b− a) is increased from −1.5 to 1.5, there tends to
be an increase in the dimensionless shear stress, Sxy(s), within the inner section
of the interfacial zone. The stress becomes square-root singular as s approaches
the end points −1 and 1. The impact on Syy(s) is depicted in Fig. 10(b). The nor-
mal stress attains a minimum value and is symmetric with respect to s = 0 when
γ(b− a) = 0 as expected. However, for positive and negative values of γ(b− a),
the distribution slants towards s = 1 and s = −1, respectively. The magnitude
of the minimum becomes smaller as the value of γ(b− a) gets larger.

Mode II stress intensity factor quantifies the strength of singularity for the
shear stress at the end points of the interfacial zone. In Table 1, we provide the
dimensionless SIFs, KIIn(a) and KIIn(b), as functions of γ(b− a). The signs of
the shear stress at the end points imply that KIIn(a) is positive and KIIn(b) is
negative. The results provided in Table 1 are in agreement with this outcome.
Additionally, magnitude of KIIn(a) decreases and that of KIIn(b) increases with
the corresponding increase in the inhomogeneity parameter, γ(b− a).

Since the half-plane is laterally graded, the location of the piezoelectric thin
film also has a bearing on the response under electric field loading. In problems
involving a homogeneous surface or a half-plane graded in the thickness direction,
thin film location does not impart any influence since the problem is self-similar
with respect to thin film translation. However, for a laterally graded half-plane,
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Fig. 10. Dimensionless interfacial shear and thin film normal stress as functions of γ(b− a):
(a) dimensionless shear stress; (b) dimensionless normal stress; b = −a/2, µ0/Ef = 0.3,

(b− a)/h = 10, ν = 0.25.

the shear modulus varies in the lateral direction, and thus a shift in the location
of the thin film causes variations in stress distributions. Figure 11 presents,
dimensionless shear stress, Sxy(s), and dimensionless thin film stress, Syy(s),
for five different thin film locations. The inhomogeneity parameter, γ(b− a), is
assumed to be equal to 1. The impact of punch location is seen to be particularly
significant on the thin film stress. As the position of the thin film shifts in the
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Fig. 11. Dimensionless interfacial shear and thin film normal stress as functions of thin film
location: (a) dimensionless shear stress, (b) dimensionless normal stress; γ(b− a) = 1,

µ0/Ef = 0.3, (b− a)/h = 10, ν = 0.25.

positive y-direction from the configuration b = −a/3 to a = 0, magnitude of the
compressive thin film stress increases. Table 2 shows the dimensionless mode II
stress intensity factors for five different configurations. As the thin film translates
in the y-direction, KIIn(a) becomes larger and KIIn(b) decreases.

Figure 12 examines the effect of the thin film length-to-thickness ratio,
(b− a)/h, on the stress components. Dimensionless shear stresses given in
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Fig. 12. Dimensionless interfacial shear and thin film normal stress as functions of
length-to-thickness ratio: (a) dimensionless shear stress; (b) dimensionless normal stress;

b = −a, γ(b− a) = 1, µ0/Ef = 0.3, ν = 0.25.

Table 1. Mode II stress intensity factors at the end points of the interface; b = −a/2,
µ0/Ef = 0.3, (b− a)/h = 10, ν = 0.25.

γ(b− a)

−1.5 −1.0 0.0 1.0 1.5

KIIn(a) 0.8455 0.7051 0.4775 0.3028 0.2354

KIIn(b) −0.3294 −0.3758 −0.4775 −0.5807 −0.6352
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Table 2. Mode II stress intensity factors at the end points of the interface; γ(b− a) = 1,
µ0/Ef = 0.3, (b− a)/h = 10, ν = 0.25.

b = −a/3 b = −a/2 b = −a b = −3a a = 0

KIIn(a) 0.2864 0.3028 0.3378 0.3960 0.4614

KIIn(b) −0.5521 −0.5807 −0.6409 −0.7388 −0.8467

Fig. 12(a) become zero in the interval (0.3, 0.33), and the intercepts are close
to each other. At either side of the intercept, an increase in (b− a)/h causes
a reduction in the magnitude of the dimensionless shear stress. This trend is
seen to be reversed for the dimensionless thin film normal stress, Syy(s), i.e.,
the larger length-to-thickness ratio amplifies the stress magnitude. Table 3 tabu-
lates the mode II SIFs as functions of the length-to-thickness ratio. KIIn(a) and
KIIn(b) are respectively, decreasing and increasing functions of (b− a)/h.

Table 3. Mode II stress intensity factors at the end points of the interface; b = −a,
γ(b− a) = 1, µ0/Ef = 0.3, ν = 0.25.

(b− a)/h

10 12 14 16 20
KIIn(a) 0.3378 0.3163 0.2984 0.2832 0.2587

KIIn(b) −0.6409 −0.5928 −0.5535 −0.5207 −0.4687

Elasticity of the piezoelectric thin film is another factor to be considered
in the stress analysis. Figure 13 depicts the influence of µ0/Ef , where µ0 is
the shear modulus of the half-plane surface; and Ef is effective Young’s modu-
lus of the piezoelectric thin film. The dimensionless inhomogeneity parameter,
γ(b− a), is taken as 1.0 and b = −a; thus, there are shifts in the s – intercepts
of the shear stress curves and they are not perfectly symmetric with respect to
s = 0. The increase in µ0/Ef causes decreases in Sxy magnitudes on both sides
of the intercepts. The influence on the thin film normal stress is also notable.
The magnitude of the normalized normal stress becomes smaller with the in-
crease in the ratio, µ0/Ef . The results regarding the mode II SIFs are tabulated
in Table 4. The increase in µ0/Ef causes corresponding drops in SIF magnitudes
at both corners.

Table 4. Mode II stress intensity factors at the end points of the interface; b = −a,
γ(b− a) = 1, (b− a)/h = 10, ν = 0.25.

µ0/Ef

0.1 0.2 0.3 0.4 0.5
KIIn(a) 0.4637 0.3862 0.3378 0.3040 0.2787

KIIn(b) −0.9364 −0.7518 −0.6409 −0.5658 −0.5109
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Fig. 13. Dimensionless interfacial shear and thin film normal stress as functions of µ0/Ef :
(a) dimensionless shear stress; (b) dimensionless normal stress; b = −a, γ(b− a) = 1,

(b− a)/h = 10, ν = 0.25.

Contour plots of normalized displacement in the y-direction and the shear
stress generated by the finite element method are provided in Fig. 14. Normalized
forms are defined by

(4.1) ūy =
uy

h
ef
Ef
E

(f)
x

, σ̄xy =
σxy

µ0
ef
Ef
E

(f)
x

.

The two-dimensional distributions are obtained for 5 different values of the ratio,
µ0/Ef . They illustrate stress intensifications and relatively larger displacements
at the end points of the interfacial zone and the thin film, respectively.
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(a)

(b)

(c)

(d)

(e)

Fig. 14. Normalized horizontal displacement (left column) and shear stress (right column)
contours generated by FEM: (a) µ0/Ef = 0.1, (b) µ0/Ef = 0.2, (c) µ0/Ef = 0.3,

(d) µ0/Ef = 0.4, (e) µ0/Ef = 0.5; b = −a, γ(b− a) = 1.0, (b− a)/h = 10, ν = 0.25.
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Fig. 15. Dimensionless lateral stress, Ωyy(s), for five different values of µ0/Ef ;
γ(b− a) = 1.0, b = −a, ν = 0.25.

Variations of the dimensionless normal stress in the lateral direction at the
surface of the graded half-plane, Ωyy(s), are presented in Figs. 15 and 16. The
numerical results shown in both figures are generated by means of the analytical
technique. Figure 15 depicts Ωyy(s) distributions for five different values of the
modulus ratio, µ0/Ef . The impact of µ0/Ef is seen to be significant. Both inside
(|s| < 1) and outside (|s| > 1) of the interfacial region, the magnitude of the

Fig. 16. Dimensionless lateral stress, Ωyy(s), for five different positions of the piezoelectric
thin film; γ(b− a) = 1.0, µ0/Ef = 0.3, ν = 0.25.
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dimensionless stress lessens as µ0/Ef is increased from 0.1 to 0.5. The normal
stress possesses positive singularities at the end points of the interfacial region,
which are thus deemed to be critical locations for the crack initiation and growth.
Figure 16 examines the influence of the location of the piezoelectric thin film
on the lateral normal stress distribution. The effect is particularly noticeable
within the interface. The normal stress in this zone becomes larger as b value
is varied from −a/3 to −3a; and the largest magnitude is calculated for a = 0.
Note that the thin film is at the leftmost location for b = −a/3 and the rightmost
location for a = 0.

5. Conclusions

Analytical and computational methods are developed to calculate stresses in
an advanced material system, consisting of a piezoelectric thin film and a lat-
erally graded half-plane. The external loading is assumed to be a uniform elec-
tric field applied to the thin film across the thickness direction. Two separate
verification studies are carried out to assess the levels of accuracy associated
with the analytical and computational procedures. In the first set of computa-
tions, the analytical results are compared to those calculated by means of the
finite element method. The second study involves a comparison to the stress
distribution for a limiting case available in the literature. In both studies, a very
good agreement is observed, which is indicative of the high level of accuracy
achieved in the implementations of the analytical and computational procedures.

The developed analytical technique is capable of accounting for a number
of parameters including, dimensionless inhomogeneity parameter, γ(b− a); thin
film location parameter, b/a; modulus ratio, µ0/Ef ; and thin film length-to-
thickness ratio, (b− a)/h. Parametric analyses indicate that the impact of each
of these parameters on stress distributions is significant. The increase in the in-
homogeneity parameter, γ(b− a), is found to cause a positive shift in the shear
stress magnitude within the inner section of the interfacial zone. Thin film nor-
mal stress goes through a minimum and the location of the extremum point
translates in the positive s-direction as γ(b− a) is increased from −1.5 to 1.5.
An increase in either µ0/Ef or (b− a)/h results in a corresponding rise in the
magnitude of the normal stress within the thin film.

The stress intensity factor is the primary parameter that represents the
strength of a singular field. In the present study, we defined the mode II SIFs at
the end points by considering the shear stress at the interface of the piezoelec-
tric thin film and the laterally graded half-plane. The inhomogeneity parameter,
γ(b− a), possesses a particularly significant influence on the dimensionless SIFs,
KIIn(a) and KIIn(b). It is found that as γ(b− a) is increased from −1.5 to 1.5,
the magnitude of KIIn(a) drops 72.2% whereas that of KIIn(b) increases 92.8%.
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Another important factor that affects fracture mechanisms in piezoelectric
thin film-substrate systems is the normal stress in the lateral direction at the
surface of the substrate. Our numerical results identify positive singularities in
the lateral normal stress at the end points of the interface, which could thus
be potential sites for impending crack propagation. An increase in the modulus
ratio, µ0/Ef , causes a reduction in the lateral normal stress magnitude within
the central zone of the interface. The thin film location also affects the normal
stress in this region. For the considered parameters, the highest magnitude is
generated when the thin film is at the rightmost location.

Structural integrity and failure analyses involving piezoelectric thin films and
laterally graded surfaces require reliable estimations of strains, stresses, and SIFs.
These quantities can then be utilized in conjunction with appropriate failure the-
ories or fracture criteria to assess the electro-mechanical behavior of the system
components. The dual approach methodology presented in this article allows
determination of singularities, stress components and stress intensity factors as
functions of the parameters that describe inhomogeneity, geometry, and elastic-
ity. The methods proposed could therefore prove useful in analysis, design, and
optimization studies of advanced material systems that comprise piezoelectric
and graded components.
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