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This article investigates design optimisation in the automotive field using
machine learning (ML). A thin-walled crash box under axial impact is studied and
the design parameters are optimised for front-impact crash tests. This study is based
on geometrically and physically nonlinear shell theory, finite element analysis (FEA),
dynamic buckling analysis and design optimisation using ML. An artificial neural
network framework consisting of various ML methods is developed. A generative
adversarial network is established for data generation and reinforcement learning is
implemented to automate exploration of the design parameter. This ML framework
is proven to determine optimal parameters under predefined crashworthiness con-
straints.
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1. Introduction

Design for crashworthiness is a key aspect of the vehicle design pro-
cess. With 2.7 million recorded total road accidents in Germany in 2019 and
384,230 total injured [1, 2]. Therefore, stringent safety regulations, like United
Nations vehicle regulations (UN-Rxx), the European New Car Assessment Pro-
gram (EuroNCAP) in Europe, and Federal Motor Vehicle Safety Standards
(FMVSS) in the USA, are established to evaluate the safety and reliability of
the car and are required for legal sales in various parts of the world. Therefore,
in the design process of the complete vehicle, crash simulations are performed
to evaluate the performance of parts and/or assemblies and the level of safety
provided by the vehicle to its occupants in a virtual crash test [3].

Due to the increasing complexity of automobiles and the intrinsic nonlinear
dynamic nature of crashes, these simulations are resource-intensive and require
specialized systems. Numerous simulations need to be performed to optimise the
structural performance and crashworthiness of the part [4]. Due to the evolution
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of strict safety regulations and focus on the lightweight design to control emis-
sion [5, 6], automobile manufacturers are subjected to strict restrictions. Besides,
the manufacturability of complex design of parts and advancement in lightweight
composite materials result in numerous parameters that could be optimised for
each component. However, optimizing the complete vehicle for crashworthiness
and satisfying market demands is resource-intensive and time-consuming. Com-
putationally expensive simulations are needed to optimise every part with mul-
tiple parameters. This increases the preliminary design process, time and cost.
Although various surrogate models (also known as meta-models or approximate
models) exist, for a part optimization [4, 7–9]. But in the final stages, complete
simulations are performed.

1) Front bumper member; 2) crash box; 3) front rails; 4) chassis

21 3 4

Fig. 1. Front-end structure of vehicle [10].

In automobiles, there are multiple energy-absorbing structures in the event
of a crash. Special attention is given to such passive safety components in the
crashworthiness design process [11]. Because frontal crashes account for one-
quarter of all accidents [12], the optimisation of the crash box design is examined
in this article. The crash box is an energy absorption device installed at the front
end of all vehicles. It is located between the front bumper and chassis as shown in
Fig. 1. It is typically made up of thin-walled structures from metal or composite
materials. It helps in avoiding the direct transfer of energy to occupants and
intrusion into the passenger area. It also manages safe deceleration and lowers
the danger of injury [13].

In-depth research is done on designs and materials to optimise the crash
box for crashworthiness. Various designs of the crash box including cylindrical
[14–16], square/rectangular [17–19], tapered [20] and complex patterns [21–23]
are proposed and studied in detail to understand their deformation pattern and
energy absorption capabilities. Various configurations of these crash boxes under
different design patterns like corrugations [15, 24], foam filling [18, 25], multi-
cell [26, 27], segmented [28] and different geometric imperfection [29–31] have also
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been assessed. Aside from alternative designs, various materials are being studied
to improve crashworthiness design. Because lightweight design is also important
in the design process, numerous lightweight alloys and composite materials are
tested in crash box design. To enhance crashworthiness performance, customized
materials are even created [32, 33]. Most of the composite materials are from
carbon fibre composites [34, 35] and commonly steel or aluminium alloys have
been studied for crash box design [24, 31].

The crash box has to undergo large deformation before any other body part
in the event of the crash. Therefore, special attention is given to studying the
deformation mechanism. The deformation pattern of the crash box is crucial to
assess the total energy absorbed and impact forces experienced by occupants.
Therefore, deformation in crash boxes with different designs and materials is
studied [36]. It is noted that under axial loading, deformation can be either
buckling or axial collapse or a combination of both patterns [37, 38]. This has
an immediate impact on the total energy absorbed. The deformation mechanism
is investigated to comprehend these deformation patterns. It assists in under-
standing and optimising the crash box design for controlled deformation. It has
been noted that this deformation pattern depends on the thickness, slenderness
ratio, length of the crash box, material strain rate sensitivity, and stress wave
propagation [17, 38]. Optimizing the design of the crash box demands solving
a multi-parameter optimization problem.

Modelling of shell buckling requires the correct simulation of the deformation
of shell parts of the crash box. Therefore in the present study, the described me-
chanical background is modelled systematically by a nonlinear structural theory
and a finite element model to develop a solution procedure for this transient ax-
ial stability problem under impact loading. However, these FEM simulations are
computationally expensive and therefore, automation with a machine-learning
framework is proposed in this article.

Machine learning is becoming prevalent in all fields in the engineering and
technology industries, such as surrogate modelling [39, 40], medical engineer-
ing [41, 42] in biomechanics [43, 44], and structural mechanics [45] in the shell
theory [46]. Due to continuous developments, ML frameworks are used to im-
prove efficiency or replace conventional methods.

ML-based nonlinear regression models are used to achieve approximate solu-
tions for computationally expensive simulations. These ML techniques are shown
to help solve nonlinear structural problems [47–49]. Data analysis using ML is
also performed to understand the appropriate parameters and is useful in the
engineering fields, where numerous parameters need to be optimised [50].

That said, ML methods, especially supervised learning models need a lot
of data to train and predict with adequate accuracy. This is where the genera-
tive learning models help in data augmentation and generate synthetic samples
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of data that are physically admissible. Since the generator is trained indirectly
through the discriminator, it learns the underlying data structure rather than
mapping inputs to outputs or fitting to the curve. Numerous studies have been
published in the literature using generative adversarial networks (GANs) to cre-
ate synthetic data in the field of FEA and mechanics. In [51], the hybrid finite
element method (FEM) and the GAN-based method were used to classify faults
in rotor-bearing systems. TopologyGAN was proposed in [52] to perform topol-
ogy optimization of structures with isotropic solid material behaviour. Simple
body deformations with a simply supported structure loaded at the centre are
modelled in [53]. Therefore, GANs have proven to be a useful tool in generat-
ing realistic-looking synthetic data which is leveraged to bolster the dataset for
training the regression network inside of a reinforcement learning environment.

Due to recent accomplishments in various fields, like robotics [54], data man-
agement systems [55], and video games [56], reinforcement learning (RL) has
gained popularity. RL is being used in a variety of problems from function ap-
proximation, automation and control problems. The growing popularity of RL
methods is because RL agents can learn and develop by themselves. Therefore,
an RL-based optimisation framework is developed and RL agents are trained
to optimise the structural parameters of the crash box. The parameter explo-
ration is constrained by the crashworthiness parameters defined by the user. For
increasing the efficiency of the framework, a trained regression model is an inte-
gral part of the RL environment and a GAN is utilised for the data-driven part
of the ML framework. The complete framework and individual components are
described in Section 3.2. For predefined crashworthiness criteria, this framework
has been observed to predict the design parameters of the crash box.

2. Deformation mechanism

In the thin-walled crash boxes, the energy can either be absorbed by axial
and/or bending deformation, and this mode of deformation is influenced by im-
perfections and elastic-plastic buckling modes along with material and geomet-
rical parameters [37, 57]. The bending is uncontrolled large deformation and can
be dangerous in crashworthiness applications, while axial collapse deformation
is desirable and helps in absorbing maximum energy in a controlled manner [38].
Therefore, numerous studies have been performed to understand these deforma-
tion mechanisms in various thin-walled structures and the factors influencing
this deformation mode.

Initially, a simple collapse mode in the form of concertina is observed for thin
cylindrical tubes and a simplified expression for the mean axial load is formulated
for plastic rigid material [14]. Later square tubes of different cross-sections un-
der static and dynamic loading are also experimentally studied [17]. For square
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tubes, one symmetrical and two asymmetrical collapse modes of deformation
are observed. Based on these deformation modes, a simplified kinematic model,
as an extension of two fundamental folding elements is proposed [58–60]. Then
the mean crushing force and crushing distance are calculated for each collapse
mode. The effect of material strain rate sensitivity on the previous formula-
tions has revised the equations for folding elements in square and circular crash
boxes [61].

In the experimental study performed on mild steel square and circular tubes,
it is observed that the dynamic deformation of columns is influenced by the
transient response due to stress wave propagation, inertia effect, and strain-
rate effects [37]. The initial collapse pattern is governed by the interaction of
stress waves, their propagation, reflection and superposition, the slenderness ra-
tio (length/width or length/diameter) and the critical length. Depending on
these parameters, the column will fail by global bending or axial collapse [38, 62].
This effect of the interaction between stress wave propagation and inertia forces
on the deformation mechanism and deformation pattern is further studied for
square and cylindrical shells [38, 63, 64]. In this study, a model with elastic-plastic
springs is used to define the phenomena of buckling and post-buckling [63] and
concluded that the final buckling shapes also depend on the inertia properties
of the striker and geometry of shells.

It is also noted that the column that starts to deform in progressive collapse
may bend in later stages and detailed knowledge of stress distributions and plas-
tic mechanisms is required in understanding this transition [37]. It is observed
that lateral inertia forces assist in progressive buckling and as the deformation
increases, inertia forces decrease and global buckling could occur even after pro-
gressive collapse [38]. Initial buckling pattern also depends on the impactor’s
mass and velocity, and then stress-strain histories [64].

In dynamic problems, stability and buckling behaviour are modelled as an
eigenvalue problem leading to the determination of critical buckling load [65].
Therefore, the relationship between natural frequency and buckling load for sim-
ple elastic structures was examined [66]. It is noted that a nonlinear relation is
obtained for imperfection-sensitive systems with elastic-plastic material. As the
crash box deforms, different natural frequencies might be observed due to defor-
mation and changes in dynamic load.

The bifurcation point defines the post-buckling in perfect shells. But in re-
ality, due to unavoidable imperfections, the imperfect shells buckle before the
bifurcation point [67]. This phenomenon must be considered when studying dy-
namically impacted thin-walled structures modelled as thin shells. Therefore,
numerical imperfection, based on Koiter’s initial post-buckling theory, is formu-
lated in the stability of shells for realistic results [68]. As the actual imperfections
in the structure are unknown, the numerical imperfection is calculated as a value
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obtained through a linear combination of the eigenvectors [69]. This numerical
imperfection is introduced as the perturbance in the mesh to define imperfect
structure [70, 71]. Furthermore, defining the imperfection shape from the appro-
priate linear combination of eigenvectors is still an open research field. Therefore
in the initial study, the first eigenmode is selected as the critical mode to define
the numerical imperfection value for realistic imperfect thin-walled square tubes
like in other studies [72] and to avoid the use of arbitrary imperfections. The
impact simulation is carried out on this imperfect crash box.

Thus, multiple parameters, like slenderness ratio, critical length, strain rate,
material hardening parameters, and impact velocity, are responsible for the com-
plete deformation behaviour of thin-walled structures. This deformation pattern
is essential in energy absorption and other crashworthiness characteristics.

3. Approach

3.1. Theoretical model

The thin-walled crash box (CB) is modelled using a geometrically and phys-
ically nonlinear shell model to develop an underlying structural model [46, 73].
The effects of inertia forces, external body forces and surface tractions are con-
sidered using the principle of virtual work. Undeformed and deformed configu-
rations of the shell space along with base vectors are illustrated in Fig. 2. The
variables θi denote a curvilinear coordinate system that deforms together with
the structure. The variables with a bar on top, like ’X’, represent variables in
deformed configurations. The base vector systems ai and gi are introduced at
the mid-surface and in the shell space, respectively. For the transformation be-
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Fig. 2. Shell configuration – undeformed and deformed shell space.
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tween these systems, we refer to [74]. Thus, the displacement vector in the shell
space is represented by:

(3.1) v = vαaα + v3a3, α = 1, 2.

The displacement vector at the mid-surface is given by

(3.2) v =
0

vαaα +
0

v3a3

including displacement components as follows:

vα =
0
vα + θ3 1

vα,(3.3)

v3 =
0
v3,(3.4)

v3 =
0
v3.(3.5)

Five degrees of freedom are considered, where 0
vα,

0
v3 are denoting the dis-

placements and 1
vα are standing for rotations. Here, the change in thickness dur-

ing deformation is neglected. Therefore, the equations of the principle of virtual
work can be written as follows:

(3.6)
∫
V

SijδEij dV −
∫
V

ρ(B − I)δv dV −
∫
Bs

?
Sδv dBs = 0.

Here, Sij are components of the second Piola–Kirchhoff stress tensor, Eij are
the components of the Green–Lagrange strain tensor, B is the body force per
unit mass, ρ is density, δv the virtual displacement vector, I is the inertia force

vector and
?
S stands for surface tractions. The integration is carried out over the

volume V and the shell boundary Bs.
From the above equations, for a shell mid-surface, using the first-order shear

deformation theory (FOSD) with the von Karman hypothesis [73], the following
equations are obtained:

(3.7) −
∫
M

{[(
0

Lαβ − bαλ
1

Lαβ) |β − bαβ
0

Lβ3 − (
0

Bα −
0

Iα +
0

Pα)] δ
0
vα

+ [(
0

Lβ3 +
0

Lαβv3,α) |β − bαβ(
0

Lα3 − bαλ
1

Lλβ)− (
0

B3 −
0

I3 +
0

P 3)] δ
0
v3

+ [(L1αβ − bαλL2αβ) |β − L0α3 − (
1

Bα −
1

Iα +
1

Pα)] δ
1
vα} dA

+

∫
C

{[(
0

Lαβ − bαλ
1

Lαβ)−
?0

Lαβ] δ
0
vα + [(

0

Lαβv0
3,α +

0

Lβ3)−
?0

L3β] δ
0
v3

+ [(
1

Lαβ − bαλ
2

Lαβ)−
?1

Lαβ]
1
vα} vβ ds = 0.
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The forces, in-plane and transverse shear, and moments are expressed by
0

Lαβ ,
0

Lα3 and
1

Lαβ , respectively. Higher order terms, which are present due to

geometrical nonlinearity, are denoted by
2

Lαβ . Covariant and mixed components
of the curvature tensor are written as bαβ and bαβ , respectively. The principle of
virtual work obtained in a two-dimensional form is solved with integral over the
shell mid-surface M and its boundary C. The outward unit vector is denoted
by v.

For the crash box loading, a specified boundary condition representing an
impact is necessary. For this reason, external loading in Eq. (3.7) can be ignored.
A solution of Eq. (3.7) in the form of wave propagation is assumed to lead
to a non-trivial solution [65]. However, since the analytical approach is hardly
possible, a numerical solution in two steps is chosen.

To begin with, the eigenmodes are determined numerically, being used as
imperfection. In this way, a reproducible and systematic way of imperfection
is introduced. The imperfection is calculated as the linear combination of the
eigenmodes and is introduced in the crash box structure. In the next step, the
transient problem is solved with the pre-deformed imperfect crash box. This
procedure is supported by the evident superposition of eigenmodes to obtain
a solution of inhomogeneous differential equations. FEA is used to solve this
nonlinear dynamic system of equations.

3.1.1. FEA-preprocessing. Simulia ABAQUS (version 2021) [75] is used to model
the problem. This dynamic impact problem is solved using the ABAQUS explicit
solver including geometrical nonlinearity. The Python script is used for simulat-
ing various crash box configurations impacted with varying impact velocities.

The crash box is modelled as a shell structure. The impactor plate is modelled
as a rigid 2D square plate with a side length of 200mm, which moves with the
initial velocity of impact. Additionally, a support plate identical to the impactor
plate is secured to the rear of the crash box to stop the crash box from deforming
excessively in any arrangement. Figure 3 represents the complete simulation

Impactor
Plate

Rigid plate

Support
Plate

20
0 

m
m

250 mm

Fig. 3. Simulation method: assembly, linear buckling analysis and dynamic impact analysis
(from left to right).
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assembly. Multiple configurations of crash box input are simulated and input
parameters, namely the width (WCB) and thickness of the crash box (tCB), and
the impact velocity (VImpact), are varied in a specific range, as illustrated in
Table 1. However, the length of the crash box (LCB) and the impactor mass
(MImpactor) are kept constant at 250 mm and 100 kg, respectively.

Table 1. Arbitrary development of structural parameters of crash box design.

Structural parameters
WCB tCB VImpact

[mm] [mm] [m/s]
Lower bound 40 1 5
Upper bound 80 2 10

The contact is assumed to be frictional with a friction coefficient of 0.25. The
impactor and support plate have meshed with rigid elements (R3D4) with a size
of 10mm, and the crash box body has meshed with shell elements (S4R) with
a size of 2mm. The size and element selection are based on the mesh sensitivity
research done in the preliminary work, and it has been found that this element
size produces accurate results with minimal computing effort required.

Table 2. Material properties.

Density Young’s modulus Poisson ratio
[kg · m−3] [GPa] –

2700 70 0.33

Table 3. Plasticity properties.

Yield stress Plastic strain
[MPa] –
80 0
173 0.174

The material is assumed to be aluminium 6063-T5 with bilinear elastoplas-
ticity with a von Mises yield surface and strain-rate independent isotropic hard-
ening [76]. The elastic and plastic properties of the material are illustrated in
Tables 2 and 3, respectively.

3.1.2. Impact simulations for crashworthiness analysis. In the impact analysis,
symmetry buckling does not occur even when the bifurcation point is reached;
therefore, a small numerical imperfection is introduced to trigger the buckling.
The imperfection is a numerical imitation of the imperfection in the structure
and the deformation characteristics are affected by this imperfection. As a result,
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a realistic solution is obtained [70]. Therefore initially, the linear bucking analysis
(LBA) is performed with Abaqus/Standard. Output from the LBA is used to
introduce imperfection in the dynamic impact simulation. Only the first mode
is assumed to define the imperfection. The imperfection is defined by scaling the
lowest eigenmode. Thus, the imperfection of 1% of the thickness of the crash box
in each configuration is introduced. The goal of this method is to perturb the
mesh to achieve the correct deformation pattern in the early part of the impact
analysis without significantly reducing the external work done.

Following LBA, dynamic impact simulations are performed for each config-
uration. The impactor is impacted on the fixed crash box and the deformation
is analysed. To optimise the crash box, the total energy absorbed is evaluated.
The energy absorbed (EA) by the crash box is defined as the crash energy dis-
sipated by the crash box in plastic deformation, as shown in Eq. (3.8). Apart
from the EA, a few more metrics are evaluated in crashworthiness. This article
uses initial peak crushing force (IPCF), mean contact force (Pm), and maxi-
mum deformed length (dmax), as crashworthiness evaluation metrics. IPCF is
the maximum reaction force observed during the initial stages of impact and it
should be controlled so other neighbouring structures would not yield before the
crash box starts deforming. Here, Pm is the average reaction force experienced
by the crash box over the dmax, it can be computed with the EA as shown in
Eq. (3.9) [77]. These crashworthiness metrics are evaluated for all the configu-
rations. The mass of the crash box (MCB) is furthermore considered due to the
increasing importance of lightweight design in the automotive industry [78]:

EA =

dmax∫
0

F (s) ds,(3.8)

Pm =
EA

dmax
=

∫ dmax
0 F (s) ds

dmax
,(3.9)

where F (s) is the contact force observed over the deformed length s. Subse-
quently, a database of various configurations and respective crashworthiness
metrics values is assembled. The database consists of the structural parame-
ter of the crash box and analysis parameters, WCB, LCB, tCB, VImpact, MImpactor
and crashworthiness metrics, IPCF, EA, Pm, and dmax, MCB. This database is
used in the data-driven part of the machine learning framework and the training
of the proposed DCGAN.

3.1.3. Optimisation problem. In impact simulations from the input variables,
the energies, reaction forces and deformation are computed. From this data,
the crashworthiness metrics values are determined. The goal of this study is to
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optimise the input variables for the user-defined crashworthiness metrics values.
Therefore, the inverse optimisation problem is solved. The five components Ik
of an input vector can be summarised as

(3.10) I = (I1 I2 I3 I4 I5)T .

The Ik are five input variables, WCB, LCB, tCB, VImpact, MImpactor. Thus the
complete problem can be expressed as the following Eq. (3.11) and every crash-
worthiness metric is represented as a separate function (fj(I)). The approach is
proposed in studies on multi-objective optimisation [79]. The optimisation func-
tion (T (fj(I))) can be described as the combination of the functions of crashwor-
thiness metrics and the constraint can be represented in terms of user-specified
crashworthiness metrics values, like IPCF, EA, dmax, Pm,MCB:

minT (fj(I)) = F (f1(I), f2(I), f3(I), f4(I.f5(I)) ∀ j = 1, 5,(3.11)

Subject to constraints: f1(I) = IPCF, 0 ≤ IPCF ≤ IPCF,

f2(I) = EA, 0 ≤ EA ≈ EA,
f3(I) = dmax, 0 ≤ dmax ≤ dmax,

f4(I) = Pm, 0 ≤ Pm ≤ Pm,

f5(I) = MCB, 0 ≤MCB ≤MCB.

3.2. Machine learning framework

Due to the complex nature of the crash box design, all parameters (I) must be
carefully assessed and an extensive method is required to automate this design-

G D

DCGAN

Input data to RL environment

Synthetic training data from GAN

Output data to regression model

Regression model

Agent Environment

Action

RL

Optimal parameters for 

the crash box

FE simulation

Fig. 4. Complete machine learning framework.
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optimisation process. As a result, several machine learning methods interact in-
geniously to produce the final results. The complete machine learning framework
is displayed in Fig. 4. This section describes the components of the architecture
as well as the complexities of the individual components. Initially, an artificial
database is created using the Deep Convolutional Generative Adversarial Net-
work. This database is similar to the data acquired from impact simulations
using FEM. This database is used in the regression network training. This re-
gression network is used in the RL environment, which automates the exploration
of design parameters.

3.2.1. Deep convolutional generative adversarial network. Given the complexity
and computational expense of crash simulations, it is understandable that the
existing studies so far have settled on strategies that result in the best accuracy
for fewer data samples. Generating a larger number of samples for training an FE
surrogate for the RL leads to excess computational effort and time. To overcome
this, a generative-based approach is proposed, employing the Deep Convolutional
Generative Adversarial Network (DCGAN) to generate synthetic data required
for training the regression network which acts as a solver for the environment
for RL thereby saving time and computational expense. The data generated
includes the tCB, VImpact and crashworthiness metrics pairs of the crash box
configuration.

The overall architecture of the proposed DCGAN is shown in Fig. 5. GAN
are a class of deep learning algorithms that can generate synthetic data from
latent space. GANs provide a unique ability to generate a new multidimensional
vector space corresponding to points in the problem domain forming a com-
pressed representation of the data distribution. The GAN framework consists

loss

Generator

Discriminator

Real data

Generated data

Latent space sampled 
from normal distribution

Dense Layers

Convolution Layers

Fig. 5. Architecture of the DCGAN.
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of two deep networks namely, a generator and a discriminator. These two neu-
ral networks compete with each other in a min-max game or a zero-sum game,
where one network’s gain is the other network’s loss. To begin with, a latent
vector is passed to the Generator which in turn generates synthetic samples
of data represented by G(z). This generated data is passed to the discrimina-
tor which outputs a probability of the given data to be real or synthetic data
which is represented by D(G(z)). Real data is also passed into the discrimina-
tor whose output is denoted by D(x). The networks are then trained on these
resulting outputs where we aim to maximize the loss of discriminator and min-
imize the loss of generator. In other words, we train the Generator to produce
realistic synthetic data that is indistinguishable from the real data for the dis-
criminator. This implies, that in an ideal training scenario, the discriminator
gives a probability of 50% for both real and synthetic data. Therefore to achieve
this, it is crucial to have the right loss function, the value of which the gen-
erator tries to minimise and the discriminator maximizes. The loss function is
expressed by

(3.12) Min
G

Max
D

V (G,D) = Ex[log(D(x))] + Ez[log(1−D(G(z)))].

Here, G represents the generator, D represents the discriminator, D(x) rep-
resents the output of the discriminator for real input, Ex is the target or actual
output over all the real data instances, G(z) is the output generated by the gen-
erator with the given noise z. The output of the discriminator for a generated
input for a sample z is denoted by D(G(z)) and Ez is the expected value over all
random inputs to the generator. The LHS of the above equation represents the
two-player game where V (G,D) represents the loss function and the generator
tries to minimize MinG the loss for fake outputs while the discriminator tries
to maximize MaxD the loss. A lot of generator and discriminator architectures
have been proposed since their inception. In the present study, a generator with
residual connections is proposed.

Usually, in sequential networks, the output of the current layer nth is con-
nected to the next layer (n+ 1)th as an input, with xi being the data at layer i,
where i = 1, k with k being the final layer. Consider an arbitrary layer, n, as
the current layer and n + 1 as the succeeding layer, which results in the trans-
formation xn+1 = H(xn) in a classical convolutional network. Where H() is
a convolution operator that maps the input to output based on the number of
convolutional filters and filter stride. The output data shape after a convolu-
tion, for an input shape of Wout × Hout is given by (W×H)in−K+2P

S + 1. In the
current study, a residual connection is added between the non-linear transfor-
mation, also known as a skip connection, which transforms xn+1 = H(xn) to
xn+1 = H(xn) + xn. The skip connection is fundamentally an identity mapping,
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where the input from the previous layer is added directly to the output of the
other layer. These residual connections help in treating the vanishing gradient
problem which plagues the deep neural networks. In the case of the discrimina-
tor, we employ a densely connected sequential network to differentiate between
real and generated samples.

Unlike the usual application of GANs where the generator tries to train
based on the likelihood of data i.e., probabilities, we apply the GANs for curve
fitting. This is a novel implementation of GANs and requires unconventional
loss functions [80]. The loss functions for the generator and discriminator with
m number of samples are given by:

LGen = α
1

m

m∑
i=1

log(1−D(G(z(i)))) + β
1

m

m∑
i=1

(Z(i) − d(i))2,(3.13)

LDisc =
1

m

m∑
i=1

log(D(x(i))) + log(1−D(G(z(i)))).(3.14)

3.2.2. Regression network. A regression model is developed to expedite the per-
formance of the RL framework. The trained regression model is a key component
in the RL environment, which is explained in Section 3.2.3. As mentioned in Sec-
tion 3.2.1, this regression model is trained and validated using data from FEM
simulations and DCGAN-generated data.

For this regression model, the crash box’s structural parameters are cho-
sen as input parameters and crashworthiness metrics are chosen as output pa-
rameters. As the length of the crash box will be fixed for the specific vehicle
and the crashworthiness tests are predefined norms for a given vehicle class,
the LCB and MImpactor are kept constant and are not trained in the regression
model. Pandas [81] and seaborn [82] libraries are used for data preprocessing
and the scikit-learn [83] library is used to construct and train the regression
model.

Data analysis shows thatWCB, tCB, and VImpact have a considerable effect on
crashworthiness metrics, as shown the top right corner square (5× 5) in Fig. 6.
It is observed that WCB and tCB have a major effect on the IPCF with the
relative factor of 0.7 and 0.5, respectively, and while VImpact has a major effect
on the dmax shown with the relative factor of 0.6. Here, LCB and MImpactor are
shown to not affect the crashworthiness metrics because in the database they
are unchanged for all the simulation configurations. Therefore, the structural
parameters of the crash box, WCB, tCB, and VImpact are chosen as input fac-
tors for this regression model, whereas crashworthiness criteria, namely IPCF,
EA, Pm, dmax and MCB, are selected as output parameters. Table 4 shows the
network’s architecture and chosen hyperparameters for training the network.
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Fig. 6. Correlation matrix between structural parameters and crashworthiness criteria.

Table 4. Hyperparameters of the SLNN network.

Hyperparameters Parameter value
Network architecture 3-40-40-40-40-5
Train- test split 0.8- 0.2
Optimiser Adam [84]
Learning rate 0.001
Epochs 500
Batch size 16
Loss MSE
Metrics MAE, RMSE

3.2.3. Reinforcement learning environment. In this study, a machine learning
framework based on reinforcement learning is proposed for the optimization
process. To automate the exploration of the structural parameters of the crash
box, a model-free RL environment is created. The environment is in OpenAI’s
Gymnasium format [85]. User-defined structural parameters are analysed in the
RL environment and required structural parameters are identified that fulfil the
crashworthiness metrics value specified by the user.

For the RL environment, initially, two input arrays are provided. The first
array consists of user-defined structural parameters initial thickness (tInitial),
WCB and VImpact and the second array is made up of crashworthiness metrics
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value specified by the user, namely IPCF, EA, Pm, dmax and MCB. The tInitial
is required as the engineer’s first guess to initialize the RL environment. This
choice could help RL agent compute the optimal thickness (topt) quickly if the
tInitial is near the topt as later shown in the results Section 4.4.

WCB and VImpact are regarded as constant parameters specified by the user
and the RL agents cannot modify them. This is decided to provide consistent re-
sults every time and not a pair of width and thickness, like a pair of (Wopt, topt),
every time agents are used. Also, it is assumed the VImpact will be selected be-
forehand for specific vehicles and crash tests and is regarded as consistent and
due to space constraints the WCB can be fixed beforehand. Furthermore, as the
regression model is trained on different tCB,WCB and VImpact, the same RL envi-
ronment can be implemented for differentWCB and VImpact given by the user. The
RL agents analyse the tInitial for givenWCB and VImpact based on the user-defined
crashworthiness metric value. After analysing tInitial the agent can incrementally
change the thickness to topt fulfilling the crashworthiness metrics value.

The model-free environment is required to estimate the required thickness
as there is no established model of optimization environment. The model in the
RL refers to the dynamics which establish a connection between the change in
the thickness for achieving the user-specified crashworthiness metrics value. The
state (s) in the RL environment refers to the current value of the thickness of
the crash box (starting with tInitial and can later be changed by the agent’s
action/step) for given WCB and VImpact and action (a) refers to RL agent’s step
to either increase, decrease or keep the thickness as it is in that state. After every
action of the RL agent the state of the RL environment is changed.

The RL agent attempts to analyse the consequence of the agent’s action and
take action in the direction to fulfil the user-defined crashworthiness metrics
value. The RL environment compares the crashworthiness metrics value of the
current state and user-defined crashworthiness metrics value and computes the
rewards for the agent for taking the action. The RL agents try to find the policy
that maximizes the reward as shown in Eq. (3.16). The RL agent takes the action
in any state under the policy function. The policy is the function that returns
the appropriate action in the current state. Initially, the agent wanders in the RL
environment and gains experience by following a random policy then evaluating
and incrementally improving the policy.

As the RL agents are motivated by the reward function, this makes the defini-
tion of reward challenging. Therefore, the trained regression network established
in Section 3.2.2 is used. A reward for the RL agent is determined at every step af-
ter the action suggested by the agent is taken. The RL environment and trained
regression model calculate the reward for the RL agent and the environment’s
subsequent state. With the output of the regression network, a consistent reward
function is defined. Only IPCF and dmax values are considered in determining
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the topt and defining the continuous reward function for the agent’s action. The
other crashworthiness metrics values, namely EA, Pm and MCB, are provided as
the information at the end of every step for the current thickness value. This is
considered as all of the crashworthiness metrics are interdependent and therefore
only IPCF and dmax are chosen to determine the required parameters. This re-
ward function is based on positive and negative reinforcement and grants the
agent a reward for every step in the right direction to fulfil the criteria. The
environment stops the optimization process if the RL agent takes more than 500
steps or if the difference between the expected and predicted output variables is
less than 0.2% and grants additional reward points.

Initially, the governing policy (π) of the RL agent is chosen at random. Then
by using the state-action value also referred to as the Q-value (Qπ(s, a)) defined
by the following Eq. (3.15), policy evaluation and improvements are iteratively
carried out. The Q-value estimates the expected rewards in the current state s
by taking action a under π [86]

(3.15) Qπ(s, a) = R(s, a) + γ
∑

P (s′|s, a)V π(s, a),

where Qπ(s, a) is the Q-value for a current state (s) and action (a) according
to policy (π), R(s, a) is a current reward, (γ) is the discount factor for future
rewards, (P (s′|s, a)) is the Markov chain probability matrix for current s and
a and the next state (s′), and V π(s, a) is the state value function for current s
and a. The agent’s task is to carry out the policy improvements to collect the
highest rewards [86] and determine the optimal policy as defined π∗(s) to carry
out the optimal action (aπ∗(s)) in s as stated in Eq. (3.16) [86, 87]

(3.16) aπ∗(s) = arg max
a

Q∗(s, a),

where Q∗(s, a) is the optimal state-action value. It is the expected reward in s
and carrying a according to π∗ [87].

To get model-free estimates of the Qπ(s, a) for all states and actions, all
s–a pairs are needed to be tested. However, as the choice of π is initialized
as a random event and then incrementally improved, it is possible that under
some chosen π some actions might not be taken in certain states. Therefore,
ε-greedy policy exploration is carried out. It offers the probabilistic choice to
take a under π or choose another action. The probability is calculated from the
ε value. It helps in balanced exploration and converging Qπ(s, a) to the true
Q-value [86].

Because the RL environment is model-free, only a restricted number of agents
can be used. Therefore, pre-existing REINFORCE [88, 89] from OpenAI’s Gym-
nasium documentation and deep Q-learning with ε-greedy policy (DQN) [90]
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and proximal policy optimization (PPO) from Keras documentation [91] agents
have been assessed. These agents have been adjusted to be used with the cus-
tom environment and then trained. The following Section 4.4 summarises the
training’s outcomes.

4. Results

4.1. Impact simulation results

Figure 7 shows the complete framework developed for the crash box design
optimisation. LBA and dynamic impact simulations are performed on different
crash box configurations, which serve as a simulation database. Then, struc-
tural parameters of the crash box, impact test specification, and crashworthi-
ness metric values are extracted from these FEM simulations, as described in
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state variables: (model +

output variables)

RL Agent

Trained 
SL

Network

FEM 
Data

Action 𝑎𝑡

New state
𝑠𝑡+1
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state
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Optimized 
Data

Input 
parameters

Fig. 7. Reinforcement learning framework.
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Pm

Fig. 8. Reaction force-deformation graph for
axially impact loaded crash box.

Fig. 9. Energies over deformed length graph
for one of the configurations.
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Section 3.1.2. For all configurations, graphs are captured for all the energies and
the reaction forces over deformation, as shown in Figs. 8 and 9 respectively.
Figure 9 shows the energy absorbed by the crash box (green curve) and Fig. 8
represents the deformation pattern. The initial peak represents the initial buck-
ling in Fig. 8 which also denotes IPCF and each subsequent peak shows the local
bucking phenomenon which denotes the wavy deformation pattern as displayed
in Fig. 3. From this Fig. 8, crashworthiness metrics mentioned in Section 3.1.2
IPCF, dmax, Pm can be calculated.

4.2. DCGAN results

Figure 10 shows the loss of the discriminator and generator during training.
It can be observed that the losses are approximate mirror images of each other.
This is because the generator and discriminator engage in a zero-sum game where
they compete with each other. This makes it hard to evaluate the training from
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the losses similar to other neural network frameworks. Therefore, the likelihood
of the synthetic data to resemble the actual data is used as a measure of training.

In Fig. 11, a synthetic sample generated by the proposed DCGAN, which
is present in the data set is compared to the closest actual sample. It can be
observed that the general trend of the variables of the synthetic sample conforms
to the actual sample suggesting the success of the proposed DCGAN in creating
realistic synthetic samples that are not present in the dataset.

4.3. Regression network results

A regression network is trained using the above-mentioned database of FEM
simulations and data generated by using the DCGAN. This trained regression
model can estimate the IPCF, EA, Pm, dmax andMCB for a crash box withWCB
and tCB and impacted at Vimapct. This trained regression model is an essential
part of the RL environment in computing the next state of the environment as
per the agent’s action and the corresponding reward for RL agents. Therefore,
the accuracy of this regression model is crucial.

As the training progresses the final loss is observed at 0.0014 and 0.0224
for the training and validation dataset, respectively. The trained model has an
accuracy of 98.11% and 94.05% for training and the validation data set, respec-
tively. In Fig. 12, the loss and accuracy for the training and validation dataset
are illustrated but the losses are close at the final stages of training as it ap-
proaches 0. The total training and validation time for this network is 4min
21 sec for 500 epochs.
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Fig. 12. Loss over the training of regression model.

The residual distribution and fluctuation of prediction for the test dataset
are computed to observe the accuracy of all the output variables. A slightly
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negative-biased distribution for predicted values of IPCF, EA, dmax, Pm MCB
and is shown, as illustrated in Fig. 13. From the above loss graph and this
residual distribution, it is observed that the model is well-trained and predicts
the output accurately with the residual error between +/−15% and most of the
predictions lie in +/−10%. Therefore, this regression model is employed in the
RL environment.

4.4. Reinforcement learning results

4.4.1. Reinforcement learning training. REINFORCE, DQN and PPO agents
are tested in the RL environment. The reward over the training graph for each
agent is shown in Figs. 14–16, respectively. The structural parameters, tinitial,
WCB and VImpact, for each agent are 1mm, 45mm, 5.1m/s, repectively. The
values for required crashworthiness criteria IPCF and dmax are 19.56 kN and
128.22mm, respectively and are used to determine topt and compute the reward
for the RL agents. The other crashworthiness metrics EA, Pm and MCB are
1.18 kJ, 9.23 kN and 170 g, respectively. The training format for all the agents is
different as agents are developed by different organizations. The training format
is chosen so the training time and number of iterations for each agent are loosely
comparable.

The REINFORCE agent is observed to take a significant amount of training
time yet is still unable to predict topt consistently, but the DQN and PPO can
predict the required thickness of given WCB and VImpact. Unlike comparable
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Fig. 14. Reinforce agent learning.

Episodes

R
ew

ar
d
s

Fig. 15. DQN agent learning.

R
ew

ar
d
s

Episodes

Fig. 16. PPO agent learning.



Development of a machine learning-based design. . . 83

Table 5. RL agents training format and learning time.

Agent Learning time [min] Training format [–]
REINFORCE 79.41 5 × 100

DQN 3.12 200 × 1

PPO 14.73 100 × 250

RL-related research, the rewards in this one only increase up to a particular level.
At each step, the agents have been encouraged to take intelligent moves or actions
to estimate topt. To maximize the reward and predicted topt, the agents perform
an appropriate number of actions from tinitial and not get stuck in an unwanted
loop of achieving rewards by oscillating. In any state, the most beneficial course
of action is to strive toward satisfying the crashworthiness metrics value while
earning rewards. As a result, throughout the training, the agent is encouraged
to act fittingly.

The DQN agent is observed to predict the optimal thickness quicker than the
PPO agent, as indicated in Table 5. As a result, additional investigations are done
to understand the DQN results and sensitivity to the input parameters. Also,
it is observed that the DQN agent can predict the optimal parameters quickly
as shown by the rewards reaching the stagnation point after episode 50. After
this point, rewards are almost identical for the remaining episodes. However, the
DQN is still trained for 200 episodes to ensure adequate training of the underlying
model and increase robustness. It is also advantageous that the saved model can
be generally used for various configurations as shown in Section 4.4.2. Table 6
shows the DQN can determine topt which is close to tCB. As both DQN agents
determine identical topt the RL agent predicted properties are the same and are
near the user-specified/expected crashworthiness metrics values.

Also as observed in Table 6, while the DQN agent can predict the topt and the
tinitial determines the time required to reach completion of agents. The accuracy

Table 6. DQN agents training for different initial thickness values.

Property DQN-Agent 1/2
tInitial [mm] 1/1.2
tCB [mm] 1.4
topt [mm] 1.38

Expected IPCF [kN] 19.56
Predicted IPCF [kN] 19.44
Expected dmax [mm] 128.22
Predicted dmax [mm] 131.45
Time required [min] 3.03/2.14
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of the regression network in the RL environment also influences the final result
and time required for the optimisation process. The fluctuations of rewards in
episodic training settings towards the completion of the RL training are observed
and are characteristic of RL agents. It is suggested that the RL agents can be
trained for a longer time to reduce the fluctuations. Regardless, the framework
can determine the topt for pre-defined crashworthiness criteria for a user-defined
consistent WCB, VImpact. The framework can be used to optimise the thickness
of a crash box of 250mm length and the square cross-section of varied width
impacted at different impact velocities, as well as specified crash tests and crash-
worthiness metrics with minor changes in the RL environment.

4.4.2. Reinforcement learning validation. From Table 7, it can further be ob-
served that the saved DQN agent can further be used for finding optimal thick-
ness. It can assess the input arrays and determine the optimal thickness for given
crashworthiness criteria and the time required is a few seconds.

Table 7. Saved DQN agents optimises for different structural parameters and
crashworthiness criteria.

Structural Crashworthiness topt tCB Time required
parameters criteria [mm] [mm] [s]
45-1.0-5.1 19.56-1.18-128.22-9.23-170 1.39 1.4 1.76
65-1.0-5.4 35.43-1.38-85.71-16.19-316 1.79 1.8 2.87
45-1.5-9.3 33.20-4.04-202.43-20.00-243 1.97 2.0 3.60
40-1.5-7.2 26.08-2.41-142.81-16.88-205 1.83 1.9 1.95

In this article, design optimization with the machine learning method is ex-
plored. Different ML methods are employed to work together and it is demon-
strated to be feasible. Since shape optimization is a nonlinear polynomial fit,
machine-learning methods can be used to find the solution.

Data augmentation using DCGAN is performed in this study to boost the
data set for training the regression network and subsequently the RL agent.
The DCGAN has successfully generated synthetic samples of the crash box’s
structural parameters and the crashworthiness metrics pairs from latent noise.

By using FEM data and DCGAN, a data-driven regression model is employed
in the RL environment. The RL agent is being used for parameter exploration
and optimization in the shape optimization. Because of its automated explo-
ration capabilities, RL may be employed in a variety of mechanical optimization
methods. This could reduce the amount of computational and manual effort re-
quired. The trained regression model in the environment is used by the RL in
this study to understand the shape optimization model. However, the RL envi-
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ronment can be used directly in the FEM solver to fully automate the process
in the simulation workspace.

As REINFORCE directly optimises the policy for maximum Monte-Carlo
return, hyperparameter tuning and an increased number of episodes might be
needed for a good-performing REINFORCE agent. However, due to the model-
free nature of the environment, DQN and PPO can be directly used for the
current problem. Also, the tuning and training time required for DQN and PPO
is considerably shorter than REINFORCE. Although RL can predict the most
suitable design parameters, a validation study using FEA may be necessary.
Because RL training appears to have fluctuating variation even after training,
engineers should utilize the RL results in combination with professional experi-
ence in the same field to assess suitable configurations. Nonetheless, the current
machine learning framework can be utilised for the square crash box of 250 mm
length. Varied widths and impact velocities can be used with the current frame-
work and the optimal thickness can be obtained for user-defined crashworthiness
standards.

5. Conclusions

The article examines dynamic crash box deformation, data augmentation
through generative adversarial networks, and structural multicriteria optimiza-
tion using reinforcement learning. The crash box design and deformation mech-
anism are investigated after the theoretical shell model is established. The shell
stability phenomenon under dynamic axial loading is also investigated in this
structural model. The FE simulation is used to develop and simulate the nu-
merical approximation model. To help with the data-driven ML component,
DCGAN-based data is generated in addition to FEM-derived data. A frame-
work for structural optimization based on RL is designed to optimise the thick-
ness of the square crash box under predetermined crashworthiness regulations.
The length and cross-section of the crash box are fixed in this study, and only
the thickness is optimised. Following this investigation, comparable ML frame-
works for optimizing various automotive structural components can be built.
This could aid in reducing the amount of time and computational resources
required for prototype development.

The study’s key findings are as follows:
• A polynomial regression model is used as a metamodel in the optimisation

process.
• Data is generated using DCGAN for computationally expensive simula-

tions.
• A ML framework based on RL is developed for multiobjective design pa-

rameter exploration in the optimisation procedure.
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• A model-free custom RL environment is utilised with preexisting RL agents
in the optimisation process.
• The saved RL agent is used for design optimisation of various configura-

tions of the crash box.
The current study has demonstrated the prospect of machine learning (ML)

in the crashworthiness analysis. However, additional investigation is required
to optimize multiple parameters simultaneously for predefined crashworthiness
criteria. This can be a substitute for conventional methods, making it more ef-
ficient. A comparative study is also necessary to evaluate the robustness and
generalizability of the ML framework over conventional methods. This compar-
ison will justify the use of an ML framework in industries. Nevertheless, this
study’s results show that model-free RL can be promising in industrial cases,
and primitive RL agents (DQN and PPO) could be useful in a variety of cases.
Moreover, newer RL agents may solve additional complicated problems and be
more efficient than DQN/PPO.
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