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The effects of initial stress on the reflection and transmission waves at
the imperfect interface between two orthotropic half spaces are studied in this paper.
A linear spring model is used to describe the imperfection of bonding behavior at the
interface. Reflection and transmission coefficients (RTCs) have been derived analyti-
cally when a quasi-longitudinal (qP) wave strikes for both the imperfect and perfect
interface. Finally, numerical examples are provided to show the effect of the imper-
fect interface, initial stress and incident angle on the RTCs, energy ratios, reflection
and transmission angles of waves.
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1. Introduction

The study of reflection and transmission phenomena of a plane wave
at the separating interface of two different media is of core importance in many
research areas such as non-destructive testing, reflection seismology, smart ma-
terial technology, etc. Considering initial stresses in the study of reflection and
transmission phenomena is of extreme importance as they impact the mechan-
ical reaction of materials when acted upon by an incident wave. Pioneering
work on developing the theory of waves in elastic media with initial stresses
was done by Biot [3, 4], who developed the constitutive relations for a pre-
stressed elastic medium and presented the equations of motion for elastic waves.
However, Shams and Ogden [22] pointed out that the initial stress was gen-
erally not associated with finite deformation in Biot’s works, although he did
apply his theory to the case in which the initial stress is accompanied by a finite
deformation. In [23], the effect of prestresses on the existence of longitudinal
waves in an anisotropic elastic medium is taken into consideration. Due to pre-
stresses, a medium of any type (isotropic/anisotropic) behaves anisotropic to
wave propagation, and the equation of motion is significantly affected. Singh
and Tomar [25] studied the problem of qP-waves at a corrugated interface be-
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tween two dissimilar prestressed elastic half-spaces. Using Rayleigh’s method of
approximation, authors obtained the reflection and refraction coefficients cor-
responding to regular and irregular waves. Additionally, the problem of wave
propagation in a prestressed piezoelectric, elastic half-space and the effect of ini-
tial stresses on the reflection coefficients of the reflected qP- and qSV-waves are
discussed by many authors [5, 7, 9, 10, 17, 21, 24, 26, 27].

In past studies, many researchers have considered a perfectly bonded (welded
contact) separating interface between two dissimilar media. In such a case, dis-
placement and traction components are continuous at the separating interface.
But, due to various reasons such as the aging of glue applied to two conjunct
solids, micro-defects, diffusion impurities, and other forms of damage, discontinu-
ities may occur at the separating interface between two dissimilar media. In the
present investigation, imperfect bonding is defined as a condition where the stress
components are continuous and a small displacement field is not. For the imper-
fect interface, the spring model of Hashin [13] is commonly used. In this model,
the properties of the imperfect interface between the two solids can be charac-
terized by the normal and tangential interfacial stiffnesses. Several authors have
attempted to incorporate the effect of imperfect bonding on their problems, for
example, Goyal et al. [8], Huang and Rokhlin [14], Kumar et al. [16], Pang
and Liu [20], etc. Tung [28, 29] investigated the influence of boundary condi-
tions on the reflection and transmission of qP-wave at an interface between two
nonlocal transversely isotropic elastic, liquid-saturated porous half-spaces.

In light of the aforementioned literature, it is evident that no investiga-
tions have yet been conducted on the reflection and transmission of waves at
the imperfect interface between two prestressed half-spaces. Recently, Guha
and Singh [11] have investigated the plane wave reflection/transmission in im-
perfectly bonded initially stressed rotating piezothermoelastic fiber reinforced
composite half-spaces. The medium that the authors consider is quite general.
However, the authors obtained the following polynomial characteristic equa-
tion (40) of degree eight in qm. It is an equation with complex coefficients. The
choice of reflected and transmitted waves from this equation remains an unsat-
isfactory problem. In this medium, waves are inhomogeneous. Therefore, in this
paper, the reflection and transmission problem at an imperfect interface between
two orthotropic elastic half-spaces with prestressed effects taken into account are
considered. The novelty of this paper is the comparison of reflection, transmis-
sion coefficients and reflection, transmission angles of waves with the presence
or absence of initial stress as well as perfect or imperfect interface. These results
are recorded and used as the input data of the inverse problem (nondestruc-
tive evaluation of materials). Such a study may also be helpful in predicting
the anomalies and the actual cause of destruction. Moreover, this makes it an
essential parameter that should be considered when designing devices.
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2. Basic equations and formulation of the problem

We consider a plane strain problem in which the displacement fields u1, u3

are only the function of x1 and x3. The components of strains ε11, ε33, ε13 are
related to the displacement field u1, u3 are given by:

(2.1) ε11 = u1,1, ε33 = u3,3, ε13 = ε31 =
1

2
(u1,3 + u3,1).

The constitutive relations for a homogeneous orthotropic elastic medium can be
written as [19]:

σ11 = c11ε11 + c13ε33, σ33 = c13ε11 + c33ε33,

σ13 = σ31 = 2c55ε13,
(2.2)

where σ11, σ13, σ33 are the components of stress and c11, c13, c33, c55 are charac-
teristic constants of the orthotropic elastic material.

The mechanical governing equation with the initial stress (without body
forces) considered can be expressed as [6, 18, 19]

(2.3) σij,i + (uj,kσ
0
ki),i = ρüj ,

where ρ is the mass density, σ0
ki are components of initial stresses, the superposed

dot represents the temporal derivative and a comma in the subscript denotes the
spatial derivative.

Substituting (2.2) into (2.3) and taking into account (2.1), we obtain the
following field equations of the pre-stressed elastic solid, namely:

(c11 + σ0
11)u1,11 + (c13 + c55)u3,13 + (c55 + σ0

33)u1,33 + 2σ0
13u1,13 = ρü1,

(c55 + σ0
11)u3,11 + (c13 + c55)u1,13 + (c33 + σ0

33)u3,33 + 2σ0
13u3,13 = ρü3.

(2.4)

Considering the problem shown in Fig. 1, let us assume a Cartesian coordinate
system in such a way that x1-axis lies along the separating interface of two
halfspaces and the x3-axis is vertically upwards. For the oblique incidence of the
qP wave from the Ω+ medium at the interface x3 = 0, all kinds of scattered waves
are depicted in Fig. 1. The transmitted wave fields consist of the transmitted
qP wave and the quasi-transverse (qSV) wave, while the reflected wave fields
comprise the reflected qP and qSV waves.

The plane wave solutions of (2.4) in x1–x3 plane are of the form [15, 28, 29],

(2.5)

{
u1 = a1e

ik(x1+ξx3−ct),

u3 = a3e
ik(x1+ξx3−ct),
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Fig. 1. Geometry of the problem.

where k is the x1-component of the wavenumber, c is phase velocity along x1, ξ is
an unknown ratio of the wave vector components along the x3- and x1-directions,
a1, a3 are unknown amplitudes of the displacement. The generalized Snell law
has been taken into account in (2.5).

Now, with the aid of (2.5), Eqs.(2.4) lead to

(2.6)
[
t11 t12

t21 t22

] [
a1

a3

]
=

[
0
0

]
,

where

t11 = (c55 + σ0
33)ξ2 + 2σ0

13ξ + c11 + σ0
11 − ρc2; t12 = (c13 + c55)ξ,

t21 = (c13 + c55)ξ, t22 = (c33 + σ0
33)ξ2 + 2σ0

13ξ + c55 + σ0
11 − ρc2.

(2.7)

The condition of existing non-trivial solution is det(tij) = 0, we obtain a fourth-
degree polynomial equation for ξ, namely

(2.8) t4ξ
4 + t3ξ

3 + t2ξ
2 + t1ξ + t0 = 0,

where the coefficients t4, t3, t2, t1, t0 are provided in Appendix.
For the orthotropic solid considered, the value of ξ indicates that there are

four possible part waves. These waves are qP and qSV propagating in an opposite
direction in the medium. Moreover, for the propagation of plane waves with phase
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velocity v in the direction making an angle θ with the vertical axis, a plane wave
is expressed by [28, 29]

(2.9)

{
u1 = a1e

ik0(p1x1+p3x3−vt),

u3 = a3e
ik0(p1x1+p3x3−vt),

where p1 = sin θ, p3 = − cos θ are components of propagation unit vector. It is
noted that k0 = k/p1 and v = p1c. Substituting (2.9) into (2.4) and obtaining
the system of equations similar to Eq. (2.6), namely

(2.10)
[
h11 h12

h21 h22

] [
a1

a3

]
=

[
0
0

]
,

where

(2.11)

h11 = (c55 + σ0
33)p2

3 + 2σ0
13p1p3 + (c11 + σ0

11)p2
1 − ρv2,

h12 = (c13 + c55)p1p3,

h21 = (c13 + c55)p1p3,

h22 = (c33 + σ0
33)p2

3 + 2σ0
13p1p3 + (c55 + σ0

11)p2
1 − ρv2.

By letting the determinant of this matrix equal zero, we have a quadratic equa-
tion in v2:

(2.12) (v2)2 − h1v
2 − h0 = 0,

where

h1 = (c55 + σ0
33)p2

3 + 2σ0
13p1p3 + (c11 + σ0

11)p2
1

+ (c33 + σ0
33)p2

3 + 2σ0
13p1p3 + (c55 + σ0

11)p2
1,

h0 = (c13 + c55)2p2
1p

2
3.

Therefore, we obtain two real roots vj (j = 1, 2) corresponding to speeds of
qP and qSV waves propagating in the medium.

3. Boundary conditions

Consider two bonded orthotropic half-spaces as shown in Fig. 1. If the bond-
ing is imperfect then the spring model is introduced. At the imperfect interface
the normal and tangential stiffness represented by kN and kT , respectively, char-
acterize the properties of the interface between the two elastic half-spaces [13].
To investigate the influence of boundary conditions on the reflection and trans-
mission coefficients, the different cases of imperfect interfaces namely imperfect
interface, perfect interface and slip interface have been discussed.
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3.1. Imperfect interface

For finite values of kN and kT the interface behaves as imperfect bonding or
weak interface, which can be expressed by [8, 12, 13]:

σ+
j3 + σ0

13u
+
j,1 + σ0

33u
+
j,3 = σ−j3 + σ0

13u
−
j,1 + σ0

33u
−
j,3 (j = 1, 3),

σ+
13 + σ0

13u
+
1,1 + σ0

33u
+
1,3 = kT (u+

1 − u
−
1 ),

σ+
33 + σ0

13u
+
3,1 + σ0

33u
+
3,3 = kN (u+

3 − u
−
3 ),

(3.1)

where kN and kT are the normal and tangential spring constants, respectively.

3.2. Perfect interface

When the stiffness parameters kN , kT → ∞, the interface between the two
half-spaces is completely perfect [2, 8, 12]. In perfect bonding, the stresses and
displacement are continuous at the interface:

(3.2) u+
j = u−j , σ+

j3 + σ0
13u

+
j,1 + σ0

33u
+
j,3 = σ−j3 + σ0

13u
−
j,1 + σ0

33u
−
j,3 (j = 1, 3).

3.3. Slip interface

In the case of the slip interface, the tangential force along the interface is not
supported by the interface. Displacements and normal stresses are continuous
but tangential stresses vanish, i.e., kN →∞ and kT → 0 [8].

4. The reflection, transmission coefficients

From the characteristic equation (2.8), the incident qP wave at the interface
generates the reflected qP, qSV waves in halfspace Ω+ and the transmitted qP,
qSV waves in the Ω− as shown in Fig. 1.

i) Solution for incident medium Ω+

A qP wave incident at the interface from the upper orthotropic half-space.
Therefore, using (2.5) the displacement can be given as:

(4.1)
[
u0

1

u0
3

]
= a0

[
1
w0

]
eik(x1+ξ0x3−ct).

After reflecting at the interface x3 = 0, the reflected waves qP and qSV in
originating medium Ω+ may be written as:[

u1
1

u1
3

]
= a1

[
1
w1

]
eik(x1+ξ1x3−ct),(4.2) [

u2
1

u2
3

]
= a2

[
1
w2

]
eik(x1+ξ2x3−ct).(4.3)
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ii) Solution for transmitted medium Ω−

The transmitted waves qP and qSV in the continuingmediumΩ− are shown as:[
u3

1

u3
3

]
= a3

[
1
w3

]
eik(x1+ξ3x3−ct),(4.4) [

u4
1

u4
3

]
= a4

[
1
w4

]
eik(x1+ξ4x3−ct),(4.5)

where ai are the amplitudes of the displacement, wi = ui3/u
i
1 are the wave

amplitude ratios that determined from (2.6), namely

wi = − (c13 + c55)ξi
c11 + c55ξ2

i − ρc2 + σ0
33ξ

2
i + 2σ0

13ξi + σ0
11

, i = 0, 1, 2, 3, 4,

correspond to the incident, reflected, transmitted waves.

4.1. Imperfect interface

Substituting the quantities of the incident, reflected and transmitted wave
field Eqs.(4.1)–(4.5) into the imperfect mechanical bonding (3.1), we obtain the
following four linear equations about the amplitudes of the reflected and trans-
mitted waves. These equations are expressed as:

(4.6)



−
(
c+55(ξ1 +w1)+σ0

13 +σ0
33ξ1

)
a1−

(
c+55(ξ2 +w2)+σ0

13 +σ0
33ξ2

)
a2

+
(
c−55(ξ3 +w3)+σ0

13 +σ0
33ξ3

)
a3 +

(
c−55(ξ4 +w4)+σ0

13 +σ0
33ξ4

)
a4

=
(
c+55(ξ0 +w0)+σ0

13 +σ0
33ξ0

)
a0,

−
(
c+13 +c+33w1ξ1 +σ0

13ξ1 +σ0
33ξ1w1

)
a1

−
(
c+13 +c+33w2ξ2 +σ0

13ξ2 +σ0
33ξ2w2

)
a2

+
(
c−13 +c−33w3ξ3 +σ0

13ξ3 +σ0
33ξ3w3

)
a3

+
(
c−13 +c−33w4ξ4 +σ0

13ξ4 +σ0
33ξ4w4

)
a4

=
(
c+13 +c+33w0ξ0 +σ0

13ξ0 +σ0
33ξ0w0

)
a0,(

ic+55(w1 +ξ1)+σ0
13i+σ0

33iξ1−
kT
k

)
a1

+

(
ic+55(w2 +ξ2)+σ0

13i+σ0
33iξ2−

kT
k

)
a2 +

kT
k
a3 +

kT
k
a4

=

(
kT
k
− ic+55(w0 +ξ0)−σ0

13i−σ0
33iξ0

)
a0,(

(c+13 +c+33w1ξ1 +σ0
13w1 +σ0

33ξ1w1)i− kN
k
w1

)
a1

+

(
(c+13 +c+33w2ξ2 +σ0

13w2 +σ0
33ξ2w2)i− kN

k
w2

)
a2 +

kN
k
w3a3 +

kN
k
w4a4

=

(
kN
k
w0− (c+13 +c+33w0ξ0 +σ0

13w0 +σ0
33ξ0w0)i

)
a0.
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4.2. Perfect interface

Similarly, using Eqs. (4.1) to (4.5) in the perfect boundary conditions (3.2)
we get four equations:

(4.7)



−a1−a2+a3+a4 = a0,

−w1a1−w2a2+w3a3+w4a4 = w0a0,

−
(
c+55(ξ1+w1)+σ0

13+σ0
33ξ1

)
a1−

(
c+55(ξ2+w2)+σ0

13+σ0
33ξ2

)
a2

+
(
c−55(ξ3+w3)+σ0

13+σ0
33ξ3

)
a3+

(
c−55(ξ4+w4)+σ0

13+σ0
33ξ4

)
a4

=
(
c+55(ξ0+w0)+σ0

13+σ0
33ξ0

)
a0,

−
(
c+13+c+33w1ξ1+σ0

13ξ1+σ0
33ξ1w1

)
a1−

(
c+13+c+33w2ξ2+σ0

13ξ2+σ0
33ξ2w2

)
a2

+
(
c−13+c−33w3ξ3+σ0

13ξ3+σ0
33ξ3w3

)
a3+

(
c−13+c−33w4ξ4+σ0

13ξ4+σ0
33ξ4w4

)
a4

=
(
c+13+c+33w0ξ0+σ0

13ξ0+σ0
33ξ0w0

)
a0.

Eqs. (4.6) and (4.7) give the amplitude ratios of reflected qP, reflected qSV,
transmitted qP and transmitted qSV waves.

Denoting A1 = a1/a0, A2 = a2/a0, A3 = a3/a0, A4 = a4/a0. The reflection,
transmission coefficients (RTCs) are defined by the ratio of the reflected/trans-
mitted amplitudes to the incident amplitude:

R1 =

√
1 + w2

1√
1 + w2

0

A1, R2 =

√
1 + w2

2√
1 + w2

0

A2,

T1 =

√
1 + w2

3√
1 + w2

0

A3, T2 =

√
1 + w2

4√
1 + w2

0

A4.

(4.8)

5. Validation

To validate the established analytical results of the reflection and transmis-
sion coefficients (RTCs), we compute the distribution of energy among the re-
flected and transmitted waves due to the incidence of qP wave at its separating
interface. They should be checked to ensure that the energy of incident waves is
equal to the energy sum of reflection and transmission waves. The scalar prod-
uct of the surface traction and particle velocity per unit area denoted by Pi
represents the rate at which energy is communicated per unit area at the surface
x3 = 0. This is given by [1, 12, 19]

(5.1) Pi = −u̇jσji − σ0
ikuj,ku̇j .

Further, the mathematical expression for averaged energy flux in one period is

(5.2) P ∗i =
1

2
Re(−u̇∗jσji − σ0

ikuj,ku̇
∗
j ),



Effect of initial stress on the reflection and transmission. . . 523

where asterisks (∗) appearing above the notations denote the conjugate complex
of the derivative of the displacement components.

We may obtain the expressions of average energy flux EI , ErqP , ErqSV , EtqP ,
EtqSV of the incident qP wave, reflected qP, reflected qSV, transmitted qP, and
transmitted qSV waves, respectively, through the unit area perpendicular to the
propagation direction of the said waves for the prestressed medium:

EI =
1

2
k2c(5.3)

×
(
c+

55(w0+ξ0)+(c+
13+c+

33w0ξ0).w∗0 +(σ0
13+ξ0σ

0
33)(1+w0.w

∗
0)

)
a0.a

∗
0,

ErqP =
1

2
k2c

×
(
c+

55(w1+ξ1)+(c+
13+c+

33w1ξ1).w∗1 +(σ0
13+ξ1σ

0
33)(1+w1.w

∗
1)

)
a1.a

∗
1,

(5.4)
ErqSV =

1

2
k2c

×
(
c+

55(w2+ξ2)+(c+
13+c+

33w2ξ2).w∗2 +(σ0
13+ξ2σ

0
33)(1+w2.w

∗
2)

)
a2.a

∗
2,

EtqP =
1

2
k2c

×
(
c−55(w3+ξ3)+(c−13+c−33w3ξ3).w∗3 +(σ0

13+ξ3σ
0
33)(1+w3.w

∗
3)

)
a3.a

∗
3,

(5.5)
EtqSV =

1

2
k2c

×
(
c−55(w4+ξ4)+(c−13+c−33w4ξ4).w∗4 +(σ0

13+ξ4σ
0
33)(1+w4.w

∗
4)

)
a4.a

∗
4.

Denoting Er1 = ErqP /EI , Er2 = ErqSV /EI , Et1 = EtqP /EI , Et2 = EtqSV /EI .
From the energy balance at the surface x3 = 0, we should have

(5.6) E = Er1 + Er2 + Et1 + Et2 = 1,

which can be used as a check on the numerical computations.

6. Numerical calculation and discussion

In this section, numerical calculations were performed to illustrate the theo-
retical results obtained in the preceding sections. For convenience in the numer-
ical analysis, we introduce the dimensionless quantities:
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f+
1 =

c+
11

c+
55

, f+
2 =

c+
13

c+
55

, f+
3 =

c+
33

c+
55

,

f−1 =
c−11

c−55

, f−2 =
c−13

c−55

, f−3 =
c−33

c−55

,

f0 =
c−55

c+
55

, fN =
kN

kc+
55

, fT =
kT

kc+55

,

g1 =
σ0

11

c+
55

, g2 =
σ0

13

c+
55

, g3 =
σ0

33

c+
55

, r =
ρ−

ρ+
.

(6.1)

The values of relevant elastic parameters for two halfspaces are taken follow-
ing [8].

For halfspace Ω+: material constants for AIN are as follows:

c+
11 = 3.45× 1011 N ·m−2, c+

13 = 1.20× 1011 N ·m−2,

c+
33 = 3.95× 1011 N ·m−2, c+

55 = 1.18× 1011 N ·m−2,

ρ+ = 3.62× 103 kg ·m−3.

For halfspace Ω−: material constants for BaTiO3 are given as:

c−11 = 1.66× 1011 N ·m−2, c−13 = 0.17× 1011 N ·m−2,

c−33 = 1.62× 1011 N ·m−2, c−55 = 0.453× 1011 N ·m−2,

ρ− = 5.8× 103 kg ·m−3.

Besides the value of the initial stresses are given σ0
11 = 8 × 1011 N ·m−2, σ0

13 =
−0.01 × 1011 N · m−2, σ0

33 = 0.02 × 1011 N · m−2 and the x1-component of the
wavenumber k is fixed at 1. Moroever, to analyze separately the influence of each
boundary condition, the tangential and normal spring constants are such that
kT = 2.0 and kN = 1.2 in the first case (imperfect interface). In the second case
(perfect interface), kT = 2100 and kN = 12100. For the slip interface, kT = 0
and kN = 12100.

To facilitate comparison and evaluation, in Figs. 2–8, the graphic characteris-
tics related to qP, qSV in halfspace Ω+ and Ω− are denoted by blue, red, yellow,
and green, respectively. Additionally, the characteristics of waves with and with-
out initial stress are illustrated by solid lines and dashed lines, respectively.

The effect of the initial stress on the dimensionless velocities of qP and qSV
wave are plotted in Fig. 2. It can be seen from this figure that these velocities
in the medium with the initial stress are greater than those in the medium
without the initial stress. This makes it an essential parameter that should be
considered when designing devices.
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Fig. 2. Velocities of waves for presence and absence of the initial stress.

Figure 3 shows the effect of the initial stress on the RTCs in the case of
the perfect interface. The RTCs of the reflected and transmitted waves are
significantly affected by the initial stress. In contrast, for the imperfect interface,
the RTCs are mildly unaffected by the initial stress (see Fig. 4). The present
numerical results might provide more relevant information about the wave prop-

Fig. 3. The effect of the initial stress on the RTCs for the case of the perfect interface.
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agation in an orthotropic medium with the initial stress. Moreover, our formulas
can provide some fundamental insights for deriving RTCs formulas on the welded
and non-welded interfaces between two more complex media. These results are
recorded and used as the input data of the inverse problem (nondestructive eval-
uation of materials).

Fig. 4. The effect of the initial stress on the RTCs for the case of the imperfect interface.

Figure 5 is plotted to describe the influence of distinct common interfaces on
RTCs. The comparative study of the RTCs curves suggests that the reflection
coefficients are dominant for the imperfect interface (kN = 1.2, kT = 2), the
transmission coefficients for this case are negligibly small in the whole range of
an incident angle. While the transmission coefficient T1 is quite large for the
perfect interface (kN →∞, kT →∞) and the slip interface (kN →∞, kT → 0).
Moreover, the corresponding curves of RTC for imperfect (Fig. 5b) and perfect
interface (Fig. 3) cases are coincident in the range 1◦–89◦. This confirms the
correctness of numerical calculations.

Figure 6 depicts the variation of the values of the energy ratios of reflected
and transmitted waves with the angle of incidence for the presence and absence
of initial stress. We also note that the ratio Et1 in the range 1◦–80◦ (Er1 in
the range 80◦–89◦) of qP wave is highly dominated over all other energy ratios
when the initial stress is present. The ratios Er1, Er2, Et2 (Et1) in the medium
with the initial stress are bigger (smaller) than the ones in the medium without
the initial stress. Figure 6 once again confirms the computational results in this
section are fully reliable.
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kN = 1.2, kT = 2 kN = 12100, kT = 2100

kN = 12100, kT = 0

Fig. 5. The RTCs of waves for distinct common interface.

Fig. 6. Energy ratios.
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Fig. 7. Phase angles for presence and absence of the initial stress.

Fig. 8. Effect the initial stress on the phase angles of the reflected, transmitted waves.

If the wave propagation direction deviates the positive x3 axis with angle θ,
then Real(ξ) = cot(θ), which will be used to compute the reflection and trans-
mission angles. Figure 7 shows the effects of the initial stress on the reflection
and transmission angles. It is found that the existence of the initial stress makes
the transmission angle decrease evidently but the reflection angle is unchanged.
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It is an interesting thing that when the values of σ0
11 and σ0

33 remain unchanged
while the value of σ0

13 increases by 10 times, the reflection angle qP will no longer
be equal to the incident angle qP in the range of the incident angle 30◦–90◦

(see Fig. 8).

7. Conclusions

In conclusion, a mathematical study of the effects of the initial stress on the
reflection and transmission coefficients at an imperfect interface separating two
orthotropic elastic solid half spaces is made when the qP wave is incident. The
key findings of the study of the study can be outlined as:

(i) The existence of the initial stress makes the reflection or the transmission
coefficient of some waves increasing or decreasing at the total incident angle
range, but, in general, the effects of the initial stress on the reflection and the
transmission coefficient are dependent on the incident angle range. It is noticed
that when the value of σ0

13 gradually increases to 10 times then the reflection
angle qP will no longer be equal to the incident angle qP in the range of the
incident angle 30◦–90◦.

(ii) The reflection and transmission coefficients can be evidently affected
by the distinct common interface. These results may also be helpful in predicting
the anomalies and the actual cause of destruction.

(iii) It can be seen from this figure that these velocities in the medium
with the initial stress are greater than those in the medium without the ini-
tial stress. This makes it an essential parameter that should be considered when
designing devices.

It is anticipated that this work will be valuable for further theoretical and
observational studies of wave reflection and transmission in more realistic models
of prestressed solids present on Earth.

Appendix

The coefficients of the characteristic equation:

t4 = (c55 + σ0
33)(c33 + σ0

33),

t3 = 2σ0
13(c33 + c55 + 2σ0

33),

t2 = (c55 + σ0
33)
(
(c55 + σ0

11)− ρc2
)

+ (c33 + σ0
33)
(
(c11 + σ0

11)− ρc2
)

+ 4(σ0
13)2 − (c13 + c55)2,

t1 = 2σ0
13(c11 + c55 + 2σ0

11 − 2ρc2),

t0 = (c11 + σ0
11 − ρc2)(c55 + σ0

11 − ρc2).
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