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This paper presents a numerical study of the energetic behavior of some
quasi-static thermoelastic problems in one- and two-dimensional settings. Firstly, we
describe the two-dimensional thermoelastic problem decomposing the elastic tensor
into two parts: the first one is positively defined for the first component of the displace-
ment field, and the second one is negatively defined for the second component. The
variational formulation is also derived. Restricting ourselves to the one-dimensional
setting and assuming that the elastic coefficient is negative, we prove that the ex-
ponential energy decay follows if the coupling coefficient is smaller than the square
root of the product between the heat capacity and the elastic coefficient. Then, fully
discrete approximations are introduced by using the finite element method and the
implicit Euler scheme. Some numerical simulations are performed: in a first one-
dimensional example, we show the decay of the discrete energy depending on the
value of the coupling coefficient and the heat diffusion. Secondly, two dimensional
studies are considered depending on the expression of the elastic tensors, including
diagonal matrices with the same eigenvalue, diagonal matrices with different eigen-
values and full matrices.
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1. Introduction

The system of equations that governs thermoelastic deformations
has been the subject of many studies, either in the nonlinear case or in the
linearized case. In this paper, we analyze the linearized system. We can interpret
this system by considering the small strains superimposed on a large strain
[7, 11, 12, 18], but we restrict ourselves to the case where the temperature in the
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equilibrium state is uniform. An existence theorem was obtained in [20] for the
more general case when the temperature at the primary state is non-uniform.
Throughout this work, we refer to the book by Ieşan and Scalia dedicated to the
study of this type of problems [13].

It is well known that the usual system of thermoelasticity is rather com-
plicated (see [2, Chapter 2] and [3, p. 311]). For this reason, there are several
contributions for the case where the elasticity tensor is positively defined. How-
ever, when this condition is not satisfied, we are faced with an ill posed problem
in Hadamard’s sense, and although a uniqueness result can be obtained, the
solutions can explode when time grows. Thus, in order to avoid several difficul-
ties, some simplifications are required. A common modification is to consider the
quasi-static problem. That is, we assume that the displacement is so slow that
the acceleration is negligible. In this case, the system that describes the elastic
deformations changes its nature, and we are faced with equations that can be
elliptical [5, 6, 8, 9]. Over the last years, we have seen how the interest for the
better understanding of quasi-static problems has restarted. It is worth recall-
ing the contributions [14, 16], where the quasi-static approximation was justified
for the isothermal elasticity in the case where the elasticity tensor was not neces-
sarily positively defined. In isothermal viscoelasticity, Saccomandi and colleagues
have examined quasi-static shearing motions in various cases (see [10, 21–23]).
We can also cite the contribution [15], where the quasi-static approximation was
justified for the thermoelasticity in the case where the elasticity tensor was as-
sumed positively defined, or the work [1], where an approximate problem for
the incremental thermoelasticity is analyzed from both the analytical and nu-
merical points of view. A justification of the approach (as well as the result of
the existence and uniqueness) in the case considered in this paper can be seen
in the recent manuscript [17], where the authors have shown that the difference
of the solutions between the dynamical and quasi-static problems can be con-
trolled by a quantity related to the acceleration whenever a certain condition
(satisfied in our case) holds.

The aim of this paper is to study numerically a couple of simple models
for linearized thermoelasticity in the quasi-static case. Specifically, we study the
one-dimensional problem when the elasticity coefficient is negative and the two-
dimensional case assuming the elasticity tensor is positively defined with respect
to one variable, but negatively defined with respect to the other variable. For
this simplified one-dimensional case, we prove that, when the parameters fulfill
a certain condition, the problem shows exponential decay for the temperature.

In the two-dimensional setting, we explore two different assumptions depend-
ing on the form of the elastic tensors: a simplified system with both elastic compo-
nents decoupled and the coupled problem. This exploration is purely numerical,
since the theoretical analysis cannot be extended to the multidimensional case.
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We numerically show that, whenever the elasto-thermal coupling coefficient is
small enough in comparison with the thermal capacity and the absolute value
of the elasticity, the behavior of the solutions is exponentially stable. That is to
say, the solutions tend to zero and this decay is controlled by a negative expo-
nential. Certainly, this result is surprising in comparison with what happens in
the dynamic case, where the solutions (as we have aforementioned) can explode.
We conclude the two-dimensional studies considering the case where both elastic
components are coupled with two more general cases: we first assume that the
elasticity tensors are written as diagonal matrices (with different eigenvalues),
and then that both matrices are full.

The outline of this paper is the following. In the next section, we describe
the two-dimensional quasi-static thermoelastic problem that we simulate nu-
merically later. We also show its one-dimensional version and we derive their
variational formulations, which are written as coupled systems of first-order
in time linear variational equations. Then, in Section 3, we introduce the nu-
merical approximations by using the classical finite element method and the
implicit Euler scheme. Finally, some numerical simulations involving one- and
two-dimensional examples show the behavior of the discrete energy depending
on the elastic tensors (their coefficients) and the heat diffusion. Several cases of
these elastic tensors are considered assuming that they are diagonal (with the
same or different eigenvalues) or full matrices.

2. The thermoelastic problems

Let us denote by Ω a bounded domain in R2, and let [0, tf ] be the time
interval of interest, with tf > 0 being the final time. As usual in this type of
analysis, let x = (x, y) ∈ Ω and t ∈ [0, tf ] be the variables which represent space
and time.

First, let us describe the thermomechanical problem. Let us denote by u =
(u1, u2) the displacement field and by θ the temperature. Then, we consider the
following problem:

−µiju1,ij + βθ,1 = 0 in Ω× (0, tf ),(2.1)
−µ∗iju2,ij + βθ,2 = 0 in Ω× (0, tf ),(2.2)

cθ̇ = κ∆θ − β(u̇1,1 + u̇2,2) in Ω× (0, tf ),(2.3)
u1 = u2 = θ = 0 on ∂Ω× (0, tf ),(2.4)

θ(x, 0) = θ0(x) for a.e. x ∈ Ω.(2.5)

In the previous system of equations, (µij) and (µ∗ij) represent the elasticity
tensors for each component of the displacements, c > 0 is the heat capacity,
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κ is the thermal diffusion and β 6= 0 is the coupling coefficient that we assume
is small enough. For the sake of simplicity in the analysis presented in the next
sections, we have assumed that both components of the displacements are un-
coupled and so, the elasticity tensor can be defined separately for each of them.
In order to define our problem, we assume that tensor (µij) is positively defined
and that tensor (µ∗ij) is negatively definite.

Remark 1. We note that, even if the aim of this study is to consider this
thermomechanical problem from the mathematical point of view, this type of
materials can be obtained when the elasticity tensors are anisotropic. As an
example, we assume that

dijkl = Cijkl + τjlδik,

where dijkl is the prestressed elasticity tensor, Cijkl is the usual elasticity tensor
and τjl are the prestresses.

In this case, we can use the following conditions:

C1111 + τ11 = µ11, τ22 = µ22, τ12 = µ12,
C2222 + τ22 = µ∗22, τ11 = µ∗11, τ12 = µ∗12,

and the other coefficients Cijkl vanish.
Since µij is assumed to be positively defined, it is equivalent to impose that

(2.6) C1111 + τ11 > 0, τ22(C1111 + τ11) > τ2
12,

and, similarly, the fact that µ∗ij is negatively defined means that:

(2.7) C2222 + τ22 < 0, τ11(C2222 + τ22) > τ2
12.

We note that conditions (2.6) and (2.7) are compatible for a suitable choice
of the parameters. For instance, we can select C1111 positive and τ11 negative
with

C1111 > −τ11,

and C2222 negative and τ22 positive such that

C2222 < −τ22.

The second condition in (2.6) can be written as

τ22C1111 > −τ11τ22 + τ2
12,

and the second condition in (2.7) as

τ11C2222 > −τ11τ22 + τ2
12.
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We note that these conditions would be satisfied whenever C1111 and −C2222

are large enough in comparison with −τ11, τ12 and τ22. Moreover, we also point
out that, in the case of the linearized elasticity, we could choose the coefficients
in a weaker way.

Now, we obtain the variational formulation of the problem. So, let us denote
by Y = L2(Ω), H = [L2(Ω)]2 and V = H1

0 (Ω). Multiplying Eqs. (2.1)–(2.3) by
adequate test functions and using boundary conditions (2.4), we have the fol-
lowing weak form of the problem (2.1)–(2.5).

Find the first component of the displacements u1 : [0, tf ] → V , the second
component of the displacements u2 : [0, tf ]→V and the temperature θ : [0, tf ]→V
such that θ(0) = θ0, and for a.e. t ∈ (0, tf ) and for all w, r, z ∈ V ,

2(µiju1,i(t), w,j)Y + β(θ,1(t), w)Y = 0,(2.8)
(µ∗iju2,i(t), r,j)Y + β(θ,2(t), r)Y = 0,(2.9)

c(θ̇(t), z)Y + κ(∇θ(t),∇z)H + β(u̇1,1(t) + u̇2,2(t), z)Y = 0.(2.10)

2.1. The one-dimensional setting

Since we consider a simpler problem involving the one-dimensional setting
in the section describing the numerical results, we present it below. First, we
assume that Ω = (0, 1) and we solve the following system:

−µ∗uxx − βθx = 0 in (0, 1)× (0, tf ),(2.11)

cθ̇ = κθxx − βu̇x in (0, 1)× (0, tf ),(2.12)
u(x, t) = θ(x, t) = 0 for x = 0, 1, t ∈ (0, tf ),(2.13)

θ(x, 0) = θ0(x) for a.e. x ∈ (0, 1).(2.14)

In this system, we have assumed that µ∗11 = −µ∗, where µ∗ is positive. After
taking into account the boundary conditions (2.13) and integrating Eq. (2.11)
with respect to x, we find that

µ∗ux(x, t) = µ∗ux(0, t)− βθ(x, t).

If we integrate it once again, it leads to

µ∗u(x, t) = µ∗xux(0, t)− β
x∫

0

θ(ξ, t) dξ,

but, since u(1, t) = 0 for all t ∈ (0, tf ), we obtain

0 = µ∗ux(0, t)− β
1∫

0

θ(ξ, t) dξ → ux(0, t) =
β

µ∗

1∫
0

θ(ξ, t) dξ.
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Thus, we have

u̇x(x, t) = u̇x(0, t)− β

µ∗
θ̇(x, t) =

β

µ∗

1∫
0

θ̇(ξ, t) dξ − β

µ∗
θ̇(x, t),

and Eq. (2.12) is written as

(
c− β2

µ∗

)
θ̇ = κθxx −

β2

µ∗

1∫
0

θ̇(ξ, t) dξ.

If we consider the auxiliary function

F (t) =

(
c− β2

µ∗

) 1∫
0

θ2 dx+
β2

µ∗

( 1∫
0

θ(ξ, t) dξ

)2

,

we can easily show that

Ḟ (t) = −2κ

1∫
0

κ|θx|2 dx.

Keeping in mind that ( 1∫
0

θ(ξ, t) dξ

)2

≤
1∫

0

θ2(ξ, t) dξ,

we conclude that there is an exponential decay for the temperature when
cµ∗ > β2. In this case, the “limit value” could be |β| =

√
cµ∗.

Then, we have obtained that

F (t) ≤ F (0)e−ωt,

where ω is a positive constant. Now, if we define the function

G(t) =

1∫
0

u2
x dx,

from Eq. (2.11) and boundary conditions (2.13) we see that

µ∗
1∫

0

u2
x dx+ β

1∫
0

θux dx = 0.
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Thus, we find that

G(t) ≤ |β|
µ∗

( 1∫
0

θ2 dx

)1/2

G(t)1/2.

It then follows that

G(t) ≤ β2

|µ∗|2
F (0)e−ωt.

The above estimates on F and G lead to the exponential decay of the solutions
to the problem (2.11)–(2.14).

Now, we derive the corresponding variational formulation of the problem
(2.11)–(2.14), which is written as follows:

Find the displacement u : [0, tf ] → V and the temperature θ : [0, tf ] → V
such that θ(0) = θ0, and for a.e. t ∈ (0, tf ) and for all w, z ∈ V ,

µ∗(ux(t), wx)Y − β(θx(t), w)Y = 0,(2.15)
c(θ̇(t), z)Y + κ(θx(t), zx)Y + β(u̇x(t), z)Y = 0.(2.16)

3. Fully discrete approximations

In this section, we introduce a finite element algorithm for approximating
solutions to the variational problem (2.8)–(2.10). This is done in two steps. First,
we construct the finite element space V h to approximate the variational space V
given by

(3.1) V h = {zh ∈ C(Ω) ; zh|Tr
∈ P1(Tr) ∀Tr ∈ T h, zh = 0 on ∂Ω},

where Ω is assumed to be a polyhedral domain, T h denotes a triangulation of Ω,
and P1(Tr) represents the space of polynomials of global degree less than or
equal to 1 in Tr, i.e. the variational space V is approximated by continuous and
piecewise linear finite elements. Here, h > 0 denotes the spatial discretization
parameter.

Secondly, the time derivatives are discretized by using a uniform partition
of the time interval [0, tf ], denoted by 0 = t0 < t1 < · · · < tN = tf , and
let k be the time step size, k = tf/N . Moreover, for a sequence {zn}Nn=0, let
δzn = (zn − zn−1)/k be the divided differences.

Using the well-known backward Euler scheme for the discretization of the
time derivatives, the fully discrete approximation of problem (2.8)–(2.10) is
the following:

Find the first component of the discrete displacements {uhk1n}Nn=0 ⊂ V h, the
second component of the discrete displacements {uhk2n}Nn=0 ⊂ V h and the discrete



504 J. Baldonedo, J. R. Fernández, R. Quintanilla

temperature {θhkn }Nn=0 ⊂ V h such that θhk0 = θ0h, and for n = 1, . . . , N, and for
all wh, rh, zh ∈ V h,

(µiju
hk
1n,i, w

h
,j)Y + β(θhkn,1, w

h)Y = 0,(3.2)

(µ∗iju
hk
2n,i, r

h
,j)Y + β(θhkn,2, r

h)Y = 0,(3.3)

c(δθhkn , zh)Y + κ(∇θhkn ,∇zh)H + β(δuhk1n,1 + δuhk2n,2, z
h)Y = 0.(3.4)

Here, θ0h is the approximation of the initial condition θ0 defined as

θ0h = Phθ0,

where Ph is the classical finite element interpolation operator over V h (see,
e.g., [4]). Regarding the “artificial” discrete initial conditions for the two compo-
nents of the displacements, uhk10 and uhk20 respectively, they are obtained solving
the following equations, for all wh, rh ∈ V h,

(µiju
hk
10,i, w

h
,j)Y + β(θ0h

,1 , w
h)Y = 0,

(µ∗iju
hk
20,i, r

h
,j)Y + β(θ0h

,2 , r
h)Y = 0.

We use the classical Lax–Milgram lemma to prove that the discrete problem
(3.2)–(3.4) has a unique solution. Thus, we define the bilinear form A given by:

A(uhkn ,v
h) = (µiju

hk
1n,i, w

h
,j)Y + (µ∗iju

hk
2n,i, r

h
,j)Y + β(θhkn,1, w

h)Y + β(θhkn,2, r
h)Y

+ c(θhkn , zh)Y + κk(∇θhkn ,∇zh)H + β(uhk1n,1 + uhk2n,2, z
h)Y ,

where uhkn = (uhk1n, u
hk
2n, θ

hk
n ) ∈ V h×V h×V h and vh = (wh, rh, zh) ∈ V h×V h×V h

and the linear form L defined as

L(zh) = c(θhkn−1, z
h)Y + β(uhk1n−1,1 + uhk2n−1,2, z

h)Y .

Therefore, the problem (3.2)–(3.4) leads to the equation

A(uhkn ,v
h) = L(vh) ∀vh ∈ V h × V h × V h.

Thanks to the assumptions stated in the previous sections, we could easily prove
that the bilinear form A is coercive, and a direct application of the Lax–Milgram
lemma allows us to conclude that the discrete problem has a unique solution.

Remark 2. We note that, proceeding as in other contributions, we could
develop the numerical analysis of problem (2.8)–(2.10) approximated by fully
discrete problem (3.2)–(3.4). Indeed, we could obtain some a priori error esti-
mates as we did in [1]. The key point is that we have written variational equations
(2.9) and (3.3) changing the sign of the coupling coefficient β. Therefore, the es-
timates of function u2 could be obtained following the estimates of function u1.
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Remark 3. Again, we present the numerical approximation of the one-
dimensional problem (2.15) and (2.16).

Proceeding in a similar form as for the two-dimensional setting, we have the
following discrete problem.

Find the discrete displacements {uhkn }Nn=0 ⊂ V h and the discrete tempera-
ture {θhkn }Nn=0 ⊂ V h such that θhk0 = θ0h, and for n = 1, . . . , N and for all
wh, zh ∈ V h,

µ∗((uhkn )x, w
h
x)Y − β((θhkn )x, w

h)Y = 0,(3.5)

c(δθhkn , zh)Y + κ((θhkn )x, z
h
x)Y + β((δuhkn )x, z

h)Y = 0,(3.6)

where the “artificial” initial condition for the displacements, uhk0 , is obtained
solving the following discrete variational equation:

µ∗((uhk0 )x, w
h
x)Y − β((θ0h)x, w

h)Y = 0.

4. Numerical results

The numerical problem was solved using FEniCS [19] in a 4 core 3.40GHz
computer with 16GB of RAM, where a typical two-dimensional run with 20 ele-
ments and 10000 timesteps takes around 65 seconds.

Following [17], we consider the energy of the system given by

E(t) =
1

2

∫
Ω

θ2(x, t) dv.

We divide the studies in two sections: the one-dimensional problems and
the two-dimensional ones. For the one-dimensional cases, we first check how the
energy decay depends on the coupling coefficient β and on the diffusion param-
eter κ. The two-dimensional studies are subdivided into two subsections. In the
first one, the elasticity tensors have two equal eigenvalues, providing a frame-
work that is more comparable to the one-dimensional case. For that case, we
explore the influence of the timestep, and the parameters µ and µ∗. In the sec-
ond subsection, we consider the general case where the eigenvalues of the elas-
ticity tensors are distinct. Here, we look for a relationship between βlim and the
eigenvalues of such tensors.

4.1. One-dimensional studies

In the one-dimensional setting, it is possible to analytically find the limit
value for β that causes the model’s energy to decrease; we call this value βlim.
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As shown in Section 2.1, the following condition must be met for the model to
exhibit the exponential energy decay:

|βlim| <
√
c · µ∗.

To check how the energy depends on β, we perform a numerical experiment
varying this parameter (β ∈ [1, 2]) and fixing all the other parameters with the
following values:

µ∗ = 10, c = 7, κ = 5.

The initial condition for the temperature θ is θ0(x) = 1000x2 (x − 1)2 for
x ∈ (0, 1). We run the simulation until tf = 1 with a timestep of k = 10−5

and 20 elements to discretize the spatial domain Ω = (0, 1) (which results in
h = 0.05); we ensured that both discretization parameters were fine enough to
obtain consistent results.

The results show that energy decay in the one-dimensional model is expo-
nential independently of the value of β; as long as it verifies the previous condi-
tion. This can be clearly seen in Fig. 1, where the energy is plotted in a semi-
logarithmic graph for different values of β; the linear graph in the semi-log plot
shows the mentioned exponential decay.

Fig. 1. Energy decay of the system in a semilogarithmic plot for different values of β.
The straight lines in the semi-log plot indicate that the decay is exponential.
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4.1.1. Influence of κ. Although βlim should not depend on κ, according to the the-
oretical analysis, we found a “numerical” dependence on this parameter. Higher
values of κ yielded values for βlim higher than expected. The explanation for this
effect became clear when we studied the dependency of βlim with the timestep k.
For this experiment we took the following parameters:

c = 0.5, µ∗ = 100,

resulting in a βlim = 7.071. The initial condition and discretization values are
the same as before.

We performed a parametric study for several values for κ; for each value we
computed the limit value for β using a bisection algorithm in the neighbour-
hood of the theoretical value for βlim. After repeating such a study for different
timesteps, we found that κ influenced the timestep required to capture βlim
properly. The results of the parametric study are plotted in Fig. 2. They indi-
cate that as κ increases, a finer timestep is required to find a limit value closer
to the theoretical value (plotted as a horizontal line in red).

Fig. 2. Limit value for β computed for different κ and timesteps. The horizontal red line
represents the theoretical value, which should be independent of κ. The plot on the right

shows a zommed-in version of the left plot.

4.2. Two-dimensional studies

In this subsection, we present some two-dimensional numerical simulations
assuming that the elasticity tensors have different forms.

We start considering diagonal elasticity tensors with the same eigenvalues,
which means that both elasticity components are decoupled. Then, we continue
extending the above case assuming that the eigenvalues are different and, finally,
that the matrices defining the elastic tensors are full.
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4.2.1. First 2D-example: numerical limit for β and explosion of the energy with di-
agonal elasticity tensors. In this two-dimensional problem, we found numerically
that a limit value for β is also present. In this case, we expect cases with a value
of β above the limit to result in an uncontrolled energy increase with time. To in-
vestigate this effect numerically, we perform an experiment in a two-dimensional
square domain Ω = (0, 1) × (0, 1). The spatial discretization is performed with
a mapped mesh of quadrilateral elements (20 elements in each side of the square).
To investigate the effect of the temporal discretization, we repeat the simulations
with different timesteps.

In the examples provided in this case, we assume that the elasticity tensors
correspond to diagonal matrices with the same eigenvalues, that is, we take the
tensors µij = µδij and µ∗ij = −µ∗δij , where µ, µ∗ ∈ R+ and δij represents
the Kronecker symbol.

The model parameters are the following:

µ = 10, µ∗ = 10, c = 7, κ = 5.

The initial condition for the two-dimensional problem is an extension of the
one-dimensional one:

(4.1) θ0(x, y) = 1000x2(x− 1)2y2(y − 1)2 ∀(x, y) ∈ (0, 1)× (0, 1).

To explore the influence of the timestep, we experiment with two values
of β: one slightly above the limit value and the other slightly below. Numeri-
cally, we find that the limit value for β is between 8.917 and 8.928, so those
are the values considered for the study. We note that, if we use the calcula-
tion of the one-dimensional case, the limit value would be βlim = 8.367. Then,
we vary the timestep (k = 5 · 10−7 being the finest) for both values of β to
investigate its effect.

In Fig. 3, we plot the energy for two different values of β (the previously men-
tioned values 8.917 and 8.928), and four different values of the timestep. We can
see that the timestep does not affect the cases with the exponential energy de-
cay, but it dramatically affects the ones where the energy increases. With bigger
timesteps (a more coarse simulation) the energy is numerically damped, and the
simulation takes longer to explode (exponential growth of the energy); however,
this effect is purely numerical, since refining the timestep yields a solution that
explodes faster. This effect can be seen more clearly in the right figure, where
a zoom around the origin was made.

Since in the two-dimensional case a new parameter (µ) appears, we asked
ourselves what kind of effect it had in the exponential energy decay. Although
theoretically it should not have any effect in the energy behavior of the model,
we have previously discussed that the diffusion parameter κ had an effect in
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Fig. 3. Energy decay for two different values of β (one results in an exponential energy
decay and the other one in the explosion of the energy) studied with different timesteps.

A zoom near the origin is enhanced in the right figure.

the timestep, which resulted in deviations from the theoretical condition for the
exponential energy decay. The parameters for this experiment are the following:

β = 0.1, µ∗ = 10, c = 10, κ = 5,

keeping the same discretization parameters as before (h = 0.05, k = 10−5).
In this case, after obtaining some results, we found that µ had no effect in the

decay rate of the energy nor in the condition for the exponential energy decay.
This is shown in Fig. 4, where a wide range of values for µ were simulated,
yielding in all cases the same decay rate (with no increasing of the energy).

Fig. 4. Energy decay for different values of µ represented in a semilogarithmic plot. The
straight line indicates the decay is exponential and, since all the lines match, independent of µ.
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To finish these first numerical experiments, we analyze the effect of µ∗ fixing
all the other parameters:

β = 10, µ = 10, c = 10, κ = 5.

We keep the same discretization and initial condition as before.
In Fig. 5, we show the energy decay for some values of µ∗. We recall that,

in order to fulfil the condition for the exponential energy decay, the value of the
parameter must be above some limit value; in this case 10. We can see that
the decay is exponential, and the decay rate decreases rapidly as the parameter
increases. This relationship appears more clearly in the right figure, where the
rate of the exponential is plotted against µ∗. This exponent appears to converge
to a limit value plotted in red (this limit value was computed for µ∗ = 104).

Fig. 5. Left: energy decay for different values of µ∗ represented in a semilogarithmic plot; all
cases present exponential decay. Right: exponent of the decay represented as a function of µ∗;

the horizontal axis is logarithmic. The decay rate converges to an asymptotic value.

4.2.2. Comparative of different elasticity tensors. Up to this point, the elasticity
tensors were considered diagonal with both values on the diagonal equal. In this
section, we study what properties of the elasticity tensors influence the limit value
of beta. Hence, we define two different cases: diagonal tensors with two distinct
values and two full tensors. In both cases, the tensors have the same eigenvalues,
choosing the following distinct eigenvalues: 7 and 2; 70 and 20 for µij and −7
and −2; −70 and −20 for µ∗ij . The matrices considered for eigenvalues 7 and 2,
and 70 and 20 are: (

5 3
2 4

)
,

(
80

√
600

−
√

600 10

)
,

and the ones considered for eigenvalues −7 and −2, and −70 and −20 are:(
−8 2
−3 −1

)
,

(
−50

√
600√

600 −40

)
.
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The other model parameters are c = 10 and κ = 5. The simulations were
performed with 20 by 20 elements and a timestep of 10−6; we also did a sensitivity
analysis to assure the results were not dependent on the mesh size and timestep.
The initial condition is the same as before, see (4.1).

For each tensor type and eigenvalue combination, we compute the limit value
for β; the results obtained are summarized in Table 1 for the diagonal tensors
and Table 2 for the complete tensors. The results indicate that µij has, in gen-
eral, a negligible effect in βlim, as shown in the previous examples; however,
µ∗ij has a much bigger impact in the stability of the problem. Comparing the
cases with the diagonal and full matrices, we cannot conclude that the limit
value of β depends exclusively on the eigenvalues, because the value of βlim
changes even for matrices with the same eigenvalues; further research is required
to find which properties of the tensors determine this factor.

Table 1. Limit values for β for different diagonal elasticity tensors.

eig(µij) eig(µ∗ij) βlim

7, 2 −7,−2 4.93

70, 20 −7,−2 4.94

7, 2 −70,−20 16.19

70, 20 −70,−20 16.21

Table 2. Limit values for β for different complete elasticity tensors.

eig(µij) eig(µ∗ij) βlim

7, 2 −7,−2 3.58

70, 20 −7,−2 3.57

7, 2 −70,−20 21.62

70, 20 −70,−20 20.01

Finally, we set a fixed β = 3.5 for all cases, below the minimum βlim we ob-
tained, in order to have a stable model. With this setup, we compute the energy
in order to assess the decay rate. The results are shown in Fig. 6. All the simu-
lations show the exponential decay. The decay rates are different in general, but
we note that in the cases where eig(µij) = −eig(µ∗ij) (when eig(µij) = (7, 2);
eig(µ∗ij) = (−7,−2) and eig(µij) = (70, 20); eig(µ∗ij) = (−70,−20)) the decay
rates are almost equal.

As a possible conclusion of the above studies, we could say that the limit
value of β is not directly related to the eigenvalues of these elastic tensors.
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Fig. 6. Energy decay for all the cases presented in this section. In solid line with cold colors
(marked with D in the legend) the cases with diagonal elasticity tensors. In dashed lines with
warm colors (marked with F in the legend) the cases with complete elasticity tensors. The

eigenvalues of µij and µ∗ij are listed in the legend between brackets.

Conclusions

In this paper, we have studied the energetic behavior of some quasi-static
thermoelastic problems assuming that the elastic tensor (or one of its parts) is
not positively defined. For the one-dimensional case, we have obtained a con-
dition among the thermal coupling coefficient β and the product of the heat
capacity c and the elastic coefficient µ∗. Then, we have introduced fully discrete
approximations by using the finite element method and the implicit Euler scheme
to approximate the spatial variable and to discretize the time derivatives, respec-
tively. Finally, we have shown some numerical simulations. The first ones include
one-dimensional examples, demonstrating the commented condition on the con-
stitutive coefficients and the influence of the parameters β and κ. The second
numerical simulations depend on the form of the elasticity coefficients, assum-
ing that the elastic tensors are diagonal (with the same or different eigenvalues)
or full matrices. In the latter case, we cannot conclude any relation among the
eigenvalues.
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