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This study deals with the vibration response of porous functionally graded
(FG) nanobeams under hygro-thermal loadings. The FG nanobeam model is devel-
oped based on the Euler–Bernoulli beam theory, in which the doublet mechanics
is implemented to account for the size effect. The material properties of the FG
nanobeam are assumed to vary along the thickness direction of the beam according
to the power-law form with the temperature dependent and porosity phases. The
approximate Ritz method is employed to obtain the natural frequencies of porous
FG nanobeam models for various boundary conditions. The influences of several pa-
rameters such as temperature rise, moisture concentration, porosity volume fraction,
material gradient index, material length scale parameter and mode number on the
free vibration response of the porous FG nanobeams under hygro-thermal environ-
ments are examined in detail. It is explicitly shown that the proposed approach can
provide accurate frequency results of FG nanobeams as compared to existing studies
in open literature. These study’s results may be useful for the optimal and safety
design of nano-electro-mechanical systems.
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1. Introduction

The functionally graded materials (FGMs) have attracted a great deal
of attention due to their advanced material properties, such as high strength,
high thermal and corrosive resistances. Recently, with the rapidly development
of the nanotechnology field, FGMs in nanoscale have been used in nano-electro-
mechanical systems (NEMS) [1–4], atomic force microscopes [5], and sensors [6].
In this context, FG nanobeams are commonly used in NEMS as components
of the sensors, transistors, actuators, probes and resonators [7, 8]. Therefore,
understanding the mechanical properties of FG nanobeams is very crucial for its
practical applications.

It is well-known that the non-classical continuum theories capture the size-
dependency of nanostructures and predict accurate results in their static and
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dynamic analyses. The most popular size-dependent continuum theories can be
regarded as couple stress [9], nonlocal elasticity [10], strain gradient [11], nonlo-
cal strain gradient [12], peridynamics [13], modified couple stress [14] and stress
driven integral elasticity [15]. Moreover, another scale-dependent theory is known
as doublet mechanics (DM) which has been invented by Granik [16]. The main
difference of DM from other non-classical continuum theories aforementioned
is its direct dependence of the nanostructure of the solid. In DM, the bonding
length of the atoms in the structure is taken directly as the material length scale
parameter. This proves that scale-dependent parameter is directly related to
the atomic structure of the considered material in the DM theory. Micro stresses
and strains of the solid are defined by using the Taylor series expansion and then
those micro-deformations are transformed to macro stress and strain relations
in the DM model. Thus, an efficient connection is established between the dis-
crete mechanics and continuum mechanics. Several papers related to the static
and dynamic analyses of FG micro/nano-beams have been published based on
the above-mentioned continuum theories. In this context, Ke and Wang [17]
investigated the dynamic stability of FG microbeams using the modified cou-
ple stress theory and the Timoshenko beam theory. Reddy [18] presented the
nonlinear bending and buckling analysis of FG Euler–Bernoulli and Timoshenko
beams by considering the size effect based on the modified couple stress theory.
Static bending and free vibration of FG microbeams have been studied using the
modified couple stress theory and various higher order beam theories in [19]. Us-
ing the stain gradient theory, Akgöz and Civalek [20] examined the buckling
of size-dependent FG microbeams for different boundary conditions. Also, the
shear deformation beam model with new shear correction factors has been devel-
oped for FG microbeams by the same authors [21]. Rahmani and Pedram [22]
investigated the free vibration of FG nanobeams based on the nonlocal Timo-
shenko beam theory. The effects of length scale parameter, gradient index and
length-to-thickness ratio on the vibration of FG nanobeams have been examined
in that paper. Using the DM theory, the free vibration and buckling analyses
of FG nanobeams have been investigated in [23, 24]. The Ritz method has been
used and vibration and buckling results of FG beams have been obtained for
different boundary conditions in these papers. Based on the nonlocal strain gra-
dient theory, nonlinear bending and vibration analyses of size-dependent FG
beams have been investigated in [25]. Ghandourah et al. [26] studied the vi-
bration response of porous FG micro/nanobeams in the framework of the non-
local couple stress continuum model. The analytical solution has been applied
to investigate the vibration characteristics of simply supported FG nanobeams
in that paper. In another paper [27], the free vibration analysis of FG porous
nanobeams has been examined based on the two-variable trigonometric shear
deformation theory. Recently, Uzun and Yayli [28] have analysed the free vi-
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bration response of FG porous nanobeams embedded in the Winkler foundation
considering the rotary inertia effect. The bending, buckling and vibration ana-
lyses of FG nanobeams reinforced by carbon nanotubes have been studied using
the polynomial-exponential integral shear deformable theory in [29].

The common use of FGMs in a high temperature environment causes the
important changes in material properties. For instance, when temperature in-
creases, Young’s modulus usually decreases in FGMs. Also, during the man-
ufacturing process of FGMs, porosities or micro voids occur in the structure.
Thus, to predict the mechanical behaviour of FGMs having porosities and un-
der hygro-thermal environments more accurately, it is necessary to consider the
effects of temperature changes and porosities in FG micro/nano-beams. Within
this context, Ebrahimi and Salari [30] studied the thermal effect on vibra-
tion behaviour of FG nanobeams using Eringen’s nonlocal elasticity theory.
They employed a semi analytical differential transform method in their ana-
lysis. In another paper [31], thermal buckling and free vibration analyses of
FG nanobeams have been investigated based on the nonlocal Timoshenko beam
theory. Ebrahimi and Salari [32] developed a nonlocal beam model for the
free vibration analysis of FG nanobeams in thermal environments based on the
Euler–Bernoulli beam theory. The vibrations results are presented for various
boundary conditions in that paper. Thermo-mechanical vibration analysis of FG
beams with porosity has been examined in [33]. Jouneghani et al. [34] analysed
the bending response of FG nanobeams with internal porosity and subjected to
a hygro-thermo-mechanical loadings in the framework of the nonlocal elasticity
theory. A detailed investigation about the bending response of FG nanobeams
was performed by the authors, for the varying power-law index, porosity vol-
ume fraction, temperature rise and moisture concentration. Jalaei et al. [35]
utilized the nonlocal strain gradient model to perform the dynamic instability of
the Timoshenko FG nanobeam exposed to a magnetic field in a thermal environ-
ment. Ebrahimi and Barati [36] developed a unified formulation for vibrational
behaviour of FG nanobeams in a hygro-thermal environment. Wang et al. [37]
researched the hygro-thermal mechanical behaviours of axially FG microbeams
based on the refined first-order shear deformation theory. Penna et al. [38] in-
vestigated the hygro-thermal vibration of porous FG nanobeams using the lo-
cal and nonlocal stress gradient theories of elasticity for cantilever and fully
clamped nanobeam models. In other study [39], the bending response of porous
FG Euler–Bernoulli nanobeams under hygro-thermal loadings has been studied
based on the local/nonlocal strain and stress gradient theories. Li et al. [40]
presented adetailed research about the effects of temperature rise and moisture
concentration on the buckling of porous FG nanobeams by using various beam
theories. Recently, Özmen et al. [41] used the nonlocal strain gradient theory
to investigate the thermomechanical vibration and buckling behaviours of FG
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porous nanobeams in a magnetic field. Further studies related to the effects of
the thermal environment and porosity on the static and dynamic behaviours of
FG nanobeams can be found in [42–55].

Although the dynamic analysis of FG nanobeams is being examined by a lot
of researchers, studies on the free vibration of porous FG nanobeams considering
the hygro-thermal effects are limited. Therefore, there is a strong scientific need
to understand the free vibration characteristics of FG nanobeams taking into
account the effects of porosity and hygro-thermal environment. Motivated by
this fact, the present study investigates the free vibration behaviour of porous
FG nanobeams subjected to hygro-thermo-mechanical loads based on the scale-
dependent DM theory. Here, the material characteristics of the porous FG beam
vary through the beam thickness according to the power-law form and they are
temperature-dependent. Also, it is assumed that a linear temperature rise occurs
in the thickness direction of the beam. The approximate Ritz method is employed
for the vibration analysis of porous FG nanobeams with three combinations of
boundary conditions. Application of the Ritz method on the dynamic analysis
of the FG beam is simple and reliable and accurate vibration results can be
obtained by this method. The Ritz solutions require small degrees of freedom in
analysis and have many advantages in handling other parameters, such as simple
control parameters of the boundary conditions and the aspect ratios of struc-
tures. Moreover, there are different solution methodologies in the open literature
to deal with the structural problems wherein the primary (kinematic) or the sec-
ondary (kinetic) field variables are assumed to have a series solution form [56–58].
These alternative solution techniques can be also used in the free vibration ana-
lysis of FG nanobeams. In the present paper, the influences of the material length
scale parameter, porosity volume fraction, temperature rise, moisture concentra-
tion, power-law index, mode number and boundary conditions on the vibration
response of porous FG nanobeams subjected to hygro-thermo-mechanical loads
are examined in detail. The validation is provided for the present results with the
results from the existing literature. It is observed that the porosity and hygro-
thermal effects change the vibration frequencies of FG nanobeams significantly.
The present article can be useful in the design and analysis of NEMs suscep-
tible to hygro-thermal environment and can also provide a valuable source for
validating other approximate approaches.

2. Temperature-dependent porous FG nanobeam model

A FG nanobeam model made up of a combination of metal and ceramic
subjected to hygro-thermal loads with length L, thickness h and width b, is
shown in Fig. 1.

It is assumed that the FG nanobeam has an even porosity distribution
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Fig. 1. A porous FG nanobeam in hygro-thermal environment.

through the thickness due to the applied production methods. Accordingly, the
mechanical characteristics of the FG nanobeam with the linear uniform porosity
distribution can be computed by the following rule of mixture equations:

(2.1) P (z) = Pm + (Pc − Pm)

(
z

h
+

1

2

)k
−p

2
(Pc + Pm),

where P (z) is the effective material property change along the thickness (z-axis)
of the FG nanobeam, Pm and Pc are the material properties of the metal and
ceramic constituents of the FG nanobeam, respectively, k is the power-law index
and p is the porosity volume fraction. According to Eq. (2.1), Young’s modulus,
E(z), density, ρ(z), thermal expansion coefficient, γ(z) and moisture expansion
coefficient, ψ(z) can be computed as follows:
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2
(γc + γm),(2.4)

ψ(z) = ψm + (ψc − ψm)

(
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h
+

1

2

)k
− p

2
(ψc + ψm).(2.5)

Here, Em, Ec and ρm, ρc denote the Young moduli and densities of metal and
ceramic, respectively; and γm, γc and ψm, ψc, denote the thermal expansion
coefficients and moisture expansion coefficients of metal and ceramic materials,
respectively. It is noted that all properties of the FG nanobeam are equal to
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metal’s at the bottom surface where z = −h/2, while on the top surface where
z = +h/2, properties are equal to ceramic’s.

The effects of the hygro-thermal environment are considered necessary in
more accurately estimating the mechanical behaviour of FGM structures. Thus,
the material properties can be defined by a nonlinear temperature-dependent
equation [59]:

(2.6) P (T ) = P0(P−1T
−1 + 1 + P1T + P2T

2 + P3T
3),

where P0, P−1, P1, P2 and P3 denote the temperature-dependent coefficients.
In this paper, linear temperature rise (T (z)) and linear moisture concentration
(C(z)) are considered between the bottom (z = −h/2) and top (z = +h/2)
surfaces of the nanobeam cross-section:

T (z) = Tm + ∆T

(
z

h
+

1

2

)
,(2.7)

C(z) = Cm + ∆C

(
z

h
+

1

2

)
,(2.8)

where

∆T = Tc − Tm,(2.9)
∆C = Cc − Cm.(2.10)

Here, Tc, Cc and Tm, Cm are the values of the temperature and moisture concen-
tration at the top and bottom surface, respectively, ∆T and ∆C are the temper-
ature and moisture concentration rise, respectively. The temperature-dependent
coefficients of material phases for metal (SuS3O4) and ceramic (Si3N4) are given
in Table 1 [60].

Table 1. Temperature-dependent coefficients for the constituents of FG beam.

Material Properties P−1 P0 P1 P2 P3

Si3N4

Ec (GPa) 0 348.43 −0.0003070 2.160E-07 −8.946E-11
ρc [kg/m3] 0 2370 0 0 0
γc [K−1] 0 5.8723E-06 0.0009095 0 0

ψc (wt.% H2O)−1 0 0 0 0 0

SuS3O4

Em (GPa) 0 201.04 0.0003079 −6.534E-07 0
ρm [kg/m3] 0 8166 0 0 0
γm [K−1] 0 12.330E-06 0.0008086 0 0

ψm(wt.% H2O)−1 0 0.0005 0 0 0
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3. Doublet mechanics formulation

The doublet mechanics (DM) theory considers two adjacent atoms or nodes
as a doublet and incorporates a material length scale parameter to account for
their distance from each other. This material length scale parameter in DM
is simply demonstrated in Fig. 2.

Fig. 2. A doublet geometry in DM theory.

Then, the increment (∆uα) in the stretching displacement of doublet α is
defined as [61]:

(3.1) ∆uα =
M∑
χ=1

(ηα)χ

χ!
τ oαk1 · · · τ

o
αkχ

∂χui
∂χk1 . . . ∂χkχ

.

Here, k1, k2, . . . , kχ are equal to 1, 2 and 3 in the Cartesian coordinate and in
this paper 1, 2 and 3 are x, y and z axes, respectively. Any two nodes in a solid
are called as a doublet and distance between two nodes is called as a material
length scale in the DM theory [61]. These nodes (atoms) are located at certain
finite distances (bond length) of the order of a few angstroms to nanometers (for
example the carbon-carbon bond length is 0.1421 nm). For the present prob-
lem, the material length scale parameter of FG nanobeams, η = 0.1421nm is
taken into account in the calculations; τ oα is the unit vector in the direction of
α-th node, and M is the number of terms in the Taylor series expansion. The
stretching micro-strain (εα) in terms of the unit vector in α-direction can be
defined as [61]:

(3.2) εα = τ oαi

M∑
χ=1

(ηoα)χ−1

χ!
τ oαk1 . . . τ

o
αkχ

∂χui
∂χk1 . . . ∂χkχ

.

For the present paper, M = 3 terms of the Taylor series is taken into account
in the DM theory. It is known from the previous works that M = 3 terms of
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the Taylor series can provide satisfactory results for the DM theory [62, 63].
Therefore, using this assumption, the stretching micro-strain is obtained as:

(3.3) εα = τ oαiτ
o
αj

∂ui
∂xj

+ τ oαi
ηα
2
τ oαjτ

o
αk

∂2ui
∂xj∂xk

+ τ oαi
η2
α

6
τ oαjτ

o
αkτ

o
αl

∂3ui
∂xj∂xk∂xl

.

The relation between micro-stress and micro-strain is [61]:

(3.4) pα =
∑
β

Cαβεβ,

where Cαβ is the micro-moduli of elasticity of doublet and can be defined as
a constant (C0) with the assumption of the plane stress condition [53]:

(3.5) C0 =
4

9
µ

7λ+ 10µ

λ+ 2µ
.

Lamé’s constants, λ and µ and C0 are defined with the assumption of the plane
stress condition and putting ν = 1/3, one obtains [62]:

(3.6)
λ =

νE

(1 + ν)(1− 2ν)
, µ = G =

E

2(1 + ν)
,

λ = 2µ, C0 =
8µ

3
= E,

where E and ν represent the elasticity modulus Poisson ratio, respectively. Then,
the stretching micro-strain and micro-stress are achieved by:

εα = τ oαiτ
o
αj

∂ui
∂xj

+ τ oαi
ηα
2
τ oαjτ

o
αk

∂2ui
∂xj∂xk

+ τ oαi
η2
α

6
τ oαjτ

o
αkτ

o
αl

∂3ui
∂xj∂xk∂xl

,(3.7)

pα = C0τ
o
αmτ

o
αn

(
εmn +

1

2
ηατ

o
αs

∂εmn
∂xs

+
1

6
η2
ατ

o
αtτ

o
αs

∂2εmn
∂xt∂xs

)
.(3.8)

The stretching macro-stress relation can be determined for the three-dimensional
formulations as follows [63]:

(3.9) σk1i
(M) =

M∑
α=1

τ oαk1

M∑
χ=1

(−1)χ+1

[
(ηα)χ−1

χ!
τ oαk2 . . . τ

o
αkχ

∂χ−1pαi
∂χk2 . . . ∂χkχ

]
.

By putting M = 3 in Eq. (3.9) leads to

(3.10) σij =

M∑
α=1

C0τ
o
αiτ

o
αjτ

o
αmτ

o
αn

[
εmn +

η2
α

12
τ oαtτ

o
αs

∂2εmn
∂xt∂xt

]
.

The unit vectors ~τ oij which are the cosines of the angles between the micro-
stresses and the Cartesian coordinates and can be calculated according to Fig. 3
as follows:
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(3.11) τij =

 cos θ cos 90◦ sin θ

− sin(30◦ − θ) cos 90◦ − cos(30◦ − θ)
− cos(60◦ − θ) cos 90◦ sin(60◦ − θ)

.

Fig. 3. Configuration of three doublets with equal angles.

For the present problem, the zigzag nanobeam model is considered. Thus,
the angle of atomic structure with beam’s axial direction θ is taken as 0◦ for the
zigzag structure. By putting θ = 0◦ in Eq. (3.11) the following is obtained:

(3.12) τij =

 1 0 0

−1/2 0 −
√

3/2

−1/2 0
√

3/2

.
By substituting Eq. (3.12) into Eq. (3.10) and assuming C0 = E for the plane
stress condition, the stress-strain relation can be obtained for the zigzag model
as follows:

(3.13) σxx = E

(
εxx +

η2
α

12

∂2εxx
∂x2

+
η2
α

32

∂2εxz
∂x∂z

)
.

Considering only the longitudinal strain in Eq. (3.13) yields:

(3.14) σxx = E

(
εxx +

η2

12

∂2εxx
∂x2

)
.

It is noted that η2

12 term in Eq. (3.14) represents the material length scale pa-
rameter of the DM theory for the zigzag structure.
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4. The DM model for FG nanobeam

Considering the DM theory, the strain energy (Us) of a FG nanobeam can
be written as:

(4.1) Us =
1

2

∫
A

L∫
0

[τx · εx − µx · ∇εx] dx dA,

where τx is the macro stress with respect to the x-axis, εx is the normal strain
(εx = −y d2w

dx2
), A is the cross-sectional area and L is the length of the nanobeam.

τx, ∇εx and µx are computed as:

(4.2) ∇εx = dεx/dx, τx = E(z)εx, µx =
η2

12
E(z)

dεx
dx

.

Substituting Eq. (4.2) into Eq. (4.1) yields:

(4.3) Us =
1

2

L∫
0

E(z)I

[(
∂2w

∂x2

)2

− η2

12

(
∂3w

∂x3

)2]
dx.

In which I is the moment of inertia of the rectangular beam cross-section is equal
to I = bh3/12. The kinetic energy (T ) of the FG nanobeam is defined as:

(4.4) T =
1

2

L∫
0

ρ(z)A

(
∂w

∂t

)2

dx.

It is assumed that the considered FG nanobeam which has been in hygro-thermal
environment for a long period of time and linear changes of temperature and
moisture are taken into consideration. In this context, the work done by applied
forces (We) due to the temperature and moisture change can be written in the
following form:

(4.5) We = −1

2

L∫
0

(NT +NC)

(
∂w

∂x

)2

dx,

where NT and NC are the hygro-thermal axial force resultants due to tempera-
ture and moisture change, respectively, defined as follow:

(4.6) NT = b

h/2∫
−h/2

E(z, T )γ(z, T )∆T dz, NC = b

h/2∫
−h/2

E(z, T )ψ(z, T )∆C dz,

where b is the width of the beam.
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5. Ritz solution for FG nanobeam model

Assuming the harmonic vibration in a FG nanobeam, w(x, t) can be de-
fined as:

(5.1) w(x, t) = W (x) cosωt,

whereW (x) is the amplitude of the transverse displacement and ω is the natural
frequency of the FG nanobeam. According to the Ritz method, the displacement
constituent can be expressed as:

(5.2) W (x) =

N∑
i=1

Diζi(x).

Here, Di are arbitrary coefficients and ζi(x) is an admissible function that
satisfies at least geometric boundary conditions but not necessary for satisfy-
ing the natural boundary conditions of the beam. For the present study, sim-
ply supported-simply supported (S-S), clamped-clamped (C-C) and clamped-
simply supported (C-S) boundary conditions of the FG nanobeam are consid-
ered. Accordingly, the geometric and natural boundary conditions of the beam
are defined as [64]:

For the simply supported boundary condition we use:

(5.3a)

w(x, t) = 0,

EI

[(
∂2w(x, t)

∂x2

)
+
η2

12

(
∂4w(x)

∂x4

)]
= 0,

∂2w(x)

∂x2
= 0 at x = 0, L.

For the clamped boundary condition we use:

(5.3b)

w(x) = 0,

∂w(x)

∂x
= 0,

∂2w(x)

∂x2
= 0 at x = 0, L.

The admissible function can be assumed in the following form:

(5.4) ζi(x) = xi, i = 1, 2, . . . , N.

The dimensionless form of the algebraic polynomial (xi) can be defined as:

(5.5) xi = x̄i(x̄− 1)d, x̄ =
x

L
.
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Here, the values of d in Eq. (5.5) are chosen d = 1 and 2 for the simply supported
and clamped edges, respectively. It should be noted that the admissible function
is compatible with the geometric boundary conditions given in Eq. (5.2). Ac-
cording to the Ritz method, the maximum potential energy (Umax) and kinetic
energy (Tmax) are calculated by inserting Eq. (5.1) into Eqs. (4.3)–(4.5) and
setting cosωt equal to 1:

Umax =
1

2

L∫
0

E(z, T )I

[(
∂2W

∂x2

)2

− η2

12

(
∂3W

∂x3

)2]
dx(5.6)

− 1

2

L∫
0

(NT +NC)

(
∂W

∂x

)2

dx,

Tmax =
1

2

L∫
0

ρ(z, T )Aω2(W )2 dx.(5.7)

Then, Langrangian functional (L) can be expressed as:

(5.8) L = Umax − Tmax.

Finally, by minimization of Eq. (5.8) with respect to undetermined coeffi-
cients (Di), the general eigenvalue problem is:

(5.9)
∂L

∂Di
= 0.

Equation (5.9) gives I × I simultaneous, linear, and homogeneous equations as
below

(5.10) ([K]− Ω2[M ]){∆} = 0.

The size of Eq. (5.10) is equal to the sum of the number of undetermined
coefficients (Di). Here, [K] and [M ] represent the stiffness and mass matri-
ces, respectively, {∆} represents the column vector of the undetermined coef-
ficients Di, and Ω represents the dimensionless frequency parameter of porous
FG nanobeams under hygro-thermal loadings based on DM and it is defined as:

(5.11) Ω = ωL2
√
ρcA/EcI.

6. Numerical results and discussions

In this section, the hygro-thermal mechanical vibration response of the FG
porous Euler–Bernoulli nanobeams is investigated using the size-dependent DM
theory. The analysis has been conducted employing the usefulness of the Ritz
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method for different boundary conditions such as S-S, C-C and C-S. The FG
nanobeam model is composed of Silicon nitride (Si3N4) and Steel (SuS3O4)
where its properties are presented in Table 1. The top surface of the beam
is pure Steel (SuS3O4) while the bottom surface of the beam is pure Silicon
nitride (Si3N4).

In Table 2, the convergence study of the Ritz method is demonstrated for
the first three dimensionless natural frequency of the porous FG beam under
a hygro-thermal environment with various boundary conditions. It is observed
that the first three natural frequencies converged to a value with good precision
for N = 8 iterations in the Ritz method for all given boundary conditions.
Therefore, N = 8 terms can be used in the Ritz method to calculate the natural
frequencies of the FG nanobeam for the present study.

Table 2. Convergence of the first three dimensionless frequency parameters for different
boundary conditions (L/h = 20, k = 1, p = 0.2, ∆T = 40 [K], ∆C = 1).

S-S C-C C-S
N

η = 0 η = 0.1421 nm η = 0 η = 0.1421 nm η = 0 η = 0.1421 nm

First dimensionless frequency (Ω1)

3 5.4637 5.4635 13.3213 13.3199 8.9936 8.9930
5 5.4617 5.4613 13.3210 13.3196 8.9830 8.9825
6 5.4617 5.4613 13.3210 13.3196 8.9830 8.9824
7 5.4617 5.4613 13.3210 13.3196 8.9830 8.9824
8 5.4617 5.4613 13.3210 13.3196 8.9830 8.9824

Second dimensionless frequency (Ω2)

3 30.0981 30.0973 37.9134 37.8998 30.4244 30.4174
5 23.5935 23.5907 37.1373 37.1291 29.9523 29.9479
6 23.4907 23.4887 37.1247 37.1160 29.9459 29.9415
7 23.4907 23.4887 37.1247 37.1160 29.9459 29.9390
8 23.4907 23.4887 37.1247 37.1160 29.9459 29.9390

Third dimensionless frequency (Ω3)

3 79.7719 79.7637 77.2539 77.1930 109.8454 109.8222
5 54.4337 54.4165 73.2557 73.2285 64.7097 64.6784
6 54.4337 54.4165 73.2557 73.2285 63.0369 63.01957
7 53.5231 53.5132 73.1174 73.0880 62.9802 62.9629
8 53.5231 53.5132 73.1174 73.0880 62.9408 62.9225

To evaluate the accuracy and reliability of the present approach, a compa-
rison study with the dimensionless frequencies of FG beams in thermal envi-
ronments for various boundary conditions and power-law indexes are given in
Tables 3 and 4. Using the same material properties given in [30], the first di-
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Table 3. Comparison of the first dimensionless frequency (Ω = ωL2
√
ρcA/EcI)

of functionally graded beams in thermal environment (L/h = 20, η = 0).

Boundary
condition

k Ω1 ∆T = 20 [K] ∆T = 40 [K] ∆T = 80 [K]

S-S

0.1
Present 8.5204 8.3433 7.9771

[30] 8.4633 8.2780 7.8794

0.2
Present 7.8143 7.6422 7.2858

[30] 7.7346 7.5558 7.1710

0.5
Present 6.6329 6.4670 6.1217

[30] 6.5412 6.3715 6.0061

1
Present 5.7621 5.5981 5.2549

[30] 5.7110 5.5466 5.1925

C-C

0.1
Present 19.7650 19.6704 19.4799

[30] 19.6398 19.5436 19.3420

0.2
Present 18.1527 18.0610 17.8762

[30] 17.9776 17.8869 17.6968

0.5
Present 15.4588 15.3709 15.1933

[30] 15.2580 15.1759 15.0040

1
Present 13.4781 13.3915 13.2166

[30] 13.3671 13.2905 13.1304

C-S

0.1
Present 13.5247 13.3951 13.1317

[30] 13.4380 13.3037 13.0201

0.2
Present 12.4162 12.2904 12.0346

[30] 12.2947 12.1663 11.8951

0.5
Present 10.5632 10.4423 10.1960

[30] 10.4238 10.4238 10.0515

1
Present 9.1998 9.0807 8.8374

[30] 9.1227 9.0082 8.7674

mensionless frequencies of FG beams in a thermal environment predicted by
the present method are compared to findings of the analytical method [30] in
Table 3. It is seen that the current method’s results are in good agreement
with that reported in [30]. The difference between the current method’s results
and the results of [30] is due to the solution methods. The first dimensionless
frequency results are obtained by using the approximate Ritz method in the
present study, whereas the first dimensionless frequency results of FG beams are
obtained by the analytical solution method in [30]. It is seen that the highest
difference between two methods is approximately 1.92% in Table 3. When the
analytical solution is compared with the approximate Ritz solution, it can be
said that this difference is acceptable. As it is similar to the previous compar-
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Table 4. Comparison of the first three dimensionless frequencies (Ω = ωL2
√
ρcA/EcI) of

functionally graded beams in thermal environment for various boundary conditions
(L/h = 20, η = 0).

Boundary
condition

k Ωi
∆T = 0 ∆T = 20 [K] ∆T = 40 [K]

Present [32] Present [32] Present [32]

S-S

i = 1 9.8696 9.8594 9.6068 9.5065 9.4275 9.1374
0 i = 2 39.4784 39.3171 39.2182 38.9700 39.0438 38.6173

i = 3 88.8482 88.0158 88.5885 87.6713 88.4150 87.3231
i = 1 8.7683 8.6845 8.4999 8.3092 8.3187 7.9105

0.2 i = 2 35.0732 34.6263 34.8079 34.2584 34.6324 33.8792
i = 3 78.9340 77.4947 78.6693 77.1298 78.4948 76.7528
i = 1 7.1281 7.0638 6.8466 6.6661 6.6557 6.2332

1 i = 2 28.5123 28.1627 28.2351 27.7749 28.0519 27.3676
i = 3 64.1684 63.0229 63.8920 62.6387 63.7102 62.2303

C-C

i = 1 22.3732 22.3447 22.2301 22.1532 22.1342 21.9585
0 i = 2 61.6728 61.3790 61.4788 61.1205 61.3492 60.8590

i = 3 120.9054 119.6770 120.6931 119.3950 120.5513 119.1110
i = 1 19.8767 19.6819 19.7308 19.4789 19.6342 19.2695

0.2 i = 2 54.7910 54.0567 54.5932 53.7827 54.4628 53.4998
i = 3 107.4141 105.3750 107.1977 105.0770 107.0552 104.7670
i = 1 16.1585 16.0094 16.0060 15.7954 15.9052 15.5703

1 i = 2 44.5417 43.9727 44.3352 43.6841 44.1993 43.3779
i = 3 87.3210 85.7255 87.0950 85.4118 86.9466 85.0712

C-S

i = 1 15.4178 15.3997 15.2229 15.1386 15.0914 14.8707
0 i = 2 49.9638 49.7431 49.7407 49.4456 49.5914 49.1442

i = 3 104.2469 103.2410 104.0127 102.9310 103.8563 102.6170
i = 1 13.6974 13.5647 13.4985 13.2874 13.3661 12.9994

0.2 i = 2 44.3886 43.8094 44.1611 43.4941 44.0109 43.1693
i = 3 92.6144 90.9059 92.3757 90.5771 92.2184 90.2361
i = 1 11.1352 11.0336 10.9271 10.7409 10.7884 10.4310

1 i = 2 36.0852 35.6368 35.8475 35.3046 35.6909 34.9547
i = 3 75.2898 73.9537 75.0405 73.6074 74.8767 73.2359

ison study, the current method’s results agree well with the results presented
by Ebrahimi and Salari [32] for the first three dimensionless frequencies and
given boundary conditions. The acceptable difference between the results of the
current study and [32] is due to the Ritz method used in this study, which gives
an approximate solution.

After validation of the current method, in Tables 5–7, the variations of nat-
ural frequencies of hygro-thermo-mechanical vibration of porous FG nanobeams
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with temperature rise, moisture concentration, porosity volume fraction, power-
law index, mode number and boundary conditions are presented for DM and the
classical elasticity theory (η = 0) at the constant slenderness ratio (L/h = 20). It
can be observed from the results of Tables 5–7 that the dimensionless frequencies
predicted by the DM (η = 0.1421 nm) theory are lower than the dimensionless
frequencies obtained by the classical elasticity theory (η = 0) for all given bound-
ary conditions. The difference between two theories is more pronounced for higher
modes of vibration. These results indicate that DM predicts softening material
behaviour compared to the classical elasticity theory and the material length
scale parameter in DM becomes more significant in higher modes. In addition,
it is seen that the changes of the temperature and moisture concentrations have
considerable influences on the vibration of the porous FG nanobeams. When the
temperature and moisture concentrations increase, the natural frequencies de-
crease for both DM and classical elasticity theories. This is due to the decrease
in the total stiffness of the FG nanobeam with temperature and moisture con-
centration rises. Rises in temperature and moisture yield increasing compressive
forces, leading to the reduction in the rigidity of the beam. The dimension-
less natural frequencies decrease with increasing the power-law index. That is

Table 5a. The first dimensionless frequency (Ω = 4
√
ρcAω2L4/EcI) of porous functionally

graded nanobeams under a hygro-thermal environment for S-S boundary condition (L/h=20).

η [nm] ∆C p
∆T = 0 ∆T = 40 [K] ∆T = 80 [K]

k = 0.5 k = 2 k = 0.5 k = 2 k = 0.5 k = 2

0

0 6.8781 5.3162 6.4670 4.9969 6.1217 4.6639
0 0.1 6.9915 5.2482 6.6260 4.9647 6.3220 4.6558

0.3 7.3384 5.0617 7.0644 4.8494 6.8412 4.6273
0 6.6610 4.9391 6.2356 4.8219 5.8767 4.5139

1 0.1 6.8169 4.9134 6.4415 4.8120 6.1283 4.5011
0.3 7.2527 4.8130 6.9753 4.7413 6.7491 4.4675
0 6.5741 4.7620 6.1427 4.6544 5.7780 4.3976

2 0.1 6.7525 4.7591 6.3733 4.6404 6.0566 4.3321
0.3 7.2352 4.7041 6.9571 4.6307 6.7303 4.2709

0.1421

0 6.8780 5.3161 6.4668 4.9968 6.1215 4.6638
0 0.1 6.9914 5.2481 6.6258 4.9646 6.3218 4.6557

0.3 7.3383 5.0616 7.0643 4.8493 6.8410 4.6272
0 6.6609 4.9390 6.2354 4.8218 5.8766 4.5138

1 0.1 6.8167 4.9133 6.4413 4.8119 6.1281 4.5010
0.3 7.2526 4.8129 6.9752 4.7412 6.7490 4.4674
0 6.5740 4.7619 6.1425 4.6542 5.7779 4.3975

2 0.1 6.7523 4.7590 6.3731 4.6402 6.0564 4.3320
0.3 7.2350 4.7039 6.9569 4.6305 6.7301 4.2707
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Table 5b. The second dimensionless frequency (Ω = 4
√
ρcAω2L4/EcI) of porous functionally

graded nanobeams under a hygro-thermal environment for S-S boundary condition (L/h = 20).

η [nm] ∆C p
∆T = 0 ∆T = 40 [K] ∆T = 80 [K]

k = 0.5 k = 2 k = 0.5 k = 2 k = 0.5 k = 2

0

0 27.5126 21.2648 27.1107 20.8715 26.7882 20.5535
0 0.1 27.9661 20.9930 27.6078 20.6427 27.3212 20.3602

0.3 29.3538 20.2468 29.0837 19.9831 28.8694 19.7713
0 27.2981 20.8980 26.8931 20.4976 26.5678 20.1738

1 0.1 27.7931 20.6663 27.4326 20.3104 27.1441 20.0232
0.3 29.2685 20.0028 28.9976 19.7357 28.7826 19.5213
0 27.2137 20.7329 26.8074 20.3293 26.4811 20.0027

2 0.1 27.7302 20.5214 27.3688 20.1629 27.0796 19.8736
0.3 29.2511 19.8988 28.9800 19.6304 28.7650 19.4148

0.1421

0 27.5103 21.2630 27.1084 20.8697 26.7858 20.5517
0 0.1 27.9638 20.9913 27.6055 20.6409 27.3188 20.3584

0.3 29.3514 20.2451 29.0812 19.9813 28.8669 19.7696
0 27.2958 20.8962 26.8907 20.4957 26.5655 20.1719

1 0.1 27.7908 20.6645 27.4302 20.3086 27.1417 20.0214
0.3 29.2660 20.0011 28.9951 19.7340 28.7801 19.5196
0 27.2113 20.7311 26.8050 20.3274 26.4787 20.0008

2 0.1 27.7278 20.5196 27.3664 20.1611 27.0772 19.8717
0.3 29.2487 19.8971 28.9775 19.6287 28.7625 19.4131

Table 5c. The third dimensionless frequency (Ω= 4
√
ρcAω2L4/EcI) of porous functionally

graded nanobeams under a hygro-thermal environment for S-S boundary condition (L/h=20).

η [nm] ∆C p
∆T = 0 ∆T = 40 [K] ∆T = 80 [K]

k = 0.5 k = 2 k = 0.5 k = 2 k = 0.5 k = 2

0

0 61.9184 47.8576 61.5183 47.4663 61.1995 47.1531
0 0.1 62.9391 47.2459 62.5822 46.8973 62.2985 46.6186

0.3 66.0623 45.5665 65.7929 45.3038 65.5802 45.0943
0 61.7044 47.4926 61.3029 47.0983 60.9830 46.7826

1 0.1 62.7665 46.9207 62.4086 46.5696 62.1241 46.2889
0.3 65.9770 45.3233 65.7073 45.0592 65.4943 44.8485
0 61.6205 47.3295 61.2184 46.9338 60.8981 46.6170

2 0.1 62.7038 46.7773 62.3455 46.4252 62.0607 46.1436
0.3 65.9597 45.2203 65.6899 44.9555 65.4768 44.7444

0.1421

0 61.9073 47.8490 61.5071 47.4577 61.1883 47.1444
0 0.1 62.9278 47.2374 62.5708 46.8887 62.2871 46.6099

0.3 66.0504 45.5583 65.7810 45.2955 65.5683 45.0860
0 61.6933 47.4839 61.2917 47.0896 60.9717 46.7738

1 0.1 62.7552 46.9121 62.3972 46.5610 62.1126 46.2803
0.3 65.9651 45.3151 65.6954 45.0509 65.4823 44.8402
0 61.6093 47.3208 61.2072 46.9251 60.8868 46.6082

2 0.1 62.6925 46.7687 62.3341 46.4165 62.0493 46.1349
0.3 65.9478 45.2120 65.6780 44.9472 65.4649 44.7360
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Table 6a. The first dimensionless frequency (Ω= 4
√
ρcAω2L4/EcI) of porous functionally

graded nanobeams under a hygro-thermal environment for C-C boundary condition (L/h=20).

η [nm] ∆C p
∆T = 0 ∆T = 40 [K] ∆T = 80 [K]

k = 0.5 k = 2 k = 0.5 k = 2 k = 0.5 k = 2

0

0 15.5919 12.0512 15.3709 11.8348 15.1933 11.6596
0 0.1 15.8490 11.8972 15.6519 11.7044 15.4941 11.5488

0.3 16.6354 11.4743 16.4868 11.3292 16.3689 11.2126
0 15.4740 11.8494 15.2510 11.6288 15.0719 11.4502

1 0.1 15.7538 11.7174 15.5554 11.5214 15.3965 11.3631
0.3 16.5885 11.3400 16.4394 11.1930 16.3211 11.0749
0 15.4275 11.7585 15.2038 11.5360 15.0240 11.3558

2 0.1 15.7192 11.6376 15.5203 11.4401 15.3610 11.2805
0.3 16.5789 11.2828 16.4298 11.1350 16.3114 11.0162

0.1421

0 15.5903 12.0499 15.3692 11.8335 15.1916 11.6584
0 0.1 15.8473 11.8959 15.6502 11.7032 15.4924 11.5476

0.3 16.6337 11.4731 16.4851 11.3280 16.3672 11.2114
0 15.4723 11.8481 15.2494 11.6275 15.0702 11.4489

1 0.1 15.7522 11.7162 15.5538 11.5201 15.3948 11.3618
0.3 16.5867 11.3388 16.4377 11.1918 16.3194 11.0737
0 15.4259 11.7572 15.2022 11.5347 15.0224 11.3545

2 0.1 15.7175 11.6364 15.5186 11.4388 15.3593 11.2792
0.3 16.5772 11.2816 16.4280 11.1338 16.3096 11.0149

Table 6b. The second dimensionless frequency (Ω= 4
√
ρcAω2L4/EcI) of porous functionally

graded nanobeams under a hygro-thermal environment for C-C boundary condition (L/h=20).

η [nm] ∆C p
∆T = 0 ∆T = 40 [K] ∆T = 80 [K]

k = 0.5 k = 2 k = 0.5 k = 2 k = 0.5 k = 2

0

0 42.9798 33.2197 42.6809 32.9273 42.4425 32.6930
0 0.1 43.6883 32.7951 43.4217 32.5346 43.2095 32.3261

0.3 45.8563 31.6294 45.6550 31.4331 45.4960 31.2764
0 42.8200 32.9469 42.5198 32.6519 42.2805 32.4155

1 0.1 43.5594 32.5521 43.2919 32.2895 43.0790 32.0793
0.3 45.7926 31.4477 45.5910 31.2502 45.4318 31.0925
0 42.7572 32.8250 42.4566 32.5288 42.2169 32.2914

2 0.1 43.5126 32.4449 43.2447 32.1814 43.0316 31.9704
0.3 45.7796 31.3707 45.5780 31.1726 45.4187 31.0145

0.1421

0 42.9700 33.2121 42.6710 32.9197 42.4326 32.6853
0 0.1 43.6783 32.7876 43.4116 32.5270 43.1995 32.3185

0.3 45.8457 31.6221 45.6445 31.4258 45.4855 31.2691
0 42.8101 32.9393 42.5099 32.6443 42.2705 32.4078

1 0.1 43.5494 32.5445 43.2818 32.2819 43.0690 32.0717
0.3 45.7820 31.4404 45.5805 31.2429 45.4212 31.0852
0 42.7474 32.8173 42.4467 32.5211 42.2069 32.2836

2 0.1 43.5025 32.4373 43.2347 32.1738 43.0216 31.9628
0.3 45.7691 31.3634 45.5675 31.1653 45.4082 31.0072
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Table 6c. The third dimensionless frequency (Ω= 4
√
ρcAω2L4/EcI) of porous functionally

graded nanobeams under a hygro-thermal environment for C-C boundary condition (L/h=20).

η [nm] ∆C p
∆T = 0 ∆T = 40 [K] ∆T = 80 [K]

k = 0.5 k = 2 k = 0.5 k = 2 k = 0.5 k = 2

0

0 84.2592 65.1250 83.9322 64.8054 83.6723 64.5503
0 0.1 85.6481 64.2926 85.3565 64.0078 85.1250 63.7807

0.3 89.8982 62.0074 89.6780 61.7926 89.5043 61.6217
0 84.0842 64.8268 83.7566 64.5057 83.4961 64.2494

1 0.1 85.5070 64.0269 85.2148 63.7409 84.9830 63.5128
0.3 89.8284 61.8086 89.6080 61.5931 89.4343 61.4217
0 84.0156 64.6939 83.6877 64.3721 83.4270 64.1152

2 0.1 85.4557 63.9100 85.1634 63.6234 84.9314 63.3949
0.3 89.8143 61.7245 89.5938 61.5087 89.4200 61.3371

0.1421

0 84.2256 65.0991 83.8986 64.7794 83.6386 64.5242
0 0.1 85.6140 64.2670 85.3222 63.9821 85.0908 63.7550

0.3 89.8624 61.9826 89.6421 61.7678 89.6484 61.5969
0 84.0506 64.8008 83.7229 64.4796 83.4624 64.2232

1 0.1 85.4728 64.0012 85.1806 63.7151 84.9487 63.4870
0.3 89.7926 61.7838 89.5721 61.5683 89.3983 61.3969
0 83.9820 64.6678 83.6540 64.3460 83.3933 64.0890

2 0.1 85.4216 63.8843 85.1291 63.5977 84.8971 63.3691
0.3 89.7784 61.6997 89.5579 61.4839 89.3841 61.3122

Table 7a. The first dimensionless frequency (Ω= 4
√
ρcAω2L4/EcI) of porous functionally

graded nanobeams under a hygro-thermal environment for C-S boundary condition (L/h=20).

η [nm] ∆C p
∆T = 0 ∆T = 40 [K] ∆T = 80 [K]

k = 0.5 k = 2 k = 0.5 k = 2 k = 0.5 k = 2

0
0 10.7447 8.3047 10.4423 8.0081 10.1960 7.7637

0 0.1 10.9218 8.1986 10.6525 7.9346 10.4342 7.7181
0.3 11.4638 7.9072 11.2611 7.7088 11.0989 7.5475
0 10.5839 8.0282 10.2764 7.7202 10.0257 7.4657

1 0.1 10.7923 7.9526 10.5194 7.6796 10.2980 7.4552
0.3 11.4000 7.7237 11.1960 7.5202 11.0328 7.3545
0 10.5202 7.9021 10.2107 7.5885 9.9582 7.3366

2 0.1 10.7449 7.8421 10.4707 7.5648 10.2482 7.3292
0.3 11.3870 7.6449 11.1828 7.4391 11.0193 7.2714

0.1421

0 10.7441 8.3042 10.4417 8.0076 10.1953 7.7632
0 0.1 10.9212 8.1981 10.6519 7.9342 10.4335 7.7177

0.3 11.4631 7.9067 11.2604 7.7084 11.0982 7.5471
0 10.5833 8.0278 10.2758 7.7197 10.0251 7.4652

1 0.1 10.7916 7.9521 10.5187 7.6791 10.2974 7.4547
0.3 11.3993 7.7233 11.1954 7.5198 11.0321 7.3540
0 10.5196 7.9016 10.2101 7.5880 9.9576 7.3361

2 0.1 10.7443 7.8416 10.4700 7.5643 10.2476 7.3287
0.3 11.3863 7.6444 11.1821 7.4386 11.0186 7.2709
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Table 7b. The second dimensionless frequency (Ω= 4
√
ρcAω2L4/EcI) of porous functionally

graded nanobeams under a hygro-thermal environment for C-S boundary condition (L/h=20).

η [nm] ∆C p
∆T = 0 ∆T = 40 [K] ∆T = 80 [K]

k = 0.5 k = 2 k = 0.5 k = 2 k = 0.5 k = 2

0

0 34.8198 26.9127 34.4757 26.5760 34.2006 26.3053
0 0.1 35.3938 26.5687 35.0869 26.2688 34.8422 26.0281

0.3 37.1502 25.6244 36.9186 25.3984 36.7354 25.2177
0 34.6359 26.5986 34.2899 26.2578 34.0133 25.9838

1 0.1 35.2455 26.2889 34.9372 25.9857 34.6914 25.7423
0.3 37.0769 25.4152 36.8449 25.1873 36.6613 25.0051
0 34.5637 26.4579 34.2169 26.1152 33.9397 25.8397

2 0.1 35.1916 26.1653 34.8828 25.8606 34.6367 25.6160
0.3 37.0620 25.3264 36.8299 25.0977 36.6462 24.9148

0.1421

0 34.8146 26.9087 34.4704 26.5719 34.1953 26.3012
0 0.1 35.3885 26.5647 35.0815 26.2648 34.8368 26.0240

0.3 37.1446 25.6205 36.9130 25.3945 36.7297 25.2138
0 34.6307 26.5946 34.2846 26.2537 34.0079 25.9797

1 0.1 35.2402 26.2849 34.9319 25.9817 34.6861 25.7383
0.3 37.0713 25.4114 36.8393 25.1834 36.6557 25.0012
0 34.5584 26.4538 34.2116 26.1111 33.9343 25.8355

2 0.1 35.1862 26.1612 34.8774 25.8565 34.6313 25.6119
0.3 37.0564 25.3225 36.8243 25.0938 36.6406 24.9109

Table 7c. The third dimensionless frequency (Ω= 4
√
ρcAω2L4/EcI) of porous functionally

graded nanobeams under a hygro-thermal environment for C-S boundary condition (L/h=20).

η [nm] ∆C p
∆T = 0 ∆T = 40 [K] ∆T = 80 [K]

k = 0.5 k = 2 k = 0.5 k = 2 k = 0.5 k = 2

0

0 72.6498 56.1520 72.2891 55.7993 72.0021 55.5175
0 0.1 73.8474 55.4343 73.5256 55.1200 73.2701 54.8692

0.3 77.5119 53.4639 77.2690 53.2270 77.0773 53.0383
0 72.4568 55.8230 72.0951 55.4682 71.8074 55.1847

1 0.1 73.6917 55.1411 73.3692 54.8252 73.1132 54.5730
0.3 77.4350 53.2446 77.1918 53.0067 76.9999 52.8173
0 72.3811 55.6762 72.0191 55.3205 71.7310 55.0362

2 0.1 73.6352 55.0120 73.3125 54.6953 73.0562 54.4425
0.3 77.4193 53.1518 77.1761 52.9135 76.9842 52.7237

0.1421
0 72.6290 56.1359 72.2682 55.7832 71.9811 55.5013

0 0.1 73.8262 55.4184 73.5044 55.1041 73.2488 54.8532
0.3 77.4896 53.4485 77.2467 53.2116 77.0550 53.0229
0 72.4359 55.8068 72.0742 55.4520 71.7864 55.1684

1 0.1 73.6705 55.1251 73.3479 54.8092 73.0918 54.5569
0.3 77.4127 53.2292 77.1695 52.9913 76.9776 52.8018
0 72.3603 55.6600 71.9981 55.3042 71.7100 55.0198

2 0.1 73.6140 54.9960 73.2912 54.6793 73.0349 54.4264
0.3 77.3971 53.1364 77.1538 52.8980 76.9619 52.7082
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because the FG nanobeam becomes stiffer for higher values of the power-law
index; when the increase of volume fraction of metal causes the reduction in the
value of Young’s modulus of the FG beam. It is interesting to underline that the
dimensionless natural frequencies increase or decrease with the volume fraction
of porosity (p) depending on the values of the material gradation index (k). The
dimensionless frequencies increase with increasing the porosity volume fraction
at k = 0.5 whereas they decrease with increasing the porosity ratio at k = 2. It
means that the material composition plays a significant role on the free vibra-
tion behaviour of porous FG nanobeam models. Moreover, in the case of k = 0.5,
the variations of the dimensionless natural frequencies with the porosity ratio
are faster than when k = 2. The natural frequencies become more sensitive to the
variations of the porosity ratio when k = 0.5.

For further investigating the impacts of the temperature rise and porosity
ratio on the vibration behaviours of the FG nanobeam, Fig. 4 demonstrates the
variation of the first and third modes of vibration frequencies with the porosity
index (p) at the constant slenderness ratio (L/h = 20), the power-law index
(k = 1) and the moisture concentration (∆C = 2). It is seen that for all bound-
ary conditions, dimensionless frequencies linearly increase with increasing the
porosity ratio for both classical elasticity and DM models. These results are
different from some of those results are given in Tables 5–7 because of the differ-
ence in the material grading index, where k is 2 in the previous comparison. The
DM model always predicts lower values than classical elasticity results and this
phenomenon is more apparent especially for higher modes of vibration (n = 3).
However, the difference between two theories is very small for the first mode of
vibration (n = 1). This is due to the small-scale effects are insignificant at lower
modes of vibration. Also, it is seen that dimensionless frequencies decrease by
increasing the temperature change (both classical elasticity and DM) and it can
be stated that the linear temperature change is a key factor in the free vibration
behaviour of porous FG nanobeams.

In Fig. 5, the effects of the porosity ratio and the moisture concentration on
the first and third dimensionless frequencies of S-S, C-C and C-S FG nanobeam
have been shown. Here, the temperature rise of the hygro-thermal environment
is set to be 40K. It can be observed that the changes of the moisture concen-
trations have considerable effects on the free vibration of the FG nanobeams
with porosity. The dimensionless frequencies decrease with increasing the mois-
ture concentrations for all given boundary conditions. It is also notable that
the vibration frequencies become more sensitive to the variations of the poros-
ity ratio, especially for higher moisture concentrations (∆C = 10). This result
provides that the rise of moisture concentration makes the beam buckled at
the considered hygro-thermal environments with a linear temperature rise and
the increase of the moisture leads to the reduction in the rigidity of the beam.
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(a)

(b)

(c)

Fig. 4. Effect of p and ∆T on the first and third vibration frequencies
(L/h = 20, k = 1, ∆C = 2, η = 0.1421 nm).
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(d)

(e)

(f)

Fig 4. [cont.]
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(a)

(b)

(c)

Fig. 5. Effect of p and ∆C on the first and third vibration frequencies
(L/h = 20, k = 1, ∆T = 40, η = 0.1421nm).
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(d)

(e)

(f)

Fig 5. [cont.]
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(a)

(b)

(c)

Fig. 6. Effect of k and ∆T on the first and third vibration frequencies
(L/h = 20, p = 0.2, ∆C = 2, η = 0.1421 nm).
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(d)

(e)

(f)

Fig 6. [cont.]
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(a)

(b)

(c)

Fig. 7. Effect of k and ∆C on the first and third vibration frequencies
(L/h = 20, p = 0.2, ∆T = 40, η = 0.1421 nm).
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(d)

(e)

(f)

Fig 7. [cont.]
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As it is similar to Fig. 4, the dimensionless frequencies increase with increasing
the porosity ratio for both classical and DM models. A softening structural re-
sponse has been exhibited by the DM formulation for all boundary conditions.

Figure 6 demonstrates the variation of the first and third dimensionless fre-
quencies with changing of the temperature rise at the constant porosity ratio
(p = 0.2), the slenderness ratio (L/h = 20) and the moisture concentration
(∆C = 2) of the FG nanobeam with the different power-law index and different
boundary conditions. The frequency results obtained from the classical elastic-
ity theory (η = 0) is always the greatest one. There is a nonlinear decrease for
the first and third dimensionless frequencies as the power-law index increase,
and this decrease is more important when the values of k are less than 2. Af-
ter k > 2, the decrease in the natural frequencies slows till it gets limits for
higher k values, at which the composition of material is liable to pure metal.
The dimensionless frequencies decrease as the temperature rises. This reduction
in natural frequency is due to the thermally induced compressive stress weakens
the stiffness of the FG nanobeam. As it is expected, the FG nanobeam under the
hygro-thermal environment gives higher natural frequencies at stiffer beam edges
(C-C and C-S).

The influences of material graduation and moisture concentration on the first
and third dimensionless frequencies of the porous FG nanobeam have been shown
in Fig. 7. The increasing the power-law index and moisture concentrations yields
the reduction in dimensionless frequencies for all given boundary conditions,
which highlights the importance of the moisture and material graduation effects.

Figure 8 shows the variation of the fundamental frequency (first dimension-
less frequency) with different values of linear temperature changes for based
on the DM model. The fundamental frequencies of the FG nanobeam under
the hygro-thermal environment decrease with increasing the temperature differ-
ence until it converges to the critical buckling temperature. The fundamental
frequencies of the FG nanobeam decreases with the rise of temperature un-
til it reaches zero at the critical temperature point. This is due to the de-
crease in the stiffness of the beam when temperature increases. It is also no-
table that the fundamental frequencies have dropped sharply and approached to
zero value when the temperature difference converges to a certain value. Similar
to previous results, the porosity increases the fundamental frequencies for all
boundary conditions.

In Fig. 9, the impacts of the moisture concentration and the porosity ratio
on the free vibration of FG nanobeams are presented for both classical elasticity
and DM theories. It can be seen that the first and third dimensionless frequen-
cies decrease with increasing the moisture concentration for both classical and
DM theories. Moreover, dimensionless frequencies increase with increasing the
porosity ratio for the given power-law index (k = 1). It is worthy to note that
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(a)

(b)

(c)

Fig. 8. Effect of temperature change ∆T on the first vibration frequency for different values
of porosity ratios (L/h = 20, k = 1, ∆C = 2, η = 0.1421nm).
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(a)

(b)

(c)

Fig. 9. Effect of ∆C and p on the first and third vibration frequencies (L/h = 20, k = 1,
∆T = 40, η = 0.1421nm).
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(d)

(e)

(f)

Fig 9. [cont.]
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the dimensionless frequencies become more sensitive to the variations of mois-
ture environments, while the moisture concentration converges to a certain value.
This phenomenon shows that the moisture plays a significant role in the vibration
behaviour of porous FG nanobeams.

7. Conclusions

Hygro-thermal vibration behaviour of the FG porous nanobeams with vari-
ous boundary conditions is examined based on the size-dependent DM theory in
conjunction with the Ritz method. Hygro-thermo-mechanical properties of the
FG nanobeams are assumed to be functions of the thickness, temperature and
porosity. The formulation of the Euler–Bernoulli beam theory is used to model
the FG nanobeam. The influences of linear temperature rise, moisture concen-
tration, porosity volume fraction, material grading index and material length
scale parameter on the free vibration response of the FG nanobeam are investi-
gated in detail. From the present study, we can draw the following remarkable
conclusions:

– The hygro-thermal environments play a significant role on the free vibra-
tion behaviour of FG porous nanobeams. The increase of the temperature and
moisture concentrations decreases the natural frequencies. This decrease in nat-
ural frequency is due to the thermally induced compressive stress and rise in
moisture concentration, which reduce the rigidity of the FG nanobeam.

– The natural frequencies increase or decrease with the volume fraction of
porosity depending on the values of the material grading index. The increase
occurs in dimensionless frequencies of the nanobeam with increasing the porosity
volume fraction when material graduation index equals to k = 0.5, whereas the
trend is reverse at k = 2. It means that the material composition changes the free
vibration behaviour of porous FG nanobeam models.

– The natural frequencies become more sensitive to the variations of the
porosity ratio, especially for higher moisture concentrations.

– Increasing the power-law index, the natural frequencies decreases. Since, the
amount of the ceramic constituent in the FG nanobeam increases when the ma-
terial grading index approaches to zero and this causes the increase of the natural
frequencies. However, the increase of the material grading index causes the in-
crease of the metal constituent in the FG nanobeam and natural frequencies
decrease.

– The softening material response is predicted by the size-dependent DM
theory compared to the classical elasticity theory for all given boundary condi-
tions. The difference between two theories is more apparent for higher modes of
vibration.
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