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We investigate the deformation of an elastic isotropic rod in the frame-
work of a simplified micromorphic theory introduced by Forest and Sievert. In con-
trast with the classical micromorphic model, which includes 18 elastic constants, this
theory is characterized by constitutive equations which involve 6 constants and a ma-
terial length scale parameter to describe microstructure-dependent size effects. First,
we formulate the equilibrium problem of a rod subjected to a resultant force and
resultant moment acting on its plane ends. Then, we generalize the method of con-
struction of the solution avoiding a priori assumptions proposed by Iesan in classical
elasticity. The method leads to the decomposition of the general problem into the
basic problems of extension, bending, torsion and flexure. The analytical solutions
are obtained in a closed form and reduced to their classical elasticity counterparts
when the microstructure effects are suppressed. The results are useful to obtain ex-
plicit solutions when the shape of the cross section is assigned and are preliminary
to the solution of the problem of cylinders loaded on a lateral surface such as the
Almansi–Michel problem.
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1. Introduction

The paper deals with a simplified micromorphic theory proposed by
Forest and Sievert [1]. The micromorphic theory was introduced by Eringen
and Suhubi [2] and by Eringen [3] as an extension of classical elasticity and
viscolelasticity to microscopic length and time scales. The material bodies are
regarded as a collection of deformable particles suitable for modeling materials
with an inner structure, such as polymers with deformable molecules, granular
and porous solids, geomaterials, biological tissues and so on. Among the micro-
continuum field theories, because of its complexity, the micromorphic elasticity
is the least-developed and contributions in this area have been rare. Theoretical
difficulties depend on the number of extra kinematical variables, non symmetric
stress and strain tensors, unavailability of material constants trough atomistic
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calculations or experimental measurements (see e.g. [4, 5]). Recently, in order
to remove these barriers and to get more tractable field equations, various sim-
plified micromorphic theories have been introduced. Teisseyre [6, 7] presented
a symmetric micromorphic continuum suitable to describe earthquake processes.
In this model the stress tensor and the body couples are symmetric, and the third
order stress moment tensor is symmetric with respect to the last two indices. The
relaxed micromorphic model presented by Neff et al. [8, 9] is characterized by
symmetric stress and strain tensors and by a number of constitutive coefficients
drastically reduced. In the Forest–Sievert approach [1], the micro-rotation and
the macro-rotation are taken to be the same for infinitesimal deformation. This
assumption leads to a reduction of the field equations (from 12 to 6) and the
elastic moduli (from 18 to 7). For an in-depth discussion of various simplified
micromorphic theories, the reader is referred to the paper by Neff et al. [8] and
the references therein.

The effects of microstructure on the behaviour of beams and other structural
members, such as shells and plates, have been intensively studied (see e.g. [10]).
In the literature solutions are provided for elastic beams made of Cosserat, mi-
crostretch, porous and other generalized media. Iesan and Nappa [11] solved
Saint-Venant’s problem for elastic microstretch cylinders and established ex-
plicit solutions for the extension and bending in the case of a circular cross
section [12]. The torsion and flexure of a circular microstretch rod was stud-
ied by De Cicco and Nappa [13], whereas the thermoelastic deformation of
a microstretch beam was investigated by Nappa and Pesce [14]. The model
of elastic micropolar beam has been considered by several authors. Special cases
are discussed by Lakes and Drugan [15], Taliercio and Veber [16], and
Taliercio [17]. Recent contributions to the theory of porous beams are due
to De Cicco [18, 19] and De Cicco and Iesan [20] who considered materials
with double porosity structure and chiral porous materials within the context of
strain gradient elasticity. There are not many studies on elastic micromorphic
beams. An analytical solution for anisotropic micromorphic solids was estab-
lished by Iesan [21]. Particular cases have been investigated by Norouzzadeh
et al. [22] and by Shaat et al. [23]. Experimental evaluation of micromorphic
elastic constants were performed by Lakes [24]. Most usefully for practical ap-
plications are the results established in the context of simplified micromorphic
theories. Rizzi et al. [25, 26] investigated the bending and torsion problem for
micromorphic relaxed continuum. A technical solution for the Bernoulli–Euler
beam model in the context of Forest–Sievert [1] theory has been presented by
Zhang et al. [27].

In this paper we study the problem of extension, bending, torsion and flexure
of elastic isotropic rods in the framework of a symmetric micromorphic theory.
The analytical solution is given in a closed form and obtained avoiding a priori
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assumptions. The paper is organized as follows. In the Section 2, the basic equa-
tions of a simplified micromorphic theory are presented. In Section 3, the problem
of a rod loaded with a resultant force and a resultant moment acting on its ends
is formulated. In the Section 4, we generalize the method of construction of the
solution proposed by Iesan [28, 29] in classical elasticity. The method can be
useful for different constitutive equations characterizing various simplified mi-
cromorphic theories. In Section 5, the problem is reduced to the solution of four
plain strain problems. The flexure of elastic rods is studied in Section 6. The
paper concludes in Section 7 with a summary.

2. Basic equations

In this section, we present the field equations of a symmetric micromorphic
theory for elastic solids introduced by Forest and Sievert in [1]. In the clas-
sical Eringen micromorphic theory [3] the independent kinematic variables are
the components of the 12-dimensional vector field v = (u, P ), where u is the dis-
placement vector and P is the micro-distorsion second order tensor. The linear
strain measures associated with v are the relative deformation Γ, the micro-strain
ε and the micro-curvature K, defined by:

(2.1) Γ(v) = (∇u− P )T , ε(v) = symP, K(v) = ∇P,

where ∇a is the gradient of a and AT is the transpose of A.
Following Forest and Sievert [1] for infinitesimal deformations the micro-

rotation and the macro-rotation are taken to be the same. This hypothesis leads
to the modified strain measures:

(2.2) e(v) = sym(∇u− P ), ε(v) = symP, κ(v) = ∇(symP )

or in components:

(2.3)
eij(v) = 1

2(Γij + Γji), εij(v) = 1
2(Pij + Pji),

κkij = 1
2(Pij + Pji),k,

where we have used the notation ∂g
∂xk

= g,k. In Eq. (2.3) and in what follows
Latin subscripts take the values k = 1, 2, 3 and Greek subscripts take the val-
ues 1 and 2. We denote by τ , τm and m, the stress tensor, the micro-stress
tensor and the micro-moment tensor, respectively. The constitutive equations
for isotropic elastic solids in the symmetric micromorphic theory are:

(2.4)

τij(v) = 2µeeij(v) + λeerr(v)δij + 2µcεij(v) + λcεkk(v)δij ,

τmij (v) = 2µceij(v) + λcerr(v)δij + 2µmεij(v) + λmεkk(v)δij ,

mkij(v) = l2(2µmκkij(v) + λmκkrr(v)δij),



314 S. De Cicco

where µe, µm, µc, λe, λm and λc are constitutive coefficients and l is a scale length
parameter. We note that, in contrast with the micromorphic theory where the
stress-strain relations involve 18 material constants, in this symmetric micro-
morphic theory the material constants are 6. The strain energy density function
reads

(2.5) w(eij(v), εij(v), κkij(v))

= µeeij(v)eij(v) + 1
2λeehh(v)ekk(v)

+ 2µceij(v)εij(v) + λcejj(v)εii(v) + µmεij(v)εij(v)

+ 1
2λmεrr(v)εss(v) + l2[(µmκkij(v)κkij(v)) + 1

2λm(κkrr(v)κkss(v))].

The condition of strict positive definiteness of the energy density function implies
the following relations:

(2.6) µe > 0, µc > 0, µm > 0, 2µe + 3λe > 0, 2µm + 3λm > 0, l > 0.

The equilibrium equations are given by:

(2.7)
τji,j(v) + fi = 0,

mkij,k(v) + τji(v)− τmji (v) +Gij = 0,

where f is the body force vector and G is the body volume moment tensor. We
denote by n the outward unit normal of the boundary ∂B and by τ̃ and m̃ the
tractions acting on ∂B. We have the boundary conditions:

(2.8) τji(v)nj = τ̃i, mkij(v)nk = m̃ij .

The equilibrium problem of the body B in the symmetric micromorphic theory
consists in finding a vector field v that satisfies Eqs. (2.3), (2.4), (2.7) on B and
the boundary conditions (2.8) on ∂B. The necessary and sufficient conditions
for the existence of a solution to the above formulated problem are:

(2.9)

∫
B

fi dv +

∫
∂B

τ̃i da = 0,

∫
B

εkji(xjfi +Gij) dv +

∫
∂B

εkji(xj τ̃i + m̃ij) da = 0,

where ε is the Levi–Civita tensor. The existence and uniqueness of the solution
of the equilibrium problem in the micromorphic theory have been established by
Iesan and Nappa in [30]. Analogous results in the linear theory of elasticity with
couple stresses were obtained by Hlavacek and Hlavaceck [31]. Existence
theorems for the dynamic theory of microstretch elastic solids were presented
by Iesan and Quintanilla [32]. All these results generalize in the context of
microcontinuum theories the existence theorems presented by Fichera [33] in
classical elasticity.
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3. Formulation of the problem

In this section, we study the equilibrium problem of an elastic homogeneous
isotropic cylinder in the symmetric micromorphic theory. The system of rectan-
gular axes is chosen such that the Ox3-axis is parallel to the generator of the
cylinder and the origin O is the centre of one of its ends. We denote by h the
length of the cylinder, by Π the lateral surface and by Σ1 and Σ2, respectively,
the cross-section located at x3 = 0 and x3 = h. We suppose that the body loads
and the tractions on the lateral surface are absent. The equilibrium equations
(2.7) become:

(3.1) τji,j(v) = 0, mkij,k(v) + τji(v)− τmji (v) = 0.

The boundary conditions are given by:

τβi(v)nβ = 0, mβij(v)nβ = 0 (β = 1, 2) on Π,(3.2)

τ3i(v) = τ̃
(α)
i , m3ij(v) = m̃

(α)
ij (α = 1, 2) on Σα.(3.3)

We denote by F and M the resultant force and the resultant moment of the
tractions acting on Σ1:

(3.4)
∫
Σ1

τ̃
(1)
i da = Fi,

∫
Σ1

εkji(xj τ̃
(1)
i + m̃

(1)
ij ) da = Mk

and by Ri(v) andMi(v) the following integrals:

(3.5)

Ri(v) = −
∫
Σ1

τ3i(v) da,

Mα(v) = −
∫
Σ1

εαβ3[xβτ33(v) +m33β(v)−m3β3(v)] da,

M3(v) = −
∫
Σ1

ε3αβ[xατ3β(v) +m3βα(v)] da.

In the Saint-Venant problem the conditions (3.3) are replaced by:

(3.6) Ri(v) = Fi, Mi(v) = Mi on Σ1.

In what follows the equilibrium problem of the cylinder is decomposed into prob-
lems P1 and P2 defined by:
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• extension, bending, torsion:

(3.7) Fα = 0, P1 = (F3,M1,M2,M3);

• flexure:

(3.8) F3 = 0, Mi = 0, P2 = (F1, F2).

In the next section we present a method to solve the problem P1 and then we
use the solution of the problem P1 to solve the problem P2.

4. A method of constructing the solution of the problem P1

In [28, 29], Iesan presented a rational method of deriving the Saint-Venant
solution in classical linear elasticity. The method has been proven to be effec-
tive for other kinds of constitutive assumptions and is based on the following
propositions:

1. Let v be a solution of the problem P1, then
(i) Ri(v,3) = 0,Mi(v,3) = 0,
(ii) the vector v,3 is a rigid displacement field.

2. Let v0 be a rigid displacement field, integrating v0 respect to the axial
coordinate x3, we obtain a solution of the problem P1.

As an immediate consequence, we define a rigid displacement field for micro-
morphic bodies and then we integrate it with respect to x3. In the micromorphic
theory the rigid deformation has the form:

(4.1) u0
i = αi + εijkβixk, P 0

ij = εikjβk,

where αi and βi are arbitrary constants. We get:

(4.2) ui,3 = u0
i , Pij,3 = P 0

ij .

From (4.2), except for an additive rigid deformation, we obtain:

(4.3)

uα = −1
2aαx

2
3 − a4εαβ3xβx3 + ωα(x1, x2),

u3 = (a1x1 + a2x2 + a3)x3 + ω3(x1, x2),

Pαβ = ε3βαa4x3 +Qαβ(x1, x2),

Pα3 = −a4x3 +Qα3(x1, x2),

P3α = a4x3 +Q3α(x1, x2),

P33 = Q33(x1, x2).
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Here, V = (ω,Q) is an arbitrary 12-dimensional vector field independent of x3

and as, (s = 1, 2, 3, 4), are arbitrary constants that are related to αi and βi by
the following relations:

(4.4) aα = ερα3βρ, a3 = α3, a4 = β3.

We introduce the notations:

(4.5)
ηαβ(V ) = 1

2(ωα,β + ωβ,α), ηα3(V ) = η3α(V ) = 1
2ω3,α,

εij(V ) = 1
2(Qij +Qji), καij(V ) = 1

2(Qij +Qji),α.

From (2.3), (4.3) and (4.5), we obtain:

(4.6)

eαβ(v) = eαβ(V ) = ηαβ(V )− εαβ(V ),

eα3(v) = eα3(V ) + 1
2εβα3a4xβ, eα3(V ) = ηα3(V )− εα3(V ),

e33(v) = a1x1 + a2x2 + a3 − ε33(V ),

εij(v) = εij(V ), καij(v) = καij(V ), κ3ij(v) = 0.

Equation (2.4) becomes:

(4.7)

ταβ(v) = ταβ(V ) + λe(a1x1 + a2x2 + a3)δαβ,

τα3(v) = τα3(V ) + εβα3µea4xβ,

τ33(v) = τ33(V ) + (2µe + λe)(a1x1 + a2x2 + a3),

τmαβ(v) = τmαβ(V ) + λc(a1x1 + a2x2 + a3)δαβ,

τmα3(v) = τmα3(V ) + εβα3µca4xβ,

τm33(v) = τm33(V ) + (2µc + λc)(a1x1 + a2x2 + a3),

mαij(v) = mαij(V ), m3ij(v) = 0,

where

(4.8)

ταβ(V ) = 2µeeαβ(V ) + λeeρρ(V )δαβ + 2µcεαβ(V )

+ λcεγγ(V )δαβ + (λc − λe)ε33δαβ,

τα3(V ) = 2µeeα3(V ) + 2µcεα3(V ),

τ33(V ) = λeeρρ(V ) + λcεββ(V )− (2µe + λe − 2µc − λc)ε33(V ),

τmαβ(V ) = 2µceαβ(V ) + λcεγγ(V )δαβ + 2µmεαβ(V )

+ λmερρ(V )δαβ + (λm − λc)ε33(V )δαβ,

τmα3(V ) = 2µceα3(V ) + 2µmεα3(V ),

τm33(V ) = λceρρ(V ) + λmεββ(V )− (2µc + λc − 2µm + λm)ε33(V ),

mαij(V ) = l2(2µmκαij(V ) + λmκαrr(V )δij).
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The equilibrium equations (3.1) reduce to:

(4.9)

τβα,β(V ) + λeaα = 0, τα3,α(V ) = 0,

mραβ,ρ(V ) + ταβ(V )− τmαβ(V ) + (λe − λc)(a1x1 + a2x2 + a3)δαβ = 0,

mρα3,ρ(V ) + τα3(V )− τmα3(V ) + εβα3(µe − µc)a4x3 = 0,

mρ33,ρ(V ) + τ33(V )− τm33(V )

+ (2µe − 2µc + λe − λc)(a1x1 + a2x2 + a3) = 0.

The boundary conditions (3.2) become:

(4.10)
τβα(V )nβ = −λe(a1x1 + a2x2 + a3)nα,

τβ3(V )nβ = µea4(x2n1 − x1n2),

mβij(V )nβ = 0 on Π.

Equations (4.9) and (4.10) can be rewritten in the form:

(4.11)
ταi,α(V ) + fi = 0,

mρij,ρ(V ) + τij(V )− τmij (V ) +Gij = 0 on Σ,

and

(4.12) τβi(V )nβ = τ̃i, mβij(V )nβ = m̃ij on L,

where L is the boundary of Σ and:

(4.13)

fα = λeaα, f3 = 0,

Gαβ = (λe − λc)(a1x1 + a2x2 + a3)δαβ,

Gα3 = εβα3(µe − µc)a4x3,

G33 = (2µe − 2µc + λe − λc)(a1x1 + a2x2 + a3),

τ̃α = −λe(a1x1 + a2x2 + a3)nα,

τ̃3 = µea4(x2n1 − x1n2), m̃ij = 0.

The vector V = (ω,Q) is the solution of the plane strain problem corresponding
to the body loads fi and Gij and to the boundary data τ̃i and m̃ij . The necessary
and sufficient conditions for the existence of a solution to the plane problem
are [31, 33]:

(4.14)

∫
Σ1

fida+

∫
L

τ̃i ds = 0,

∫
Σ1

ε3βα(xβfα +Gαβ) da+

∫
L

ε3βα(xβ τ̃α + m̃αβ) ds = 0.
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Taking into account the relations (4.13) and by using the divergence theorem,
the first condition of (4.14) is verified. The second condition of (4.14) becomes

(4.15)
∫
Σ1

ε3βα[λexβaα + (le − lc)(a1x1 + a2x2 + a3)δαβ] da

−
∫
L

ε3βαλexβ(a1x1 + a2x2 + a3)nα ds = 0.

Since ε3βαδαβ = 0, also the second condition of (4.14) is verified. We conclude
that the necessary and sufficient conditions for the existence of a solution of the
problem P1 are satisfied for any constants ak (k = 1, 2, 3, 4). In the following
we show that the plane strain problem (4.5)–(4.12) can be decomposed in four
plane strain problems.

5. Decomposition of the problem P1

We introduce the notations:

(5.1) ωi =
4∑

k=1

akω
(k)
i (x1, x2), Qij =

4∑
k=1

akQ
(k)
ij (x1, x2).

Equations (4.3) become:

(5.2)

uα = −1

2
aαx

2
3 − a4εαβ3xβx3 +

4∑
k=1

akω
(k)
α (x1, x2),

u3 = (a1x1 + a2x2 + a3)x3 +
4∑

k=1

akω
(k)
3 (x1, x2),

Pαβ = ε3βαa4x3 +

4∑
k=1

akQ
(k)
αβ (x1, x2),

Pα3 = −a4x3 +

4∑
k=1

akQ
(k)
α3 (x1, x2),

P3α = a4x3 +
4∑

k=1

akQ
(k)
3α (x1, x2),

P33 =

4∑
k=1

akQ
(k)
33 (x1, x2).
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From (2.3) and (5.2), we obtain:

(5.3)

eαβ =
4∑

k=1

ake
(k)
αβ ,

e3α = −1

2
a4εαβ3xβ +

4∑
k=1

ake
(k)
3α ,

e33 = a1x1 + a2x2 + a3 +
4∑

k=1

ake
(k)
33 ,

εij = Σakε
(k)
ij , κρij = Σakκ

(k)
ρij ,

where

(5.4)

e
(k)
αβ = 1

2(ω
(k)
α,β + ω

(k)
β,α −Q

(k)
αβ −Q

(k)
βα),

e
(k)
3α = 1

2(ω
(k)
3,α −Q

(k)
α3 −Q

(k)
3α ),

e
(k)
33 = −Q(k)

33 , ε
(k)
ij = 1

2(Q
(k)
ij +Q

(k)
ji ),

κ
(k)
ρij = 1

2(Q
(k)
ij +Q

(k)
ji ),ρ, κ

(k)
3ij = 0.

The stress tensors are given by:

(5.5)

ταβ =

4∑
k=1

akτ
(k)
αβ + λe(a1x1 + a2x2 + a3)δαβ,

τ3α =
4∑

k=1

akτ
(k)
3α − εαβ3a4µexβ,

τ33 =
4∑

k=1

akτ
(k)
33 + (2µe + λe)(a1x1 + a2x2 + a3),

τmαβ =

4∑
k=1

akτ
(k)m
αβ + λc(a1x1 + a2x2 + a3)δαβ,

τm3α =
4∑

k=1

akτ
(k)m
3α − εαβ3a4µcxβ,

τm33 =

4∑
k=1

akτ
(k)m
33 + (2µc + λc)(a1x1 + a2x2 + a3),

mρij =

4∑
k=1

akm
(k)
ρij ,
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where

(5.6)

τ
(k)
αβ = 2µee

(k)
αβ + λee

(k)
rr δαβ + 2µcε

(k)
αβ + λcε

(k)
rr δαβ,

τ
(k)
3α = 2µee

(k)
3α + 2µcε

(k)
3α ,

τ
(k)
33 = 2µee

(k)
33 + λee

(k)
rr + 2µcε

(k)
33 + λcε

(k)
rr ,

τ
(k)m
αβ = 2µce

(k)
αβ + λce

(k)
rr δαβ + 2µmε

(k)
αβ + λmε

(k)
rr δαβ,

τ
(k)m
α3 = 2µce

(k)
3α + 2µmε

(k)
3α ,

τ
(k)m
33 = 2µce

(k)
33 + λce

(k)
rr + 2µmε

(k)
33 + λmε

(k)
rr ,

m
(k)
ρij = l2(2µmκ

(k)
ρij + λmκ

(k)
ρrrδij).

It follows from (4.9), (4.13) and (5.5) that the equilibrium equations can be
expressed in the form:

(5.7)

4∑
k=1

akτ
(k)
βα,β + fα = 0,

4∑
k=1

akτ
(k)
β3,β = 0,

4∑
k=1

ak(m
(k)
ραβ,ρ + τ

(k)
αβ − τ

(k)m
αβ ) +Gαβ = 0,

4∑
k=1

ak(m
(k)
ρα3,ρ + τ

(k)
α3 − τ

(k)m
α3 ) +Gα3 = 0,

4∑
k=1

ak(m
(k)
ρ33,ρ + τ

(k)
33 − τ

(k)m
33 ) +G33 = 0.

From (4.10), (4.13) and (5.5), the boundary conditions on L take the form:

(5.8)

4∑
k=1

akτ
(k)
βα nβ = τ̃α,

4∑
k=1

akτ
(k)
β3 nβ = τ̃3,

4∑
k=1

akm
(k)
βijnβ = 0.

Equations (5.7) and (5.8) must be verified for any value of the constants ak.
First, we consider a1 = 1, a2 = a3 = a4 = 0. From (5.7) and (5.8) we obtain:

(5.9)
τ

(1)
βi,β + f

(1)
i = 0,

m
(1)
ρij,ρ + τ

(1)
ij − τ

(1)m
ij +G

(1)
ij = 0 on Σ,
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and

(5.10) τ
(1)
βi nβ = τ̃i

(1), m
(1)
βijnβ = 0 on L,

where

(5.11)

f
(1)
1 = λe, f

(1)
2 = f

(1)
3 = 0,

G
(1)
αβ = (λe − λc)x1δαβ, G

(1)
α3 = 0, G

(1)
33 = (2µe − 2µc + λe − λc)x1,

τ̃α
(1) = −λex1nα, τ

(1)
3 = 0.

Equations (5.4), the constitutive equations (5.6), for k = 1, the equilibrium
equations (5.9) and the boundary conditions (5.10) are the field equations of
a plane strain problem A(1) in the symmetric micromorphic theory. In the same
way we define the problem A(2) by putting a2 = 1, a1 = a3 = a4 = 0, we have:

(5.12)
τ

(2)
βi,β + f

(2)
i = 0,

m
(2)
ρij,ρ + τ

(2)
ij − τ

(2)m
ji +G

(2)
ij = 0 on Σ,

and

(5.13) τ
(2)
βi nβ = τ̃i

(2), m
(2)
βijnβ = 0 on L,

where

(5.14)

f
(2)
2 = λe, f

(2)
1 = f

(2)
3 = 0,

G
(2)
αβ = (λe − λc)x2δαβ, G

(2)
α3 = 0, G

(2)
33 = (2µe − 2µc + λe − λc)x2,

τ̃α
(2) = −λex2nα, τ̃3

(2) = 0.

The problem A(3) is given by assuming a3 = 1 a1 = a2 = a4 = 0. We get:

(5.15) τ
(3)
βi,β = 0, m

(3)
ρij,ρ + τ

(3)
ij − τ

(3)m
ij +G

(3)
ij = 0 on Σ,

and

(5.16) τ
(3)
βi nβ = τ̃i

(3), m
(3)
βijnβ = 0 on L,

where

(5.17)

G
(3)
αβ = (λe − λc)δαβ, G

(3)
α3 = 0,

G
(3)
33 = 2µe − 2µc + λe − λc,

τ̃β
(3) = −λenβ, τ̃3

(3) = 0.
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The problem A(4) is defined by a1 = a2 = a3 = 0, a4 = 1. We obtain:

(5.18) τ
(4)
βi,β = 0, m

(4)
ρij,ρ + τ

(4)
ij − τ

(4)m
ij +G

(4)
ij = 0 on Σ,

and

(5.19) τ
(4)
βi nβ = τ̃i

(4), m
(4)
βijnβ = 0 on L,

where

(5.20)
G

(4)
αβ = 0, G

(4)
α3 = εβα3(µe − µc)x3, G

(4)
33 = 0,

τ̃1
(4) = τ̃2

(4) = 0, τ̃3
(4) = µe(x2n1 − x1n2).

The problem A(k) (k = 1, 2, 3, 4) is independent of the constants ak and depend
only on the cross-section of the cylinder. The solution of the problem P1 has been
reduced to the solutions of four plane strain problems A(k). Now, we consider the
boundary conditions (3.6) on Σ1. Taking into account Eqs. (3.5), (3.7) and (5.25),
we rewrite the conditions (3.6) in the form:

(5.21)

4∑
k=1

ak

∫
Σ1

τ
(k)
3α da = 0,

4∑
k=1

ak

∫
Σ1

τ
(k)
33 da+ a3(2µe + λe)A = −F3,

4∑
k=1

ak

∫
Σ1

x2τ
(k)
33 da+ a2(2µe + λe)I1 = −M1,

4∑
k=1

ak

∫
Σ1

x1τ
(k)
33 da+ a1(2µe + λe)I2 = −M2,

4∑
k=1

ak

∫
Σ1

(x1τ
(k)
32 − x2τ

(k)
31 ) da+ µea4I0 = −M3,

where we have used the notations:

(5.22)

∫
Σ1

da = A,

∫
Σ1

x2
2 da = I1,

∫
Σ1

x2
1 da = I2,

∫
Σ1

(x2
1 + x2

2) da = I0.
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The first two equations of (5.21) are identically satisfied. For simplicity we
give the proof for α = 1. Since v,3 is a rigid displacement, this implies that
M(v,3) = 0. From (3.5) we have

0 =

∫
Σ1

[x2τ33(v,3 ) +m332(v,3 )−m323(v,3 )] da

=

∫
Σ1

[x2τ33,3(v) +m332,3(v)−m323,3(v)] da

= −
∫
Σ1

x2(τ13,1(v) + τ23,2(v)) da

= −
∫
Σ1

(x2τ13(v)),1 + (x2τ23(v)),2 +

∫
Σ1

τ31 da

= −
∫
L

x2(τ13(v)n1 + τ23(v,m)) ds+

∫
Σ1

τ31da =

∫
Σ1

τ31 da.

The remaining four equations of (5.21) constitute a non homogeneous system
for the constants ak (k = 1, 2, 3, 4). If we use the notations:

(5.23)

A1α =

∫
Σ1

τ
(α)
33 da, A13 =

∫
Σ1

τ
(3)
33 da+ (2µe + λe)A,

A14 =

∫
Σ1

τ
(4)
33 da, A21 =

∫
Σ1

x2τ
(1)
33 da,

A22 =

∫
Σ1

x2τ
(2)
33 da+ (2µe + λe)I1,

A2s =

∫
Σ1

x2τ
(s)
33 da (s = 3, 4),

A31 =

∫
Σ1

x1τ
(1)
33 da+ (2µe + λe)I2,

A3r =

∫
Σ1

x1τ
(r)
33 da (r = 2, 3, 4),

A4j =

∫
Σ1

(x1τ
(j)
32 − x2τ

(j)
31 ) da (j = 1, 2, 3),

A44 =

∫
Σ1

(x1τ
(4)
32 − x2τ

(4)
31 ) da+ µeI0.
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The system (5.21) takes the following form:

(5.24)

k∑
k=1

A1kak = −F3,
k∑
k=1

A2kak = −M1,

4∑
k=1

A3kak = −M2,

4∑
k=1

A4kak = −M3.

The positive definiteness of the elastic potential and the reciprocal theorem imply

(5.25) detAij > 0, Aij = Aji.

We conclude that the system (5.24) admits a unique solution and the constant ak
are uniquely determined. Thus the problem of extension, bending and torsion
of an elastic isotropic cylinder has been solved. The results established in the
previous sections, can be used to derive the solutions for special cases of simplified
micromorphic theories. For instance we consider the case in which λc = 0, µc = 0.
The constitutive equations (2.4) become:

(5.26)

τij(v) = 2µeeij(v) + λeerr(v)δij ,

τmij (v) = 2µmεij(v) + λmεkk(v)δij ,

mkij(v) = l2(2µmκkij(v) + λmκkrr(v)δij);

In this case the problems A(k) are characterized by the following values of f (k),
G

(k)
ij and τ̃ (k):
Problem A(1):

(5.27)

f
(1)
1 = λe, f

(1)
2 = f

(1)
3 = 0, G

(1)
αβ = λex1δαβ,

G
(1)
α3 = 0, G

(1)
33 = (2µe + λe)x1, τ̃

(1)
1 = −λex1n1,

τ̃
(1)
2 = −λex1n2, τ̃

(1)
3 = 0;

Problem A(2):

(5.28)

f
(2)
2 = λe, f

(1)
1 = f

(3)
3 = 0, G

(2)
αβ = λex2δαβ,

G
(2)
α3 = 0, G

(2)
33 = (2µe + λe)x2, τ̃

(2)
1 = −λex2n1,

τ̃
(2)
2 = −λex2n2, τ̃

(2)
3 = 0.

Problem A(3):

(5.29)
f

(3)
1 = f

(3)
2 = f

(3)
3 = 0, G

(3)
αβ = λeδαβ, G

(3)
α3 = 0,

G
(3)
33 = 2µe + λe, τ̃

(3)
1 = −λen1, τ̃

(3)
2 = −λen2, τ̃

(3)
3 = 0;
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Problem A(4):

(5.30)
f

(4)
1 = f

(4)
2 = f

(4)
3 = 0, G

(4)
αβ = 0, G

(4)
α3 = µex3,

G
(4)
33 = 0, τ̃

(4)
1 = τ̃

(4)
2 = 0, τ̃

(4)
3 = −µe(x2n1 − x1n2).

The constants ak are determined by solving the system (5.24). In this model,
as in the previous model, the constants Aij (i, j = 1, 2, 3, 4), are independent of
the material constants µc and λc.

6. The problem P2: flexure

In this Section we generalize a method established by Iesan [28, 29] to con-
struct the solution of the flexure. The method is based on the following propo-
sitions:

1. If u is a solution of the problem of flexure P2 = (F1, F2) then u,3 is
a solution of the bending problem P1 = (0, F2,−F1, 0).

2. Let v be a solution of the bending problem P1 = (0, F2,−F1, 0). By in-
tegrating v with respect to the axial coordinate x3, we obtain a solution of the
problem P2 = (F1, F2).

Thus, we seek the solution of the problem of flexure in the form:

(6.1)

uα = −1
6cαx

3
3 − 1

2bαx
2
3 + ε3βα

(
b4x3 + 1

2c4x
2
3

)
+

4∑
k=1

(bk + ckx3)ω(k)
α (x1, x2) + ψα(x1, x2),

u3 = (b1x1 + b2x2 + b3)x3 + 1
2(c1x1 + c2x2 + c3)x2

3

+

4∑
k=1

(bk + ckx3)ω
(k)
3 (x1, x2) + ψ3(x1, x2),

Pαβ = ε3βα(b4x3 +
1

2
c4x

2
3) +

4∑
k=1

(bk + ckx3)Q
(k)
αβ (x1, x2) + χαβ(x1, x2),

Pα3 = −
(
bαx3 + 1

2cαx
2
3

)
+

4∑
k=1

(bk + ckx3)Q
(k)
α3 (x1, x2) + χα3(x1, x2),

P3α = bαx3 + 1
2cαx

2
3 +

4∑
k=1

(bk + ckx3)Q
(k)
3α (x1, x2) + χ3α(x1, x2),

P33 =

4∑
k=1

(bk + ckx3)Q
(k)
33 (x1, x2) + χ33(x1, x2),
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where ck and bk are unknown constants and, ψi and χij are unknown functions
independent of x3. In view of (2.3), (5.4) and (6.1) we have:

(6.2)

Eαβ =

4∑
k=1

(bk + ckx3)e
(k)
αβ + γαβ,

E3α =

4∑
k=1

[
(bk + ckx3)e

(k)
3α + 1

2ckω
(k)
α

]
+ 1

2ε3βα(b4 + c4x3)xβ + γ3α,

E33 =
4∑

k=1

[(bk + ckx3)e
(k)
33 + ckω

(k)
3 ]

+ b1x1 + b2x2 + b3 + (c1x1 + c2x2 + c3)x3 + γ33,

Fij =

4∑
k=1

(bk + ckx3)ε
(k)
ij + νij ,

Kρij =
4∑

k=1

(bk + ckx3)κ
(k)
ρij + νij,ρ, K3ij =

4∑
k=1

ckε
(k)
ij ,

where

(6.3)
γαβ = 1

2(ψα,β + ψβ,α − χαβ − χβα), γ33 = −χ33,

γ3α = 1
2(ψ3,α − χα3 − χ3α), νij = 1

2(χij + χji).

From (2.4), (5.6) and (6.2) we obtain the stress tensors:

(6.4)

Tαβ =
4∑

k=1

(bk + ckx3)τ
(k)
αβ + σαβ + λehδαβ,

T3α =

4∑
k=1

(bk + ckx3)τ
(k)
3α + σ3α + µegα,

T33 =
4∑

k=1

(bk + ckx3)τ
(k)
33 + σ33 + (2µe + λe)h,

Tmαβ =
4∑

k=1

(bk + ckx3)τ
(k)m
αβ + σmαβ + λchδαβ,

Tm3α =

4∑
k=1

(bk + ckx3)τ
(k)m
3α + σm3α + µcgα,

Tm33 =
4∑

k=1

(bk + ckx3)τ
(k)m
33 + σm33 + (2µc + λc)h,

Mρij =
4∑

k=1

(bk + ckx3)m
(k)
ρij + µρij , M3ij =

4∑
k=1

c4ρij ,
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where

(6.5)

σij = 2µeγαβ + λeγrrδij + 2µcνij + λcνrrδij ,

σmij = 2µcγαβ + λcγrrδij + 2µmνij + λmνrrδij ,

h = b1x1 + b2x2 + b3 + (c1x1 + c2x2 + c3)x3 +

4∑
k=1

ckω
(k)
3 ,

gα = ε3βα(b4 + c4x3)xβ +

4∑
k=1

ckω
(k)
α ,

µρij = l2(2µmνij,ρ + λmνrr,ρδij),

ρij = l2(2µmε
(k)
ij + λmε

k
rrδij).

The equilibrium equations (2.7), taking into account Eqs. (6.4), became:

(6.6) σβi,β +Ni = 0, µρij,ρ + σij − σmij +Rij = 0,

where

(6.7)

Nα =

4∑
k=1

ck(τ
(k)
3α + λeω

(k)
3,α) + ε3βαµec4xβ,

N3 =
4∑

k=1

ck(τ
(k)
33 + µeω

(k)
β,β) + (2µe + λe)(c1x1 + c2x2 + c3),

Rαβ = (λe − λc)
4∑

k=1

ckω
(k)
3 δαβ,

R3α = (µe − µc)
4∑

k=1

ckω
(k)
α ,

R33 = (2µe + λe − 2µc − λc)
4∑

k=1

ckω
(k)
3 .

In view of (5.8) and (6.4), the boundary conditions (2.8) reduce to:

(6.8) σαβnα = σ̃β, σ3αnα = σ̃3, µρijnρ = 0,

where

(6.9) σ̃β = −λe
4∑

k=1

ckω
(k)
3 nβ, σ̃3 = −µe

4∑
k=1

ckω
(k)
β nβ.
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The plane strain problem (6.6), (6.8) admits a solution if and only if:

(6.10)

∫
Σ1

Nida+

∫
L

σ̃i ds = 0,

∫
Σ1

ε3βα(xβNα +Rαβ)da+

∫
L

ε3βαxβσ̃α ds = 0.

Taking into account (5.5), (5.22), (6.7) and the divergence theorem, Eqs. (6.10)
became:

(6.11)

4∑
k=1

ck

∫
Σ1

τ
(k)
3α da = 0,

4∑
k=1

ck

∫
Σ1

τ
(k)
33 da+ c3(2µe + λe)A = 0,

4∑
k=1

ck

∫
Σ1

ε3βαxβτ
(k)
3α da+ µec4I0 = 0.

Equations (6.11)1 are identically satisfied. The remaining two equations of (6.11)
take the form:

(6.12)
4∑

k=1

ckA1k = 0,
4∑

k=1

ckA4k = 0,

where A1k (k = 1, 2, 3, 4) are given by (5.23). The boundary conditions on Σ1

are:

(6.13)

∫
Σ1

T3α da = −Fα,
∫
Σ1

T33 da = 0,

∫
Σ1

εαβ3xβT33 da = 0,

∫
Σ1

ε3αβ(xαT3β +M3βα) da = 0.

Now we consider the first equation of (6.13). We have:∫
Σ1

T31 da =

∫
Σ1

[(x1Tρ3),ρ + x1T33,3] da =

∫
Σ1

(x1T33,3) da(6.14)

=
4∑

k=1

ck

∫
Σ1

x1τ
(k)
33 da+ c1(2µe + λe)I2.
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Similarly,

(6.15)
∫
Σ1

T32 da =
4∑

k=1

ck

∫
x2τ

(k)
33 da+ c2(2µe + λe)I1.

It follows from (6.14), (6.15) and (5.23) that the first two equations of (6.13)
take the form:

(6.16)
4∑

k=1

ckA3k = −F1,
4∑

k=1

ckA2k = −F2.

The system given by Eqs. (6.12) and (6.16) determines the constants ck (k =

1, 2, 3, 4). In the following, we suppose that the functions σij , ω
(k)
i and the con-

stants ck are known. From the remaining equations (6.13) we have:

(6.17)

4∑
k=1

bkA1k = −F ∗3 ,
4∑

k=1

bkA2k = −M∗1 ,

4∑
k=1

bkA3k = −M∗2 ,
4∑

k=1

bkA4k = −M∗3 ,

where

(6.18)

F ∗3 =

∫
Σ1

σ33 da− (2µe + λe)

4∑
k=1

ck

∫
Σ1

ω
(k)
3 da,

M∗1 =

∫
Σ1

x2σ33 da− (2µe + λe)

4∑
k=1

ck

∫
Σ1

x2ω
(k)
3 da,

M∗2 =

∫
Σ1

x1σ33 da+ (2µe + λe)

4∑
k=1

c4

∫
Σ1

x1ω
(k)
3 da,

M∗3 = −
∫
Σ1

(x1σ32 − x2σ31) da− µe
4∑

k=1

ck

∫
Σ1

(x1ω
(k)
2 − x2ω

(k)
1 ) da.

The system (6.17) determines the constants bk and the problem of flexure of an
elastic and isotropic rod is solved.

7. Conclusions

In this paper, we study the deformation of a beam made of a micromorphic
elastic material. We have considered a simplified symmetric micromorphic the-
ory with a reduced number of material constants. As in classical elasticity, the
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problem is decomposed in the four basic problems of extension, bending, torsion
and flexure. The solution is constructed with a method that avoids a priori as-
sumptions and with the help of some plane strain problems. The results can be
used to obtain explicit formulas of the deformation of the beam for each basic
problem when the cross section is assigned. It might be interesting to compare
these analytical explicit formulas with those existing in literature deduced from
technical arguments. Moreover, the results presented in this paper are also useful
in investigating the problem of a cylinder loaded on the lateral surface.

Aknowledgments

I am grateful to Professor Patrizio Neff for drawing my attention to this topic.

References

1. S. Forest, R. Sievert, Nonlinear microstrain theories, International Journal of Solids
and Structres, 43, 24, 7224–7245, 2006.

2. A.C. Eringen, E.S. Suhubi, Nonlinear theory of simple micro-elastic solids I, Interna-
tional Journal of Engineering Sciences, 2, 189–203, 1964.

3. A.C. Eringen, Microcontinuum Field Theories I: Foundations and Solids, Springer, New
York, 1999.

4. Y. Chen, J.D. Lee, Determining material constants in micromorphic theory through
phonon dispersion relations, International Journal of Engineering Sciences, 41, 871–886,
2003.

5. P. Neff,On material constants for micromorphic continua, [in:] Y. Wang, K. Hutter [eds.],
Trends in Applications of Mathematics to Mechanics, STAMM 2004 Proceedings,
pp. 337–348, 2005.

6. R. Teisseyre, Earthquake process in a micromorphic continuum, Pure and Applied Geo-
physics, 102, 1, 15–28, 1973.

7. R. Teisseyre, Symmetric Micromorphic Continuum: Wave Propagation, Point Source
Solutions and some Applications to Earthquake Processes, Continuum Mechanics Aspects
of Geodynamics and Rock Fracture Mechanics, NATO Advanced Study Institute Series,
12, Springer, 1974.

8. P. Neff, I.D. Ghiba, A. Madeo, L. Placidi, G. Rosi, A unifying perspective: the
relaxed linear micromorphic continuum, Continuum Mechanics and Thermodynamics, 26,
639–681, 2014.

9. P. Neff, A. Madeo, G. Barbagallo, M.V. d’Agostino, R. Abreu, I.D. Ghiba,
Real wave propagation in the isotropic-relaxed micromorphic model, The Royal Society
Publishing, Proceedings A, 473, 20160790, 2017.

10. S. De Cicco, On the deformation of porous spherical bodies under radial surface traction,
Journal of Theoretical and Applied Mechanics, 61, 2, 305–316, 2023.



332 S. De Cicco

11. D. Iesan, L. Nappa, Saint-Venant’s problem for microstretch elastic solids, International
Journal of Engineering Sciences, 32, 2, 229–236, 1994.

12. D. Iesan, L. Nappa, Extension and bending of microstretch elastic circular cylinders,
International Journal of Engineering Sciences, 33, 8, 1139–1151, 1995.

13. S. De Cicco, L. Nappa, Torsion and flexure of microstretch elastic circular cylinders,
International Journal of Engineering Sciences, 35, 6, 573–583, 1997.

14. L. Nappa, S. Pesce, Thermoelastic deformation of microstretch elastic beams, Journal
of Thermal Stresses, 19, 8, 763–777, 1996.

15. R. Lakes, W.J. Drugan, Bending of Cosserat elastic bar of square cross section: theory
and experiment, Journal of Applied Mechanics, 82, 091002, 2015.

16. A. Taliercio, D. Veber, Torsion of elastic anisotropic micropolar cylindrical bars, Euro-
pean Journal of Mechanics – A/Solids, 55, 45–56, 2016.

17. A. Taliercio, Torsion of micropolar hollow circular cylinders, Mechanics Research Com-
munications, 37, 4, 406–411, 2010.

18. S. De Cicco, Non-simple elastic materials with double porosity structure, Archives of
Mechanics, 74, 2-3, 127–142, 2022.

19. S. De Cicco, Explicit formulas for the deformation of chiral porous circular beams in
gradient thermoelasticity, Symmetry, 16, 1, 2024, doi: 10.3390/sym16010129.

20. S. De Cicco, D. Iesan,On the thermal stresses in chiral porous elastic beams, Continuum
Mechanics and Thermodynamics, 35, 5, 2095–2115, 2023.

21. D. Iesan, On the deformation of micromorphic elastic beams, Mathematics and Mechanics
of Solids, 26, 12, 1779–1797, 2021.

22. A. Norouzzadeh, M.F. Oskonie, R. Ausari, H. Rouhi, Integral and differential non-
local micromorphic theory: finite element bending analysis of Timoshenko micro-nano-
beams, Engineering Compututations, 37, 566–590, 2019.

23. M. Shaat, E. Ghavauloo, S. Eman, A micromorphic beam theory for beams with elon-
gated microstructures, Scientific Reports, 10, 1–18, 2020.

24. R.S. Lakes, Experimental evaluation of micromorphic elastic constants in foams and
lattices, Zeitschrift für angewandte Mathematik und Physik, 74, 1, 31, 2023.

25. G. Rizzi, G. Hutter, A. Madeo, P. Neff, Analytical solutions of the cylindrical
bending problem for the relaxed micromorphic continuum and other generalized continua,
Continuum Mechanics and Thermodynamics, 33, 1505–1539, 2021.

26. G. Rizzi, G. Hutter, H. Khan, I.D. Ghiba, A. Madeo, P. Neff, Analytical solution
of the cylindrical torsion problem for the relaxed micromorphic continuum and other gen-
eralized continua (including full derivations), Mathathematics and Mechanics of Solids,
27, 3, 507–553, 2022.

27. G.Y. Zhang, X.L. Gao, C.Y. Zheng, C.W. Mi, A non-classical Bernoulli–Euler beam
model based on a simplified micromorphic elasticity theory, Mechanics of Materials, 161,
103967, 2021.

28. D. Iesan, On Saint-Venant’s problem, Archive for Rational Mechanics and Analysis, 91,
363–373, 1986.

https://doi.org/10.3390/sym16010129


On the deformation of elastic rods. . . 333

29. D. Iesan, On Saint-Venat’s Problem, Springer, Berlin, Heidelberg, 1987.

30. D. Iesan, L. Nappa, Extremum principles and existence results in micromorphic elastic-
ity, International Journal of Engineering Sciences, 39, 18, 2051–2070, 2001.

31. I. Hlavacek, M. Hlavacek, On the existence and uniqueness of solution and some
variational principles in linear theories of elasticity with couple stresses, Applications of
Mathematics, 14, 411–427, 1969.

32. D. Iesan, R. Quintanilla, Existence and continuous dependence results in the theory of
microstretch elastic bodies, International Journal of Engineering Sciences, 32, 6, 991–1001,
1994.

33. G. Fichera, Existence Theorems in Elasticity, [in:] C. Truesdell [ed.], Linear Theories of
Elasticity and Thermoelasticity, Springer, Berlin, pp. 347–389, 1975.

Received March 29, 2024; revised version July 21, 2024.
Published online September 5, 2024.




