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In this paper, the existence of Rayleigh waves propagating in weakly nonlo-
cal incompressible isotropic elastic half-spaces subject to the tangential impedance
boundary condition (TIBC) (at the surface of half-spaces, the tangential stress is pro-
portional to the horizontal displacement and the normal stress is zero) is investigated.
It is shown that for the negative values of the dimensionless tangential impedance
parameter and the values of the dimensionless nonlocality parameter belong to the
interval (0, 0.5), there exist exactly two Rayleigh waves. The first wave is the coun-
terpart of the Rayleigh wave in local incompressible isotropic elastic half-spaces and
the second is a new Rayleigh mode appearing due to the presence of nonlocality. For-
mulae for their velocities have been derived. Remarkably, the second wave can travel
with very high velocity.
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1. Introduction

Surface Rayleigh waves in elastic half-spaces, discovered by Lord
Rayleigh [1] in 1885, have been studied extensively and found a wide range
of applications in various engineering fields. In the first stage, the studies of
Rayleigh waves have been applied mainly in geophysics, seismology for predicting
and analyzing earthquakes and Rayleigh waves were created only by earthquakes.
The discovery of the Interdigital Transducer (IDT) byWhite andVoltmaer [2]
in 1965, that can convert electric signals to surface waves and inversely, opened
up new era for application of Rayleigh waves. With the IDT, Rayleigh waves
can be excited by the man and it becomes a very convenient tool for nonde-
structively evaluating material parameters and predicting defects of structures
during loading. Since then, the application of Rayleigh waves is expanded to
various engineering fields where the health monitoring of structures in use is
needed.
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It is well-known that, nanomaterials modeled by the nonlocal continuum
mechanics [3] are undergoing a rapid development due to their extraordinary
thermal conductivity, mechanical and electrical properties [4], and structures
made of these materials such as nano-beams, nano-plates and nano-shells are
increasingly used in the modern technology [5]. Since the health of these struc-
tures is required to be monitored during their use, the study of Rayleigh waves
in nonlocal elastic solids is necessary and important.

The propagation of Rayleigh waves in nonlocal elastic media was investi-
gated by Eringen [6] for traction-free nonlocal isotropic elastic half-spaces, by
Singh [7] for transversely isotropic half-spaces, by Pramanik and Biswas [8]
for isotropic thermoelastic half-spaces, by Abd-Alla et al. [9] for isotropic mag-
netoelastic half-spaces with voids, by Khurana and Tomar [10], Sing and
Sawhney [11] for micropolar elastic half-spaces, by Tong et al. [12] for porous
elastic half-spaces, by Kaur et al. [13] for elastic half-spaces with voids, by
Kaur and Singh [14] for isotropic diffusive materials and by Biswas [15] for
isotropic thermoelastic half-space coated with an isotropic thermoelastic layer,
by Lata and Singh [16] for isotropic magneto-thermoelastic solid with multi-
dual-phase lag heat transfer. In these investigations, the authors used Eringen’s
fully nonlocal elasticity theory [6] to investigate the propagation of Rayleigh
waves and employed the Eringen’s method [6] to find the Rayleigh wave’s so-
lutions. However, it is now well-known that Eringen’s fully nonlocal elasticity
theory is ill-posed as shown by Romano et al. [17] for the beam problems, by
Kaplunov et al. [18] for the Rayleigh wave problem, by Kaplunov et al. [19]
for the anti-plane motion of a half-space subjected to a surface loading of a trav-
eling harmonic wave, and recently by Vinh and Anh [20] for harmonic plane
wave problems in domains with non-empty boundaries, in general. Furthermore,
since the Eringen’s method does not satisfy the original equations of motion, the
obtained solutions are incorrect, as shown by Kaplunov et al. [18, 19]. This
method must be replaced by a novel method proposed recently by Vinh and
Anh [20]. Most of investigations mentioned above used boundary conditions in
local stresses instead of nonlocal ones. However, this is unreasonable as under-
lined by Eringen [6] (see also Chebalov et al. [21]). Therefore, for studying
the propagation of nonlocal Rayleigh waves we should employ a nonlocal model
of elasticity which is well-posed for any problem of harmonic plane waves. Such
a nonlocal elasticity model, called the weakly nonlocal model have been recom-
mended recently by Anh and Vinh [22]. This novel model has been applied to
investigate the propagation of nonlocal Stoneley waves [22], nonlocal Rayleigh
waves [23, 24] and nonlocal Lamb waves [25].

It is well-known that one of the fundamental issues regarding Rayleigh waves
is their existence and uniqueness. For Rayleigh waves in local elastic half-
spaces, this problem has been solved even for generally anisotropic half-spaces by
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Barnett and Lothe [26] and Mielke and Fu [27] with the result stating that,
in generally anisotropic half-spaces there always exists a unique Rayleigh wave.
However, the results of this problem for nonlocal Rayleigh waves are very poor.
Khurana and Tomar [10] dealt with the necessary condition for a Rayleigh
wave (propagating in nonlocal micropolar isotropic elastic half-spaces subject to
traction-free boundary conditions) to satisfy the decay condition (see [10, Sec-
tion 4]). The obtained result is limited to small values of micropolarity and
nonlocality. Recently, the existence of Rayleigh waves in weakly nonlocal com-
pressible isotropic elastic half-spaces subject to traction-free boundary conditions
have been examined by Vinh et al. [28]. It is shown that one Rayleigh wave is
always possible, but two or three Rayleigh waves are possible depending on the
nonlocal and material parameters.

The propagation of Rayleigh waves in incompressible weakly nonlocal or-
thotropic elastic half-spaces subject to the full impedance boundary condition
(FIBC) (at the surface of half-spaces: the tangential stress is proportional to the
horizontal displacement and the normal stress is proportional to the vertical dis-
placement) was investigated by Anh et al. [23]. The authors derived the secular
equation of Rayleigh waves by using the incompressible limit method [24] (not
the traditional method). In this paper, we consider the existence of Rayleigh
waves propagating in incompressible weakly nonlocal isotropic half-spaces sub-
ject to the tangential impedance boundary condition. In order to solve this prob-
lem we use the secular equation obtained by Anh et al. in [23] and using the
complex function method [29, 30]. It is shown that, for the negative values of
the dimensionless tangential impedance parameter and the values of the dimen-
sionless nonlocality parameter belong to the interval (0, 1/2), there exist ex-
actly two Rayleigh waves. One is the counterpart of the local Rayleigh wave
and the other is a new Rayleigh mode arising due to the presence of nonlocality
and the impedance boundary condition. Unlike the classical mode, the new mode
can travel with very high velocity. Remarkably, explicit formulae for the velocity
of two Rayleigh waves have been derived.

The propagation of Rayleigh waves in local (classical) elastic half-spaces sub-
ject to impedance boundary conditions was investigated by Gogoy et al. [31]
for isotropic half-spaces, by Vinh and Hue [32, 33] for orthotropic and mon-
oclinic half-spaces, by Singh and Kaur [34, 35], Kaur and Singh [36] for
rotating orthotropic and monoclinic half-spaces. For isotropic and orthotropic
half-spaces, the explicit secular equations were obtained using the traditional
technique, while the explicit secular equations for monoclinic half-spaces were
derived employing the method of the polarization vector [32, 37].

By considering directly the bijection of the impedance function derived from
the secular equation, Godoy et al. [31] have proved that, for compressible
isotropic elastic half-spaces subject to the tangential impedance boundary con-
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dition, there always exists a unique Rayleigh wave. Using the complex func-
tion method [29, 30], Vinh and Xuan [38] not only established easily the ex-
istence and uniqueness but also derived formulae for the velocity of Rayleigh
waves. Recently, also using the complex function method, Giang and Vinh [39]
have proved that, the compressible isotropic half-spaces subject to the normal
impedance boundary condition (NIBC) (at the surface of half-spaces, the nor-
mal stress is proportional to the vertical displacement and the tangential stress is
zero) do not always support a Rayleigh wave, although if a Rayleigh wave exists,
it is unique. It is worth noting that, the complex function method is a good tool
not only for obtaining formulae for the velocity of surface waves [38, 40–45], but
also for examining their existence [39, 46].

2. Rayleigh waves in weakly nonlocal incompressible isotropic elastic
half-spaces with TIBC

Consider a Rayleigh wave propagating in a weakly nonlocal incompressible or-
thotropic elastic half-space x2 ≥ 0 whose principal material axes are 0x1, 0x2, 0x3

and it is subject to the full impedance boundary condition (FIBC). Suppose the
Rayleigh wave propagates in the x1-direction and decays in the x2-direction with
the velocity c (> 0) and the wave number k (> 0). Then, its displacements are
of the form:

(2.1) ui = ui(x1, x2, t) (i = 1, 2), u3 ≡ 0,

where t is the time. According to Anh and Vinh [22] and Anh et al. [23], the
motion of Rayleigh waves is governed by the following equations:

– Equations of motion (without the body force):

(2.2) t11,1 + t12,2 = ρü1, t12,1 + t22,2 = ρü2,

where ui are the displacement components, tij are the nonlocal stresses, ρ is
the mass density, commas signify differentiation with respect to xk and a dot
indicates differentiation with respect to t.

– Constitutive equations:

(2.3) (1− ε2∇2)t11 = σ11, (1− ε2∇2)t12 = σ12, (1− ε2∇2)t22 = σ22,

where σij is the local stress corresponding to the nonlocal stress tij , ε = le0,
l is the atomic spacing, e0 is the material constant, ∇ =

[
∂
∂x1

, ∂
∂x2

]T is the two
dimensional gradient operator.

– Hooke relations:

(2.4)
σ11 = −p+ c11u1,1 + c12u2,2,

σ22 = −p+ c12u1,1 + c22u2,2,

σ12 = c66(u1,2 + u2,1),
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where p = p(x1, x2, t) is the hydrostatic pressure associated with the incompress-
ibility constraint and cij are the stiffness elastic constants.

– Extra conditions:

(2.5) σij ≡ 0 ⇒ tij ≡ 0 (in the domain x2 > 0).

– Incompressibility condition:

(2.6) u1,1 + u2,2 = 0

along with the full impedance boundary condition:

(2.7) t12 + ωZ1u1 = 0, t22 + ωZ2u2 = 0 at x2 = 0,

and the decay condition:

(2.8) ui → 0, tij → 0 as x2 → +∞,

where ω (= kc) is the wave circular frequency, Z1 Z2 (∈ R) are the impedance
parameters whose dimension is of stress/velocity.

To solve the Rayleigh wave problem that satisfies Eqs. (2.2)–(2.6), the bound-
ary condition (2.7) and the decay condition (2.8), Anh et al. [23] used the incom-
pressible limit method proposed by Vinh et al. [47]. That means the solution of
this problem is obtained from the one of the corresponding compressible prob-
lem by taking the incompressible limit. The secular equation of Rayleigh waves
propagating in a weakly nonlocal incompressible orthotropic elastic half-space
whose surface is subject to the full impedance boundary condition (2.7) has been
derived and it is [23, Eq. (57)], namely:

(2.9) [x(1+2e)−eδ]
√
P ′+x(1+2e)+δ1

√
x[1+e(2−eδ)]

√
P ′
√
S′+2

√
P ′

+δ2

√
x(1+2e)

√
S′+2

√
P ′−δ1δ2x[(1+e)2−e(1+e)S′+e2P ′] = 0,

where δk = Zk/
√
ρc66 (dimensionless impedance parameters), e = k2e2

0l
2 (dimen-

sionless nonlocality parameter), x = ρc2/c66 (squared dimensionless Rayleigh
wave velocity) and:

(2.10)
S′ =

eδ − x(1 + 2e)− 2

1− ex
, P ′ = 1− x

1− ex
(>0),

eδ = (c11 + c22 − 2c12)/c66.

When the half-space is isotropic, we have:

(2.11) eδ = 4,

√
S′ + 2

√
P ′ = 1 +

√
P ′
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and Eq. (2.9) is simplified to:

(2.12) [(1 + 2e)x− 4]b2 + (1 + 2e)x+ δ1

√
x(1− 2e)b2(1 + b2)

+ δ2

√
x(1 + 2e)(1 + b2)− δ1δ2x[(1 + e)2 − e(1 + e)(1 + b22) + e2b22] = 0,

where b2 :=
√
P ′ (> 0), x = ρc2/µ (> 0) and δk = Zk/

√
ρµ, µ is the Lame

constant. Taking δ2 = 0 we obtain from Eq. (2.12):

(2.13) (1 + 2e)x+ [(1 + 2e)x− 4]b2 + δ1

√
x(1− 2e)b2(1 + b2) = 0

that is the secular equation of Rayleigh waves propagating in weakly nonlocal
incompressible isotropic elastic half-spaces subject to the tangential impedance
boundary condition.

Remark 1. The necessary and sufficient condition for a Rayleigh wave to
exist is: Eq. (2.13) has a positive real root x and with it b2 is positive.

3. Existence of weakly nonlocal Rayleigh waves with TIBC
and formulae for the wave velocity

Theorem 1. Let δ1 < 0 and 0 < e < 1/2. Then, there exactly exist two
Rayleigh waves and their velocities, say x1r and x2r, are calculated by:

(3.1) x1r =
(w1r + 1)

2(1 + e)w1r
, x2r =

(w2r + 1)

2(1 + e)w2r
,

where

w1r =
(1− P2/P3) +

√
(1 + P2/P3)2 − 4(1 + P1/P3)

2
,

w2r =
(1− P2/P3)−

√
(1 + P2/P3)2 − 4(1 + P1/P3)

2

(3.2)

in which Pk (k = 1, 2, 3) are given by Eq. (A.1) in Appendix A.

According to Remark 1, the necessary and sufficient condition for a Rayleigh
wave to exist is Eq. (2.13) has a (positive) root x and with it

b2 =
√

1− x/(1− ex) > 0⇒ 1−x/(1−ex) > 0⇒ x ∈ (0, 1/(1+e))∪(1/e,+∞).

It is readily to verify that Eq. (2.13) is equivalent to the equation:

(3.3) (1 + 2e)x(1− ex) + [(1 + 2e)x− 4]
√

1− ex
√

1− (1 + e)x

+ δ1(1− 2e)
√
x
√

1− ex
√

1− (1 + e)x+ δ1(1− 2e)
√
x[1− (1 + e)x] = 0
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for x ∈ (0, 1/(1 + e)) and for x ∈ (1/e,+∞) it is equivalent to the equation:

(3.4) (1 + 2e)x(ex− 1) + [(1 + 2e)x− 4]
√
ex− 1

√
(1 + e)x− 1

+ δ1(1− 2e)
√
x
√
ex− 1

√
(1 + e)x− 1 + δ1(1− 2e)

√
x[(1 + e)x− 1] = 0.

Now we introduce the transformation:

(3.5) x =
w + 1

2(1 + e)w
,

that is a 1-1 mapping from x ∈ (0, 1/(1+e)) onto w ∈ (−∞,−1)∪(1,+∞) := S∗1
and from x∈(1/e,+∞) onto w ∈ (0, w2) := S∗2 , where w2 = e/(2+e) (0<w2<1).
Substituting the expression (3.5) of x into Eq. (3.3) and then multiplying the
resulting equation by [2(1 + e)w]2w lead to the equation for w:

(3.6)

F1(w) = 0, w ∈ S∗1 ,
F1(w) = h1(w) + h2(w)

√
w − w2

√
w − 1

+ h3(w)
√
w
√
w + 1

√
w − w2

√
w − 1 + h4(w)

√
w
√
w + 1,

where:

(3.7)

h1(w) = (1 + 2e)w(w + 1)[(2 + e)w − e],

h2(w) =
√

(2 + e)(1 + e)[(1 + 2e)− (7 + 6e)w]w,

h3(w) =
√

2(2 + e)(1 + e)δ1(1− 2e)w,

h4(w) =
√

2(1 + e)3/2δ1(1− 2e)(w − 1)w.

With the same action, Eq. (3.4) becomes:

(3.8)

F2(w) = 0, w ∈ S∗2 ,
F2(w) = h1(w)− h2(w)

√
w2 − w

√
1− w

− h3(w)
√
w
√
w + 1

√
w2 − w

√
1− w + h4(w)

√
w
√
w + 1.

Now, we apply the complex function method [29, 30] to investigate the solution
existence of Eq. (3.6) in S∗1 and Eq. (3.8) in S∗2 . To this end we consider the
complex equation:

(3.9)

F (z) = 0, z ∈ C,

F (z) = h1(z) + h2(z)
√
z − w2

√
z − 1

+ h3(z)
√
z
√
z + 1

√
z − w2

√
z − 1 + h4(z)

√
z
√
z + 1,

where hk(z) are defined by (3.7) in which w is replaced by z and
√
z,
√
z + 1,√

z − w2,
√
z − 1 are chosen as the principal branches of the corresponding
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square roots. When z ∈ S∗1 , Eq. (3.9) coincides with Eq. (3.6) and for z ∈ S∗2 it
is identical to Eq. (3.8).

Proposition 1. For δ1 < 0 and 0 < e < 1/2, the equation F (z) = 0 has
exactly one root in S∗1 and one root in S∗2 .

Proof: Denote L = L1 ∪ L2, L1 = [−1, 0], L2 = [w2, 1], S = {z ∈ C, z /∈ L},
N(z0) = {z ∈ S : 0 < |z − z0| < ε}, ε is a sufficiently small positive number,
z0 is a certain point of the complex plane C. If a function φ(z) is holomorphic
in Ω ⊂ C we write φ(z) ∈ H(Ω).

We first show that:

(3.10) F (z) = 0⇔ P (z) = 0 in the domain S,

where P (z) is a third-order polynomial:

(3.11) P (z) = P3z
3 + P2z

2 + P1z + P0,

and the coefficients Pk are calculated by Eq. (A.1) in Appendix A. Then, we
prove that Eq. P (z) = 0 has exactly one root in S∗1 ⊂ S and one root in S∗2 ⊂ S.

From (3.7) and (3.9) it is seen that:

• Properties of F (z):
(f1) F (z) ∈ H(S).
(f2) F (z) is bounded in N(−1), N(0), N(w2) and N(1).
(f3) F (z) = O(z3) as |z| → ∞.
(f4) F (z) is continuous on L from two sides [29, 30] with the boundary values
F+(t) (the above boundary value of F (z)), F−(t) (the below boundary value of
F (z)) defined as follows:

(3.12) F±(t) =

{
F±1 (t), t ∈ L1,

F±2 (t), t ∈ L2,
F−k (t) = F+

k (t),

where F+
k (t) = Rk(t) + iIk(t) (k = 1, 2), Rk(t) and Ik(t) are determined as:

R1(t) = h1(t)− h2(t)
√
w2 − t

√
1− t,

I1(t) = −h3(t)
√
−t
√
t+ 1

√
w2 − t

√
1− t+ h4(t)

√
−t
√
t+ 1,

R2(t) = h1(t) + h4(t)
√
t
√
t+ 1,

I2(t) = h2(t)
√
t− w2

√
1− t+ h3(t)

√
t
√
t+ 1

√
t− w2

√
1− t.

(3.13)

Now we introduce the function g(t) (t ∈ L) defined as:

(3.14) g(t) =


F+

1 (t)

F−1 (t)
, t ∈ L1,

F+
2 (t)

F−2 (t)
, t ∈ L2.
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Note that, F+
k (t) and F−k (t) have common factor t that is needed to removed

from the expression of g(t) in (3.14) and I1(t)/t > 0 ∀t : −1 < t < 0, R2(t)/t > 0
∀t : w2 < t < 1. From (3.12) and (3.14) it follows that:

(3.15) F+(t) = g(t)F−(t), t ∈ L.

Using (3.12), (3.13) and (3.14) it is not difficult to prove that:

Proposition 2. Let δ1 < 0 and 0 < e < 1/2, then we have:

(3.16) log g(−1) = 2πi, log g(0) = 2πi, log g(w2) = 0, log g(1) = 0.

Consider the function Γ(z) defined by:

(3.17) Γ(z) =
1

2πi

∫
L

log g(t)

t− z
dt.

The function Γ(z) is called the Cauchy-type integral [29]. It is not difficult to
prove the following (see [29]):

• Properties of Γ(z):
(γ1) Γ(z) ∈ H(S).
(γ2) Γ(∞) = 0.
(γ3) (i) For z ∈ N(0): Γ(z) = log z + Γ0(z), Γ0(z) is bounded in N(0) and takes
a defined value at z = 0.

(ii)

(3.18) Γ(z) =


log

1

(z + 1)
+ Γ1(z) for z ∈ N(−1),

Γ2(z) for z ∈ N(w2),

Γ3(z) for z ∈ N(1),

where Γ1(z), Γ2(z) and Γ3(z) are bounded in N(−1), N(w2) and N(1), respec-
tively, and takes defined values at z = −1, z = w2 and z = 1.

Note that (γ3) comes from Proposition 2 (Eq. (3.16)) and [29, formula (29.4)],
namely:

(3.19) Γ(z) = ± log g(c)

2πi
log

1

z − c
+ Γ0(z),

where the upper sign is taken for c = −1 and c = w2 (the left end points of L1

and L2) and the lower for c = 0 and c = 1 (the right end points of L1 and L2),
Γ0(z) is a bounded function in N(c) and takes a defined value at z = c.

We now consider the function Y (z) defined by:

(3.20) Y (z) = F (z)/eΓ(z).
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From (f1)–(f3), (3.15), (γ1)–(γ3) and the Plemelj formula [29], it follows that:

• Properties of Y (z):
(y1) Y (z) ∈ H(S).
(y2) Y (z) = O(z3) as |z| → ∞.
(y3) Y (z) is bounded in N(−1), N(0) (noting that F (z) has a common factor z),
N(w2), N(1) and takes defined values at z = −1, 0, w2, 1.
(y4) Y +(t) = Y −(t), t ∈ L, Y +(t) (Y −(t)) is the above (below) boundary value
of Y (z) on L.
(y5) Y (−1) = 0.

Properties (y1) and (y4) of the function Y (z) show that Y (z) is holomor-
phic in the entire complex plane C with the possible exception of points: z =
−1, 0, w2, 1. By (y3) these points are removable singularity points and it may
be assumed that the function Y (z) is holomorphic in the entire complex C
(see [48]). Thus, by the generalized Liouville theorem [48] and taking into ac-
count (y2) we have: Y (z) is a third-order polynomial, namely P (z) defined by
(3.11) and z1 = −1 is its zero, according to (y5).

The coefficients Pk (k = 0, 3) of P (z) are found by using (3.20) and the
Laurent expansions at z = ∞ of functions F (z) and e−Γ(z) (see [30, 40, 42] for
details). The expressions of P1, P2 and P3 are given in Eq. (A.1) in Appendix A.
It is easy to verify that P3 < 0 for δ1 < 0 and 0 < e < 1/2.

From (3.20) we have (noting that P (z) := Y (z)):

(3.21) F (z) = eΓ(z)P (z).

Since eΓ(z) 6= 0 ∀z ∈ S, according to (γ1), from (3.21) it implies the statement
(3.10). Now we show that:

(3.22) P (0) < 0, P (w2) > 0, P (1) > 0.

Indeed, according to (γ3)(i): eΓ(z) = z eΓ0(z), where Γ0(z) is bounded in N(0)
and takes a defined value at

z = 0⇒ P (0) = (F (z)/eΓ(z))|z=0 = (F (z)/z)|z=0e−Γ0(0)

= −(1 + 2e)(e+
√
e(1 + e))e−Γ0(0) < 0.

In view of (3.7) and (3.9) and taking into account the assumption: δ1 < 0,
0 < e < 1/2 we have: F (w2) > 0 and F (1) > 0. From these facts and (3.21) it
implies: P (w2) > 0 and P (1) > 0.

Now we consider the equation P (z) = 0 with z ∈ R. From the first and
second of (3.22) it follows that it has a root in the interval (0, w2). As P3 < 0 as
mentioned above, we have: P (+∞) < 0. From this fact and the third of (3.22)
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it implies: Eq. P (z) = 0 has a root in the interval (1, +∞). Since z = −1 is
a root of the cubic equation P (z) = 0 (according to (y5)) that has at most
three different roots, it follows that Eq. P (z) = 0 has exactly one root in the
interval (0, w2) and one root in the domain (1,+∞) and no roots in the interval
(−∞,−1). That means it has exactly one root in S∗1 and one root in S∗2 . Since
S∗1 ⊂ S, S∗2 ⊂ S, from (3.10) it implies that Eq. F (z) = 0 has exactly one root
in S∗1 and one root in S∗2 . The proof of Proposition 1 is completed.

Proof of Theorem 1.
• Existence of two Rayleigh waves: the existence of two Rayleigh waves is de-

duced from Proposition 1 and the bijective property (one-to-one correspondence)
of the transformation (3.5).
• Formulae for the wave velocity: since z = −1 is a root of P (z) = 0, its two

other roots, say w1r and w2r, are two roots of the quadratic equation:

(3.23) w2 − (1− P2/P3)w + 1 + P1/P3 − P2/P3 = 0,

according to Vieta’s formulas, where Pk (k = 1, 2, 3) are given by Eq. (A.1) in
the appendix A. It is clear that w1r (∈ (1,+∞)) and w2r (∈ (0, w2)) are cal-
culated by (3.2). The Rayleigh wave velocities, say x1r (∈ (0, 1/(1 + e))) and
x2r (∈(1/e,+∞)), are therefore computed by (3.1) according to the transforma-
tion (3.5). The proof of Theorem 1 is finished.

Table 1. Some values of Rayleigh wave velocity computed by solving Eq. (3.3) in the
domain: 0 < x < 1/(1 + e) (x∗1) and by using formula (3.1)1 (x1r).

δ1 −0.1 −0.4 −1 −5.1 −6
e 0.25 0.25 0.3 0.4 0.45
x∗1 0.7151 0.7222 0.7003 0.6647 0.6300
x1r 0.7151 0.7222 0.7003 0.6647 0.6300

Table 2. Some values of Rayleigh wave velocity computed by solving Eq. (3.4) in the
domain: 1/e < x < +∞ (x∗2) and by using formula (3.1)2 (x2r).

δ1 −0.1 −0.4 −1 −5.1 −6
e 0.25 0.25 0.3 0.4 0.45
x∗2 4.0330 4.3416 4.1655 4.6846 3.1906
x2r 4.0330 4.3416 4.1655 4.6846 3.1906

For checking the formulae (3.1), some numerical values of the Rayleigh wave
velocity are calculated by using the formulae (3.1) (denoted by x1r and x2r) and
by solving directly the secular equation (3.3) in the domain: 0 < x < 1/(1 + e)
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(a)

(b)

Fig. 1. The dependence of x1r (a) and x2r (b) on the impedance parameter δ1.

(a)

(b)

Fig. 2. The dependence of x1r (a) and x2r (b) on the nonlocality parameter e.

(denoted by x∗1) and the secular equation (3.4) in the domain: 1/e < x < +∞
(denoted by x∗2). It is seen from Tables 1, 2 that they are the same. We use
the formulae (3.1) to draw the velocity curves depending on the impedance
parameter δ1 (Fig. 1) and the nonlocality parameter e (Fig. 2). It is seen from
Figs. 1, 2 that for a given value of e (δ1), the Rayleigh wave velocities decrease



On the existence of weakly nonlocal Rayleigh waves. . . 307

when δ1 (e) increases. Since x2r > 1/e = 1/(k2ε2), it implies that the new
Rayleigh mode can travel with high velocity at small values of k (i.e. at low
frequencies).

4. Conclusions

In this paper, the existence of Rayleigh waves in incompressible weakly non-
local isotropic half-spaces subject to the tangential impedance boundary con-
dition is considered using the complex function method. It is shown that, for
the negative values of impedance parameter δ1 and the values of the nonlocal-
ity parameter e belong to the interval (0, 1/2), there always exist two Rayleigh
waves. One is the counterpart of the local Rayleigh wave and the other is a new
Rayleigh mode arising due to the presence of nonlocality and the impedance
boundary condition. It is remarkable that, the new Rayleigh mode can prop-
agate with high velocity at low frequencies (at small values of wave number).
Formulae for their velocity have been derived.

Appendix A. Expressions of Pk (k = 1, 2, 3) of polynomial P (z)

(A.1) P3 = B3, P2 = B2 +B3J0, P1 = B1 +B2J0 +B3(J1 + J2
0/2),

where:

(A.2)

B3 =
√

2 + e
[
(1 + 2e)

√
2 + e− (7 + 6e)

√
1 + e

]
+
√

2(1 + e)δ1(1− 2e)
(√

1 + e+
√

2 + e
)
,

B2 = 2(1 + 2e) + (8e2 + 18e+ 9)

√
1 + e

2 + e

−
√

2

2
δ1(1− 2e)(1 + e)

(√
1 + e+

e√
2 + e

)
,

B1 = −(1 + 2e)e−
√

1 + e

2(2 + e)3/2
(4e3 + 14e2 + 8e− 3)

−
√

2

8
δ1(1− 2e)(1 + e)

[(5e2 + 16e+ 16)

(2 + e)3/2
+ 5
√

1 + e

]
,

J0 =
1

π

[ 0∫
−1

(
π

2
− atan

{
R1(t)

I1(t)

})
dt+

1∫
w2

atan
{
I2(t)

R2(t)

}
dt

]
,

J1 =
1

π

[∫ 0

−1
t.

(
π

2
− atan

{
R1(t)

I1(t)

})
dt+

∫ 1

w2

t. atan
{
I2(t)

R2(t)

}
dt

]
.



308 P. C. Vinh, V. T. N. Anh, T. T. Tuan

Acknowledgments

The work was partly supported by the Vietnam National University, Hanoi
by the financial resource supporting the VNU excellent research groups in 2023.

Conflict of interest

The authors declare that they have no conflict of interest.

References

1. L. Rayleigh, On waves propagating along the plane surface of an elastic solid, Proceed-
ings of the Royal Mathematical London Society, A 17, 4–11, 1885.

2. R.M. White, F.M. Voltmer, Direct piezoelectric coupling to surface elastic waves,
Applied Physics Letters, 7, 314–316, 1965.

3. A.C. Eringen, Nonlocal Continuum Field Theories, Springer, New York, 2002.
4. S. Iijima, Helical microtubules of graphitic carbon, Nature, 354, 56–58, 1991.
5. J.W. Yan, K.M. Liew, L.H. He, A higher-order gradient theory for modeling of the

vibration behavior of single-wall carbon nanocones, Applied Mathematical Modelling, 38,
2946–2960, 2014.

6. A.C. Eringen, On differential equations of nonlocal elasticity and solutions of screw
dislocation and surface waves, Journal of Applied Physics, 54, 4703–4710, 1983.

7. B. Singh, Propagation of waves in an incompressible rotating transversely isotropic non-
local solid, Vietnam Journal of Mechanics, 43, 237–252, 2021.

8. A.S. Pramanik, S. Biswas, Surface waves in nonlocal thermoelastic medium with state
space approach, Journal of Thermal Stresses, 43, 667–686, 2020.

9. A.M. Abd-Alla, S.M. Abo-Dahab, S.M. Ahmed, M.M. Rashid, Effect of magnetic
field and voids on Rayleigh waves in a nonlocal thermoelastic half-space, The Journal of
Strain Analysis for Engineering Design, 57, 61–72, 2022.

10. A. Khurana, S.K. Tomar, Rayleigh-type waves in nonlocal micropolar solid half-space,
Ultrasonics, 73, 162–168, 2017.

11. K. Singh, S. Sawhney, Rayleigh waves with impedance boundary conditions in a nonlocal
micropolar thermoelastic material, Journal of Physics: Conference Series, 1531, 012048,
2020, doi: 10.1088/1742-6596/1531/1/012048.

12. L.H. Tong, S.K. Lai, L.L. Zeng, C.J. Xu, J. Yang, Nonlocal scale effect on Rayleigh
wave propagation in porous fluid-saturated materials, International Journal of Mechanical
Sciences, 148, 459–466, 2018.

13. G. Kaur, D. Singh, S.K. Tomar, Rayleigh-type wave in a nonlocal elastic solid with
voids, European Journal of Mechanics A/Solids, 71, 134–150, 2018.

14. B. Kaur, B. Singh, Rayleigh-type surface wave in nonlocal isotropic diffusive materials,
Acta Mechanica, 232, 3407–3416, 2021.

15. S. Biswas, Rayleigh waves in a nonlocal thermoelastic layer lying over a nonlocal ther-
moelastic half-space, Acta Mechanica, 231, 4129–4144, 2020.

16. P. Lata, S. Singh, Rayleigh wave propagation in a nonlocal isotropic magneto-
thermoelastic solid with multi-dual-phase lag heat transfer, GEM-International Journal
on Geomathematics, 13, 5, 2022, doi: 10.1007/s13137-022-00195-5.

https://doi.org/10.1088/1742-6596/1531/1/012048
https://doi.org/10.1007/s13137-022-00195-5


On the existence of weakly nonlocal Rayleigh waves. . . 309

17. G. Romano, R. Barretta, M. Diaco, F.M. de Sciarra, Constitutive boundary con-
ditions and paradoxes in nonlocal elastic nanobeams, International Journal of Mechanical
Sciences, 121, 151–156, 2017.

18. J. Kaplunov, D.A. Prikazchikov, L. Prikazchikova, On non-locally elastic Rayleigh
wave, Philosophical Transactions of the Royal Society A, 380, 20210387, 2022.

19. J. Kaplunov, D.A. Prikazchikov, L. Prikazchikova, On integral and differential
formulations in nonlocal elasticity, European Journal of Mechanics A/Solids, 100, 104497,
2023.

20. P.C. Vinh, V.T.N. Anh, On the well-posedness of Eringen’s nonlocal elasticity for har-
monic plane wave problems, Proceedings of the Royal Society A, 480 (2293), 20230814,
2024.

21. R. Chebakov, J. Kaplunov, G.A. Rogerson, Refined boundary conditions on the free
surface of an elastic half-space taking into account non-local effects, Proceedings of the
Royal Society A, 472 (2186), 20150800, 2016, doi: 10.1098/rspa.2015.0800.

22. V.T.N. Anh, P.C. Vinh, Expressions of nonlocal quantities and application to Stoneley
waves in weakly nonlocal orthotropic elastic half-spaces, Mathematics and Mechanics of
Solids, 28, 2420–2435, 2023.

23. V.T.N. Anh, P.C. Vinh, T.T. Tuan, L.T. Hue, Weakly nonlocal Rayleigh waves with
impedance boundary conditions, Continuum Mechanics and Thermodynamics, 35, 2081–
2094, 2023.

24. V.T.N. Anh, P.C. Vinh, The incompressible limit method and Rayleigh waves in in-
compressible layered nonlocal orthotropic elastic media, Acta Mechanica, 234, 403–421,
2023.

25. V.T.N. Anh, P.C. Vinh, T.T. Tuan, Transfer matrix for a weakly nonlocal elastic
layer and Lamb waves in layered nonlocal composite plates, Mathematics and Mechanics
of Solids, 2024, in press, doi: 10.1177/10812865241258377.

26. D.M. Barnett, J. Lothe, Free surface (Rayleigh) waves in anisotropic elastic half-
spaces: the surface impedance method, Proceedings of the Royal Society of London A,
402, 135–152, 1985.

27. A. Mielke, Y.B. Fu, Uniqueness of the surface-wave speed: a proof that is independent
of the Stroh formalism, Mathematics and Mechanics of Solids, 9, 5–15, 2004.

28. P.C. Vinh, V.T.N. Anh, Q.H. Dinh, The non-unique existence of Rayleigh waves in
nonlocal elastic half-spaces, Zeitschrift für angewandte Mathematik und Physik, 74, 120,
2023.

29. N.I. Muskhelishviili, Singular Intergral Equations, Noordhoff, Groningen, 1953.

30. P. Henrici, Applied and Computational Complex Analysis, Vol. III, Wiley, New York,
1986.

31. E. Godoy, M. Durn, J.-C. Ndlec, On the existence of surface waves in an elastic
half-space with impedance boundary conditions, Wave Motion, 49, 585–594, 2012.

32. P.C. Vinh, T.T.T. Hue, Rayleigh waves with impedance boundary conditions in
anisotropic solids, Wave Motion, 51, 1082–1092, 2014.

33. P.C. Vinh, T.T.T. Hue, Rayleigh waves with impedance boundary conditions in in-
compressible anisotropic half-spaces, International Journal of Engineering Science, 85,
175–185, 2014.

https://doi.org/10.1098/rspa.2015.0800
https://doi.org/10.1177/10812865241258377


310 P. C. Vinh, V. T. N. Anh, T. T. Tuan

34. B. Singh and B. Kaur, Propagation of Rayleigh waves in an incompressible rotating
orthotropic elastic solid half-space with impedance boundary conditions, Journal of the
Mathematical Behaviour of Biomedical Materials, 26, 73–78, 2017.

35. B. Singh, B. Kaur, Rayleigh-type surface wave on a rotating orthotropic elastic half-space
with impedance boundary conditions, Journal of Vibration and Control, 26, 1980–1987,
2020.

36. B. Kaur, B. Singh, Rayleigh waves on the impedance boundary of a rotating monoclinic
half-space, Acta Mechanica, 232, 2479–2491, 2021.

37. B. Collet, M. Destrade, Explicit secular equations for piezoacoustic surface waves:
Shear-horizontal modes, Journal of Acoustical Society of America, 116, 3432–3442, 2004.

38. P.C. Vinh, N.Q. Xuan, Rayleigh waves with impedance boundary condition: Formula
for the velocity, Existence and Uniqueness, European Journal of Mechanics A/Solids, 61,
180–185, 2017.

39. P.T.H. Giang, P.C. Vinh, Existence and uniqueness of Rayleigh waves with normal
impedance boundary conditions and formula for the wave velocity, Journal of Engineering
Mathematics, 130, 13, 2021.

40. D. Nkemzi, A new formula for the velocity of Rayleigh waves, Wave Motion, 26, 199–205,
1997.

41. M. Romeo, Non-dispersive and dispersive electromagnetoacoustic SH surface modes in
piezoelectric media, Wave Motion, 39, 93–110, 2004.

42. P.C. Vinh, P.T.H. Giang, On formulas for the velocity of Stoneley waves propagating
along the loosely bonded interface of two elastic half-spaces, Wave Motion, 48, 646–656,
2011.

43. P.C. Vinh, P.G. Malischewsky, P.T.H. Giang, Formulas for the speed and slowness
of Stoneley waves in bonded isotropic elastic half-spaces with the same bulk wave velocities,
International Journal of Engineering Science, 60, 53–58, 2012.

44. P.C. Vinh, Scholte-wave velocity formulae, Wave Motion, 50, 2, 180–190, 2013.

45. P.T.H. Giang, P.C. Vinh, V.T.N. Anh, Formulas for the slowness of Stoneley waves
with sliding contact, Archives of Mechanics, 72, 465–481, 2020.

46. P.T.H. Giang, P.C. Vinh, T.T. Tuan, V.T.N. Anh, Electromagnetoacoustic SH
waves: Formulas for the velocity, existence and uniqueness, Wave Motion, 105, 102757,
2021.

47. P.C. Vinh, V.T.N. Anh, N.T.K. Linh, Exact secular equations of Rayleigh waves in an
orthotropic elastic half-space overlaid by an orthotropic elastic layer, International Journal
of Solids and Structures, 83, 65–72, 2016.

48. N.I. Muskhelishviili, Some Basic Problems of Mathematical Theory of Elasticity,
Noordhoff, Netherlands, 1963.

Received March 22, 2024; revised version July 12, 2024.
Published online September 5, 2024.


