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Note on the Rayleigh waves properties in viscoelastic media
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This paper describes a theory for surface Rayleigh waves propagating in a vis-
coelastic medium. The Zener model to describe the viscoelastic behavior of the
medium is used. This simple model captures both the relaxation and retardation.
An analytical expression for the complex dispersion equation of Rayleigh waves is
established. The influence of the normalized frequency and the ratio of shear moduli
on the dispersion curves of the Rayleigh wave velocity and attenuation is analyzed nu-
merically. The numerical solutions show the dependence of the phase velocity change
and the wave attenuation in terms of the normalized frequency and the ratio of shear
moduli. As an important result, the Zener model can be used at a normalized low
frequency to predict creep phenomenon as well as at a normalized high frequency
to predict relaxation. The obtained results are fundamental and can be applied to
characterize the viscoelastic properties of soft biomaterials and tissue, in nondestruc-
tive testing of materials, in geophysics and seismology. Thus, the obtained complex
dispersion equation can be very useful to interpret the experimental measurements
of Rayleigh waves propertie in a viscoelastic medium.
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1. Introduction

Viscoelastic materials are widely used in industry, especially, poly-
mers in automobile and aeronautics industries as well as in the medical field.
The macroscopic description of these materials includes both fluid-like and solid-
like characteristics. During mechanical tests (creep or relaxation), the response
depends on time (or frequency during dynamic experiments). This behavior
is modeled by the combination of springs and dashpots in series or in par-
allel [1, 2]. Therefore, different rheological models are used to describe lin-
ear viscoelasticity. Thus, common two-element rheological models include the
Maxwell and Kelvin–Voigt models. More precisely, the Maxwell model consists
of a Hookean spring in series with a Newtonian dashpot while in the Kelvin–
Voigt model the spring and the dashpot are parallel. Notably, the Maxwell
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model is adapted to viscoelastic liquid while the Kelvin–Voigt model describes
viscoelastic solids. However, the Kelvin–Voigt model used in References [3–7]
can only predict the creep behavior and is not sufficient to model viscoelastic
polymers [8, 9]. It is therefore necessary to improve the Kelvin–Voigt model.
Thus, models with three elements were developed to more realistically charac-
terize the creep recovery and stress relaxation behavior of a viscoelastic poly-
mer. These models include the standard linear solid model, also known as the
Zener model [10–12], which consists of two Hookean springs and one Newtonian
dashpot.

The rheological models above described are useful to develop characteriza-
tion methods of materials viscoelasticity [3, 6, 7]. In particular, the soft tis-
sue viscoelastic properties provide information about their pathological condi-
tion [13–19]. Furthermore, the knowledge of viscoelastic properties of biomateri-
als such as hydrogel is very important in the field of tissue engineering [20–24].
There is also a growing demand for surface acoustic wave sensors (Love and
Rayleigh) intended to control the viscoelastic properties of materials. Especially,
the Rayleigh waves travel near the surface of solids and include both longitudi-
nal and transverse motions [25–28]. The depth of significant displacement in the
solid is approximately equal to the acoustic wavelength. Moreover, the Rayleigh
waves propagation velocity is smaller than that of the volume wave. Due to these
properties, the Rayleigh waves have considerable applications. Particularly, the
propagation of Rayleigh waves in thermoelastic materials has numerous appli-
cations in various fields of science and technology [29–31]. In the field of quality
control, these waves are widely used for the non-destructive measurement and
evaluation of surface cracks [32, 33]. In geophysics Rayleigh waves diffraction are
used for the detection of near surface features such as voids and faults [34–39].
In medicine, the Rayleigh waves are also the subject of great interest. Indeed,
the Rayleigh waves make it possible to characterize a viscoelastic soft biological
tissues in a non invasive manner [40–45].

In this paper, an analytical approach based on the Zener model is proposed to
predict the phase velocity and the attenuation coefficient of the Rayleigh wave.
This wave propagating in such viscoelastic media undergo attenuation, hence,
the Rayleigh wavenumber becomes complex. The real part of this wavenumber
determines the phase velocity and its imaginary part represents the attenuation
coefficient. In other word, the complex wavenumber includes information about
both the propagation and dissipation of the Rayleigh wave at different frequen-
cies. The frequency-dependent complex wavenumber was calculated using a dis-
persion relation established analytically in this paper. The results obtained are
fundamental and can be very useful to interpret the experimental measurements
of Rayleigh waves properties in viscoelastic media.
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1.1. Viscoelastic constitutive equation

The use of mechanical models to describe the materials behavior is well
known [10, 46–48]. Most polymers do not exhibit viscoelastic behavior described
by the simple Maxwell and Kelvin models because the conformational changes
and the viscous flow are constrained by a multitude of physical entanglements
and chemical crosslinks which impair viscoelastic flow in a very complicated way.
The situation is further complicated if the polymer in question has a complex
morphology such as crystalline domains dispersed in an amorphous matrix, mi-
crophase separated polymer domains and interpenetrated polymer networks. For
these materials, more elaborate spring dashpot models have to be employed to
effectively describe their complicated viscoelastic behavior.

The model that captures both the relaxation and retardation is known as
the three-parameter model. This model is obtained by adding a spring either
in series to the Kelvin–Voigt model or in parallel to the Maxwell model. This
model is sometimes referred to as the Zener Model and is employed to describe
a material that will fully recover after a load is removed because the spring con-
nected in parallel to the Maxwell element will continue to move the piston of the
dashpot back to its original position. Therefore, the simplest approach to de-
scribe viscoelasticity assumes that the material consists of a viscous element and
two elastic components. Thus, the constitutive equation describes the relation
between force and deformation is expressed in the following form [49]:

(1.1) G1τ + η
∂τ

∂t
= 2G1G2ε+ 2(G1 +G2)η

∂ε

∂t
,

where η is the viscosity, G is the shear modulus, and ε stands for the strain ten-
sor. Qualitatively, this model describes the behavior of a typical polymer. The
Kelvin–Voigt model gives retarded elastic behavior and represents a crosslinked
polymer. The Maxwell model gives steady-state creep and represents an un-
crosslinked polymer. With an appropriate choice of G1 and G2, the Zener model
can describe both types of behavior. A temporal Fourier transform, convention
f(ω) =

∫
f(t)ejωt dt, readily relates the dynamic shear stress τ (ω) = 2G(ω)ε(ω)

linearly to the dynamic strain ε(ω), where G(ω) is known as the complex elastic
modulus. Explicitly, for the Zener model one finds:

(1.2)
G(ω)

G1
= α− jωδ

1− jωδ
,

where the Zener time δ = η/G1 characterizes the crossover from elastic to viscous
behavior, and α = G2/G1 represents the ratio of the shear moduli. Note that
the real part of the complex elastic modulus refers to the storage modulus and
its imaginary part to the loss modulus [8, 9]. Since the Zener model is connected
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by a spring in parallel with the Maxwell model, we can deduce the complex shear
modulus for Maxwell and Kelvin–Voigt models as below:

G(ω)

G1
= − jωδ

1− jωδ
, for Maxwell model,(1.3)

G(ω)

G1
= 1− jωδ, for Kelvin–Voigt model.(1.4)

Figure 1 shows the complex shear modulus for such a Zener solid. For frequen-
cies ωδ < 1, the loss modulus for α = 0 (i.e. Maxwell) dominates over the
storage modulus indicative of viscous behavior. However, when the storage mod-
ulus dominates over the loss modulus indicative of elastic behavior. For α 6= 0
two plateaus are highlighted for δω � 1 and δω � 1. For δω � 1 the behavior
of the Zener model is analogous to that of Kelvin–Voigt (creep). For δω � 1
the behavior of the Zener model is analogous to that of Maxwell (relaxation).
Between these two limits the behavior is viscoelastic. For α = 0.1 a very impor-
tant behavior can be highlighted. For δω ≤ 0.1 the behavior is viscoelastic with
a dominant elastic component. For 0.1 ≤ δω ≤ 0.8 the behavior is viscoelas-
tic with a dominant viscous component. For δω ≥ 0.8 the behavior is viscoelastic
with a dominant elastic component before reaching the elastic plateau. For any
α > 0.2 the behavior between the two limits is viscoelastic with a dominant
elastic component.
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Fig. 1. Real (blue curve) and imaginary (red curve) part of the complex shear modulus as
a function of normalized frequency ωδ for a Zener model for different values of α.
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2. Rayleigh wave propagation in viscoelastic media

Rayleigh waves are surface waves which are confined near stress-free bound-
aries in half spaces. They involve interactions between compressional and shear
waves [25]. Rayleigh waves include motion in both the longitudinal and trans-
verse directions, in particular a two-dimensional rolling motion along the xz
plane. The amplitude of the propagating surface wave decreases as z increases
in the half space. In this paper, the half space is assumed to be viscoelastic.
Therefore, the wave amplitude decreases as x increases because of dissipation
in the viscoelastic half space. The momentum conservation’s equation governs
the wave motion in the medium. In the absence of body forces, the equation is
written in the form:

(2.1) ρ
∂2u

∂t2
= ∇ · σ,

in which ρ is the material density and u is the displacement vector, is the stress
tensor. The total stress in viscoelastic media, σ, can be written as:

(2.2) σ = λ(∇ · u)I + τ ,

where λ is the Lamé’s first parameter, I is the identity tensor and the shear
stress tensor τ satisfies the constitutive equation (1.1). In order to obtain a gen-
eralized form of momentum equation for viscoelastic media, we start by applying
the divergence operator to both sides of above equation and taking into account
Eqs. (1.2) and (2.1), yields the following generalized unsteady momentum equa-
tion for the viscoelastic media as:

ρ

G1

(
∂2u

∂t2
+ δ

∂3u

∂t3

)
=

[
λ

G1
+ α+ δ

(
1 + α+

λ

G1

)
∂

∂t

]
∇∇ · u(2.3)

+

[
α+ δ(1 + α)

∂

∂t

]
∇2u.

It is easily seen from the above equation that the elastic theory is recovered when
the Zener time parameter δ is set identically to zero (i.e. η = 0). Thus, Eq. (2.3)
becomes Navier’s eqution as follow [25]:

ρ
∂2u

∂t2
= G2∇2u + (λ+G2)∇∇ · u.

Therefore, any sufficiently smooth vector field can be written in terms of the
sum of the gradient of a scalar potential and the curl of a vector potential. This
is called the Helmholtz representation [50]. For the displacement field considered
here, that representation is:

(2.4) u = ∇φ+∇×ψ
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with the Gauge condition∇·ψ = 0, and ψ = (0, ψ, 0) due to the two-dimensional
nature of the problem. Thus, φ and ψ are the compressional and shear wave
potentials. Substitution of the above equation into the equation of motion (2.3),
after some manipulations, yields:{

λ

G1

(
1 + δ

∂

∂t

)
+ 2

[
α+ δ(1 + α)

∂

∂t

]}
∇2φ− ρ

G1

(
1 + δ

∂

∂t

)
∂2φ

∂t2
= 0,(2.5) [

α+ δ(1 + α)
∂

∂t

]
∇2ψ − ρ

G1

(
1 + δ

∂

∂t

)
∂2ψ

∂t2
= 0.(2.6)

The determination of the scalar potentials φ and ψ requires the resolution of the
above equations; if the harmonic motion is considered as f(x, t) = f(x)e−jωt,
φ and ψ take the following forms:

φ = Ae−βczej(kx−ωt),(2.7)

ψ = Be−βszej(kx−ωt),(2.8)

in which k = kr+jki is the complex Rayleigh wavenumber along the propagation
direction, A and B are the unknown amplitudes of the corresponding potentials
and:

(2.9) β2
c = k2 − k2

c , β2
s = k2 − k2

s ,

where the complex wavenumbers kc and ks are expressed as:

(2.10) kc =
ω

cc
, ks =

ω

cs
,

where cc and cs are the complex compressional and shear wave velocities in the
medium, respectively; and are expressed as:

(2.11) cc =

√
λ(ω) + 2G(ω)

ρ
, cs =

√
G(ω)

ρ
,

in which G(ω) is the complex shear modulus given in Eq. (1.2). Therefore, since
the motion is harmonic the stress tensor may be written as:

(2.12) σ = λ(ω)(∇ · u)I + 2G(ω)ε

and the complex, frequency-dependent Lamé’s first parameter is determined ac-
cording to the relation:

(2.13) λ(ω) =
2ν

1− 2ν
G(ω),
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where ν is the Poisson ratio of the medium. Considering the fundamental field
equations in a Cartesian coordinate system and using the Helmholtz decompo-
sition given in Eq. (2.14), the displacement components for the Rayleigh wave
are defined as:

ux = [jkAe−βcz + βsBe
−βsz]ej(kx−ωt),(2.14)

uz = [jkBe−βsz − βcAe−βcz]ej(kx−ωt).(2.15)

Also, according to the generalized constitutive Eq. (2.12), the relevant stress
components that will further used in boundary conditions are given by:

σzz = −G(ω)[2jkβcAe
−βcz + (β2s + k2)Be−βsz]ej(kx−ωt),(2.16)

σxz = −G(ω)[2jkβsBe
−βsz − (β2s + k2)Ae−βcz]ej(kx−ωt).(2.17)

The complex dispersion equation for the propagating Rayleigh waves shall be
obtained by application of the appropriate boundary conditions. Therefore, the
specific boundary conditions that need to be satisfied on the stress-free boundary
(i.e., at z = 0) are σxz = 0 and σzz = 0. Consequently, utilization of the stress
relations in the boundary conditions yields the following dissipation equation,
ensuring nontrivial solutions for A and B:

(2.18)
(

2− k2s
k2

)4

− 16

(
1− k2s

k2

)(
1− 1− 2ν

2− 2ν

k2s
k2

)
= 0.

Since Eq. (2.18) contains k, ω, as well as all material parameters of the vis-
coelastic medium, Eq. (2.18) represents the implicit complex dispersion equa-
tion of Rayleigh waves propagating in a semi infinite viscoelastic medium. Equa-
tion (2.18) was solved using Mathematica software. Once the wavenumber is
obtained, the Rayleigh wave velocity can be calculated by v = ω/kr. While
the imaginary part of wavenumber ki represents the attenuation per unit length
in the propagation direction. Note that the dispersion equation of the Rayleigh
wave in an elastic medium is obtained by replacing ks in Eq. (2.18) by kt = ω/ct,
where ct =

√
G1/ρ represents the shear wave velocity in the solid.

3. Numerical results and discussion

In order to plot the behavior of the complex Rayleigh wavenumber, the ma-
terial properties used in this paper are G1/ρ = 230m2 · s−2 and ν = 0.4, and
similar to those used by Catheline et al. [3].
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3.1. Rayleigh wavenumber for for Maxwell and Kelvin–Voigt models

In this section we investigate the effect of the normalized frequency ωδ on
the Rayleigh wavenumber for Maxwell and Kelvin–Voigt models. The frequency
used for the numerical calculations is equal to 100 Hz. Therefore, the normalized
frequency becomes δω = 200πδ. In particular, the curves are obtained by varying
the Zener time, i.e. δ. In this case, the wavenumber characterizing the elastic
medium kt does not depend on the angular frequency ω. Otherwise, kt = 200π/ct
has a constant value equal to 41.43m−1. It can be seen from Fig. 2 that the
real part of the Rayleigh wavenumber for the Maxwell model k(m)

r decreases
with ωδ and reaches a plateau region for ωδ ≥ 1. Otherwise, its imaginary part
k

(m)
i decreases monotonically with ωδ. Possible physical explanation for this

asymptotic behavior may be that the Rayleigh wave is similar to a shear wave
(i.e. the compression term ∇∇ · u in Eq. (2.3) is negligible). In order to obtain
the asymptotic values, a one-dimensional (i.e. βs = 0) shear wave is considered.
Using the first-order Taylor polynomial of the real and imaginary parts of the
wavenumber k = ks, the following asymptotic relations are obtained:

(3.1)
k(m)
r = k

(m)
i =

kt√
δω

for δω � 1,

k(m)
r = kt, k

(m)
i =

kt√
2δω

for δω � 1.

These analytical expressions are very consistent with the curves obtained with
the dispersion equation (2.18). Moreover, Fig. 2 also shows that for the Maxwell
model the medium behaviors are respectively viscous and elastic for δω � 1 and
δω � 1. Between these two limits the medium acts like viscoelastic.

The opposite phenomenon appears for the Kelvin–Voigt model. The real part
of the Rayleigh wavenumber k(kv)

r keeps a constant value and begins to drop for
ωδ ≥ 0.5. Besides, its imaginary part k(kv)

i increases with ωδ, attains a maximum
value for ωδ = 1 and then falls off. It is seen that the real and imaginary parts
of the Rayleigh wavenumber join for ωδ ≥ 10. These curves are coherent with
asymptotic relations given below:

(3.2)
k(kv)
r = kt, k

(kv)
i =

ktδω√
2

for δω � 1,

k(kv)
r = ki =

kt√
δω

for δω � 1.

Similarly, these asymptotic relations are obtained using the first-order Taylor
polynomial. In addition, Fig. 2 illustrates that for the Kelvin–Voigt model the
medium behaviors are respectively viscous and elastic for δω � 1 and δω � 1.
Between these two limits the medium acts like viscoelastic.
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Figure 2 provides the influence of the normalized frequency δω on the ratio
kr/ki for Maxwell and Kelvin–Voigt models. We notice that this ratio increases
with d for Maxwell model and decreases in the case of Kelvin–Voigt model.
Otherwise, we remark that this ratio converges to 1 when δω � 1 for the Maxwell
model and when δω � 1 for the Kelvin–Voigt model. This reveals the viscous
character of the medium.
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Fig. 2. Rayleigh wavenumber as a function of normalized frequency δω for Maxwell and
Kelvin–Voigt models. The superscript (m) is used throughout this article for the Maxwell

model and the superscript (kv) is employed for the Kelvin–Voigt model.

3.2. Comparison of Zener, Maxwell and Kelvin–Voigt models

The Rayleigh wavenumber of Zener, Maxwell and Kelvin–Voigt models are
compared in Fig. 3 and two cases can be distinguished. For α = 0 the Zener model
coincides with the Maxwell one. For α 6= 0 the real part of the Rayleigh wavenum-
ber for the Zener model keeps a constant value (first plateau) if δω ≤ 0.1, de-
clines and reaches a second plateau if δω ≥ 1. Two elastic regions for δω ≤ 0.1
and δω ≥ 1 and one viscoelastic transition zone in between are pointed up for
the Zener model. On the other hand, as the normalized frequency increases, the
imaginary part of the Rayleigh wavenumber for the Zener model first increases,
reaches a maximum and then decreases. To justify these analyses, the following
asymptotic relations based on the first-order Taylor polynomial can be used:

(3.3)
k(z)
r =

kt√
α
, k

(z)
i =

ktδω√
2α

for δω � 1,

k(z)
r =

kt√
α+ 1

, k
(z)
i =

kt√
2δω(α+ 1)3/2

, for δω � 1,

where the superscript (z) is used for the Zener model. Moreover, Fig. 3 high-
lights a very important result. As expected, the Zener model is analogous to
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Fig. 3. Rayleigh wavenumber as a function of normalized frequency δω for Zener, Maxwell
and Kelvin–Voigt models for different values of α = G2/G1.

the Kelvin–Voigt model for the low normalized frequency. While for the high
normalized frequency the Zener model coincides with the Maxwell model.

3.3. Influence of the shear moduli ratio on the Rayleigh wave velocity
and attenuation

The influence of the shear moduli ratio on the Rayleigh wave velocity and
attenuation is illustrated in Figs. 4 and 5. Firstly, Fig. 4 supplies the evolution
of the Rayleigh wave velocity and attenuation as a function of the normalized
frequency for different values of shear modulus ratio α. For α = 0, the velocity
rises quickly for low δω values and then reaches a plateau region (ct). Otherwise,
the attenuation decreases monotonically. If α 6= 0, the velocity has a constant
value (

√
αct) for very low δω values, increases and a constant value (

√
α+ 1ct)

is obtained for very high δω. In addition, for fixed value of δω, the velocity
augments and the attenuation diminishes with α. It is noted that the behavior of
the velocity observed here can be deduced from the real part of the wavenumber
pointed up in Fig. 3 since the velocity is inversely proportional to this real part.

Secondly, the wave velocity and attenuation are plotted for six values of the
normalized frequency δω as a function of the shear modulus ratio α. The velocity
keeps a constant value for α ≤ 0.1 then increases with α. For a well determined
α value, the velocity grows with δω. For α ≥ 0.1, the influence of α on the
velocity is less important. The six curves converge for α = 10. In this last case
the velocity does not depend on δω. Therefore, this behavior is typically elastic.
This observation is in good agreement with the evolution of the attenuation given
in Fig. 5(b). Furthermore, the attenuation decreases monotonically with α and
converges to 0 for any value of δω. However, the attenuation curves converge
faster when δω is lower.
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Fig. 4. Rayleigh wave velocity and attenuation versus normalized frequency δω for different
values of shear moduli ratio α.
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Fig. 5. Rayleigh wave velocity and attenuation versus shear moduli ratio α for different
values of normalized frequency δω.

4. Validation of the present method

In this section, we compare the theoretical predictions of the dispersion equa-
tion to literature theoretical and experimental data collected from a previously
published paper [3]. Catheline et al. presented an experimental device consid-
ering only shear wave. Therefore, the analytical model used by Catheline et al.
is adapted to the experiment, i.e. considering a one-dimensional shear wave.

To plot the Rayleigh wave velocity and attenuation as a function of frequency
for the Zener model, the experimental shear moduli given in [3] are used. In
consequence, G1 = 5.73 kPa and η = 23Pa · s for the Zener model with α = 0.
Otherwise, G1 = 5.67 kPa and η = 0.22Pa · s if α = 1. As observed in Fig. 6, the
velocity and attenuation calculated for the Zener model with α = 0 increases
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with the frequency and reaches a plateau region for f � 40Hz (δω � 1). This
is coherent with the asymptotic relations given in the following form:

(4.1)
v(m) = ct

√
δω, k

(m)
i =

√
ω

ct
√
δ

for f � 40Hz,

v(m) = ct, k
(m)
i =

1√
2ctδ

for f � 40Hz.

Moreover, it is also shown (Fig. 6) that the velocity keeps a constant value for
the Zener model with α = 1 and frequency less than 500Hz. We can also notice
that the attenuation increases monotonically with the frequency. This can be
justified by the coincidence between Zener (α = 1) and Kelvin–Voigt models
(Fig. 3) for δω � 1 or f � 4000Hz. Otherwise, these curves are asymptotically
approaches by the two subsequent equations:

(4.2) v(kv) = ct
√
δω, k

(kv)
i =

δω2

√
2ct

for δω � 1 or f � 4000Hz.

Finally, the theoretical curves in Fig. 6 are in very good agreement with those
obtained by Catheline et al. [3].
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Fig. 6. Rayleigh wave velocity and attenuation versus frequency for Maxwell and
Kelvin–Voigt models.

5. Particular configuration of the standard linear solid model

As mentioned previously, the model that captures both the relaxation and
retardation is known as the three-parameter model or the standard linear solid
(SLS) model. Another configuration of the SLS model is obtained by adding
a spring in series to the Kelvin–Voigt model. This model is sometimes referred
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to as the Poynting–Thomson model. A comparison between Poynting–Thomson
and Zener models is made in this section. It is therefore necessary to establish the
constitutive equation characterizing the Poynting–Thomson model. This consti-
tutive equation can be obtained using equilibrium and compatibility conditions
as follow:

(G1 +G2)τ + η
∂τ

∂t
= 2G1G2ε+ 2G1η

∂ε

∂t
.

In this case the generalized unsteady momentum Eq. (2.3) becomes:

ρ

G1

[
(1 + α)

∂2u

∂t2
+ δ

∂3u

∂t3

]
=

[
λ

G1
+ α

(
1 +

λ

G1

)
+ δ

(
1 +

λ

G1

)
∂

∂t

]
∇∇ · u

+

(
α+ δ

∂

∂t

)
∇2u.

For harmonic behavior, the complex elastic modulus given in Eq. (1.2) can be
expressed as:

(5.1)
G(ω)

G1
=

α− jωδ
1 + α− jωδ

.

Note that the dispersion equation in the case of the Poynting–Thomson model
is similar to dispersion equation (2.18). To plot the Rayleigh wave properties,
the complex shear modulus (Eq. (5.1)) is introduced into the dispersion equa-
tion (2.18). Figure 7 shows the influence of the model used on the Rayleigh wave
velocity and attenuation. Velocity and attenuation are plotted against the nor-
malized frequency δω for the two SLS configurations. In this figure, velocity and
attenuation have been plotted over a wide range of variation of the normalized
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Fig. 7. Rayleigh wave properties versus normalized frequency δω for three values of moduli
ratio α = 0.5, 1, 2. Blue lines represent zener model and red lines for the Poynting–Thomson

model.
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frequency δω, and for three values of the shear modulus ratio. The attenuation
behavior in the case of the Poynting–Thomson model is similar to that of the
Zener model. However, the amplitude and positions of local maxima are differ-
ent. For the Rayleigh wave velocity, the difference between the two models is
linked to the modulus ratio effect on the second plateau corresponding to the
second elastic zone.

6. Conclusion

Propagation of Rayleigh waves in a viscoelastic media was investigated in
this paper using an original approach based on the exact theory. A new the-
oretical form of the complex dispersion equation was developed. The effect of
the normalized frequency δω on the Rayleigh wave number was investigated for
Maxwell, Kelvin–Voigt and Zener models. The influence of the shear modulus
ratio (Zener model) on the Rayleigh wave velocity and attenuation was also stud-
ied. The comparison between Zener, Maxwell and Kelvin–Voigt models points
up a very important result. As expected, one can conclude that the behavior
of the Zener model is analogous to the Kelvin–Voigt model (Creep) for the low
normalized frequency and to the Maxwell model (relaxation) for the high nor-
malized frequency. Consequently, the Zener model can be used to describe the
creep behavior (as the Kelvin–Voigt model) and the relaxation behavior (as the
Maxwell model).
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