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Heat conduction in a new Eulerian flow model
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M. Svärd has proposed the Eulerian flow model (EFM) [1] as a replacement
for the traditional Navier–Stokes–Fourier (NS) equations. The EFM is equipped with
a mass diffusion term in its mass balance law, along with other features, which lead
to its satisfying the property of weak well-posedness in the special case of ideal gases
with temperature-independent specific heats. Although this property is advantageous
mathematically and numerically, it can be shown that the EFM fails to model certain
types of problems physically. Here, as an example of the latter, steady-state problems
of pure heat conduction are used to show that, when compared with predictions from
Fourier’s law, the EFM substantially underestimates the magnitude of the heat flux
in gases.
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1. Introduction

The Navier–Stokes–Fourier (NS) equations can be used to describe
a wide variety of fluid behaviors. This system of equations has been in use for
almost two centuries and has undergone extensive testing by which its predic-
tions have been compared to measurements of fluid phenomena as diverse as flow
through tubes, solid objects falling in fluid media, acoustics, light scattering, and
heat transfer, just to mention a few. The NS equations feature three transport
coefficients, the shear and bulk viscosities and the thermal conductivity, and
although each of these parameters has a molecular dynamical basis in kinetic
gas theory, they are interpreted most generally from a phenomenological point
of view–that is to say, by measuring their values in gases and liquids in experi-
ments under various thermodynamic conditions. For example, the shear viscosity
can be measured by experiments based on Poiseuille flow such as the capillary
method (see Bird et al. [7, pp. 48–53], for example) the thermal conductivity
can be measured with heat transfer experiments such as the hot wire method
(see Vargaftik et al. [8, pp. 6–8], for example and, assuming the other two
parameters are measured independently, the bulk viscosity can be measured by
matching ultrasound attenuation data (see Greenspan [9], for example). There
are numerous other techniques for measuring the NS transport parameters, but
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for a given fluid in a given temperature and pressure state, experiments of high
accuracy should all lead to the same values. In practice this is observed, more
or less, when the experiments are conducted in the NS range of validity, i.e. not
in the highly nonlinear or rarefied gas regimes.

The Eulerian flow model (EFM), proposed by M. Svärd [1] as a replace-
ment for the Navier–Stokes–Fourier equations, is constructed on the idea that
transport processes in fluids are governed by one type of diffusion, which leads
to a system of equations with a single transport parameter. This simplified view
has enabled Svärd to demonstrate weak well-posedness in the special case of
an ideal gas with temperature-independent specific heats, and he has exploited
this property in computer codes to simulate nonlinear phenomena, such as vortex
shedding, with improved numerical behavior when compared to the same type of
codes based on the NS equations, which do not satisfy weak well-posedness [1–3].

I believe most researchers would agree that despite any improvements one
attempts to make to the NS equations outside their range of validity, it is still
necessary to verify that new fluid dynamics models give accurate predictions
to problems within the NS range of validity. One obvious step towards doing
so would be to employ the new formulation in modeling the same type of ex-
periments described above for measuring the NS transport parameters and to
compare the results. In Svärd [2] and Dolejs̆í and Svärd [3], the diffusion co-
efficient in the EFM is chosen effectively to equal the kinematic viscosity, which
yields predictions matching those from the NS equations for shear-dominated
phenomena like laminar Poiseuille and Couette flow in the continuum regime.
I claim that choosing the diffusion coefficient in this manner leads to EFM predic-
tions of both acoustic and thermal phenomena that are highly inaccurate [4–6].
Here, as further support of this claim, I focus on problems of pure steady-state
heat conduction to show that the Eulerian flow model greatly underestimates
the magnitude of the heat flux in gases.

2. Description of the experiments

The thermal conductivity, λ, in Fourier’s law of heat conduction can be mea-
sured by experiments like ones described in Vargaftik et al. [8, Ch. 2.1] for
example, the hot wire method, the concentric cylinders method, and the parallel
plates method–whereby a gradient in the temperature, T , is imposed with ther-
mally regulated boundaries across a quiescent fluid. For the types of experiments
under discussion, we assume the following.

1. Enough time is allowed to pass so that a steady state in the fluid is reached
in which the temperature gradient, ∇T , is constant and the thermody-
namic pressure, p, is constant and uniform.
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2. Sources of convection have been minimized so that it can be assumed there
is no mass flow.

3. The power, Q, to keep the boundaries at their fixed temperatures is mea-
surable, and sources of thermal radiation have been accounted for in the
measurement.

4. Conditions of the experiment are chosen to pertain to the continuum
regime, where the NS equations are considered to be valid. This means the
geometrical length scale, e.g. the characteristic distance between bound-
aries maintained at different temperatures, is much greater than the char-
acteristic mean free path of the fluid.

5. The temperature difference between thermally regulated boundaries is not
extremely large compared to the average temperature so that the experi-
ment does not correspond to the highly nonlinear regime.

In the following section, we study both the NS equations and Svärd’s EFM
under assumptions 1–3, arriving at the equations to solve for problems in pure
steady-state heat conduction. Assumption 4 further allows one to model the fluid
as having complete thermal accommodation at thermally regulated boundaries,
and assumption 5 ensures that one may approximate the transport parameters
as being constant on the domain. In Appendix A, we use the parallel plates
method to illustrate these general concepts with a simple example.

3. Mathematical models

3.1. Navier–Stokes Model

Throughout this discussion, standard tensor operators have been employed,
see Bird et al. [7] for example, and the symbol, I, is used to denote the second-
order identity tensor. The NS equations can be expressed as the following system:

∂ρ

∂t
= −∇ · (ρv),(3.1)

∂(ρv)

∂t
= −∇ · (pI− Πv + ρvv),(3.2)

and

(3.3)
∂E

∂t
= −∇ · (q− Πv · v + (E + p)v).

In the above, ρ represents the mass density, v denotes the velocity vector, and E
is the total energy density, which is the sum of the internal energy density and
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the kinetic energy density:

(3.4) E = ρu+
1

2
ρv · v,

where the specific internal energy is denoted as u. The viscous stress tensor is
taken to be that of a Newtonian fluid:

(3.5) Πv = ζ(∇ · v)I + 2η∇vSD,

where ζ and η are the bulk and shear viscosity, respectively, and “SD” is used to
denote the symmetric and deviatoric part of a tensor; and the heat flux is given
by Fourier’s law:

(3.6) q = −λ∇T,

where λ represents the thermal conductivity.
Let us study a fluid on a fixed spatial domain Ω with closed boundary, ∂Ω.

Integrating (3.1)–(3.3) over the volume Ω, applying Gauss’s divergence theorem,
and assuming there to be no total change in mass or momentum, leads to

0 =

∫
Ω

∂ρ

∂t
dV = −

∮
∂Ω

n · (ρv) dA,(3.7)

0 =

∫
Ω

∂(ρv)

∂t
dV = −

∮
∂Ω

n · (pI− Πv + ρvv) dA,(3.8)

and

(3.9) −Q =

∫
Ω

∂E

∂t
dV = −

∮
∂Ω

n · (q− Πv · v + (E + p)v) dA,

where, we recall from Section 2 that Q represents the total power required to
maintain the thermally regulated boundaries and, under assumptions 1 and 3,
this is a constant measurable quantity.

Also recall that we suppose there to be no mass flux under assumption 2,
which means ρv–and, thereby, v–are zero. Therefore, the above system reduces
to ∮

∂Ω

pn dA = 0,

a condition that is automatically satisfied under assumption 1, and

(3.10) −
∮
∂Ω

n · q dA =

∮
∂Ω

n · (λ∇T ) dA = −Q.
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Using Gauss’s divergence theorem again, we see that in order to find the tem-
perature profile, one must solve

(3.11)
∫
Ω

∇ · (λ∇T ) dV = −Q.

The above relationship is routinely used to measure values for the thermal con-
ductivity, λ, of fluids–for example, see Appendix A for a discussion of how this
is done with the parallel plates method. Therefore, q given by Fourier’s law
represents the heat flux that is physically measured in pure heat conduction
experiments.

3.2. The Eulerian Flow Model proposed by Svärd [1, 2]

The EFM proposed in Svärd [1, Eqs. (34)] is the following system of balance
laws for the mass, momentum, and total energy:

∂ρ

∂t
= −∇ · (−ν∇ρ+ ρv),(3.12)

∂(ρv)

∂t
= −∇ · (pI− ν∇(ρv) + ρvv),(3.13)

and

(3.14)
∂E

∂t
= −∇ · (−ν∇E + (E + p)v),

where ν is a diffusion parameter, chosen in Svärd [2] and Dolejs̆í and Svärd
[3], effectively to equal to the kinematic viscosity,

(3.15) ν =
η

ρ
,

in order to make predictions that agree well with those from the NS equations
for shear-dominated phenomena.

Our next goal is to determine the purely conductive heat flux in the EFM for
comparison with Fourier’s law (3.6) in the NS model. If, as before, one integrates
(3.12)–(3.14) over the domain Ω, and assumes there to be no total change in mass
or momentum, then one obtains:

0 =

∫
Ω

∂ρ

∂t
dV = −

∮
∂Ω

n · (−ν∇ρ+ ρv) dA,(3.16)

0 =

∫
Ω

∂(ρv)

∂t
dV = −

∮
∂Ω

n · (pI− ν∇(ρv) + ρvv) dA,(3.17)
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and

(3.18) −Q =

∫
Ω

∂E

∂t
dV = −

∮
∂Ω

n · (−ν∇E + (E + p)v) dA.

The total mass flux in the EFM is given by −ν∇ρ+ ρv, and its terms must
balance as

(3.19) ν∇ρ = ρv

in order for the fluid to exhibit no mass flow per assumption 2. Next, if one uses
tensor identity (B.1) and takes p to be uniform by assumption 1, the steady-state
momentum equation (3.17) becomes∮

∂Ω

n · (νρ∇v+ν(∇ρ)v − ρvv) dA = 0

or, enforcing the no-mass-flow condition (3.19),

(3.20)
∮
∂Ω

n · (νρ∇v) dA = 0.

Let us now examine the steady-state total energy equation (3.18). Substituting
definition (3.4) yields

(3.21) −
∮
∂Ω

n · (−ν∇(ρu)− ν

2
∇(ρv · v) + (ρu+ p+

1

2
ρv · v)v) dA = −Q

which, upon use of tensor identities (B.2) and (B.3), becomes

(3.22) −
∮
∂Ω

n ·
(
−νρ∇u− uν∇ρ− ν

2 (∇ρ) v · v+
−νρ (∇v) · v +

(
ρu+ p+ 1

2ρv · v
)
v

)
dA = −Q.

As computation 1 in Appendix B, it is shown that condition (3.20) leads to

(3.23)
∮
∂Ω

n · (νρ(∇v) · v) dA = 0,

and by using this and relation (3.19) in the above, one arrives at

(3.24) −
∮
∂Ω

n ·
(
−νρ∇u+

p

ρ
ν∇ρ

)
dA = −Q.
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Finally, substitution of the thermodynamic relationships (B.5) and (B.6), under
assumption 1 that p is uniform, yields

(3.25)
∮
∂Ω

n · (νρcP∇T ) dA = −Q.

Comparing this with (3.10) and using (3.15), one finds the heat flux for pure
steady-state heat conduction in the EFM is given by

(3.26) qEFM = −ηcP∇T.

4. Comparison of model predictions to experiments

Recall that q, given by Fourier’s law (3.6) with recorded values of λ, repre-
sents the physical heat flux that is measured in the experiments under discussion.
Taking the ratio of the magnitudes of the NS and EFM heat fluxes, one finds

(4.1)
|qEFM |
|q|

=
ηcP
λ

= Pr,

where Pr is the Prandtl number. A table containing values of the Prandtl num-
ber for a few different fluids at room temperature (in the range 293–300K) is
provided below.

Fluid Pr

noble gas 0.667

hydrogen gas 0.690

nitrogen gas 0.719

oxygen gas 0.727

methane gas 0.728

carbon dioxide gas 0.763

water 6.9

As the table demonstrates, ideal gases typically have measured Prandtl num-
bers near the value of 0.7, which in view of equation (4.1) implies that the EFM
systematically underestimates heat flow in this type of medium. On the other
hand, water and other liquids typically have Prandtl numbers much higher than
1, resulting in greatly overestimated EFM heat flow predictions.

5. Discussion

From the present results and the results contained in [4–6], I contend that al-
though it exhibits the desired property of weak well-posedness in ideal gases with
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temperature-independent specific heats, Svärd’s Eulerian flow model is based on
an oversimplified view of diffusion processes in fluids–one that leads to inaccu-
rate predictions for both thermal and acoustic phenomena in the NS range of
validity. I argue, therefore, that Svärd’s model is not a viable replacement for the
Navier–Stokes–Fourier equations. Moreover, it is seen that by comparing only
numerical results from different fluid dynamics models – without attempting to
relate the models to a wide variety of physical experiments in which data is
available – one runs the risk of favoring a simpler set of equations that might be
numerically better-behaved in the type of code for which it has been tailored,
but that ultimately describes nature less accurately.

Appendix A. Parallel plates method

Let us consider a laboratory experiment that may be used to measure the
thermal conductivity λ, of a fluid. The following parallel plates method is de-
scribed in more detail in Vargaftik et al. [8, Ch. 2.1] and Teagan and
Springer [10], where there appear discussions of how to account for and/or
eliminate potential sources of error, e.g. those that might arise from thermal
convection and radiation1. Its simple one-dimensional Cartesian geometry is my
reason for choosing to provide it as an example for pure heat conduction.

Suppose there is an unperturbed fluid at pressure p between two parallel
plates, each having an area A and set a distance L apart. Each plate is maintained
at a different temperature, the colder plate at Tc and the hotter one at Th. After a
steady state has been reached, a measurement is made of the power, Q, required
to keep the plates at their respective temperatures. For example, in Teagan and
Springer’s experiment from [10], Q is measured as the total electrical power input
of the hot plate heating element minus the power loss measured from experiments
conducted in a vacuum, which accounts for thermal radiation effects. Additional
specifications regarding the parallel plates method for measuring λ are listed
below.

1. The plates are oriented perpendicular to the direction of gravity, with the
hotter plate above the colder plate so as to minimize convective effects.

2. The plates are maintained at uniform temperatures across their surfaces
with their diameters much larger than the spacing, L, between them so
that the experiment can be modeled as approximately one-dimensional.

3. The temperature difference between the plates, ∆T = Th−Tc, is not large
compared to the average temperature, T0 = (Th + Tc) /2. This ensures the

1Note, however, that Teagan and Springer in [10] use their apparatus to study gases in
the transition regime, whereas here our focus is on gases in the continuum regime.
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experiment does not correspond to the highly nonlinear regime and one
can model the transport coefficients like the thermal conductivity λ, as
being approximately constant throughout the domain.

4. L is much greater than the characteristic mean free path length of the
fluid, which for an ideal gas is of the order, η

√
RT0/p, where R is the spe-

cific gas constant. This ensures the experiment belongs to the continuum
regime and it is appropriate to model the fluid as having complete thermal
accommodation with the plates, i.e. to assume the fluid’s temperature is
equal to that of the plates at the boundaries.

hot plate at T=Th

cold plate at T=Tc

fluid

x=0

x=L

q

Fig. 1. Parallel plates method.

As shown in Fig. 1, let us suppose that the spatial variation occurs in the
Cartesian x-variable and that the cold and hot plates are located at x = 0 and
x = L, respectively. In Section 3.1, we find that the heat conduction experiment
described above is modeled in the NS formulation by (3.11), which for our one-
dimensional problem, under assumptions 3 and 4 above, becomes

(A.1)
∫ (

λ
d2T

dx2

)
dx =

Q

A

with boundary conditions,

(A.2) T (0) = Tc and T (L) = Th.

Therefore, the temperature is found by solving

(A.3)
dT

dx
=

Q

Aλ

with (A.2), which yields the linear profile:

(A.4) T (x) = Th +
∆T

L
(x− L) .
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Substituting the temperature gradient computed from (A.4) into (A.3), one finds
the thermal conductivity is given by

(A.5) λ =
QL

A∆T
,

where each of the quantities on the right-hand side is measurable in the experi-
ment.

Appendix B. Formulas and computations

Tensor identities. In Section 3.2 and below, we use the following tensor identities:

∇(αw) = α∇w + (∇α)w,(B.1)

∇(αβ) = α∇β + β∇α,(B.2)

∇(w ·w) = 2(∇w) ·w(B.3)

and

(B.4) ∇ · (M ·w) = MT : ∇w + (∇ ·M) ·w,

where α and β represent scalar functions, w is a vector function, and M is
a second-order tensor function with transpose denoted as MT . The double-dot
operator “ : ” in Eq. (B.4) represents the inner tensor product.

Thermodynamic relationships. In Section 3.2, we employ the following equilib-
rium thermodynamic relationships:

(B.5) dρ = −ραPdT +
γ

c2
dp

and

(B.6) du =

(
cP −

pαP
ρ

)
dT +

1

ρ

(
γp

ρc2
− TαP

)
dp,

where ρ is mass density, u is specific internal energy, T is absolute temperature,
p is thermodynamic pressure, αP is the thermal expansion coefficient, cP is the
isobaric specific heat, γ = cP /cV is the ratio of isobaric to isochoric specific heat,
and c is the adiabatic sound speed. The above relationships can be derived using
techniques presented in [11, Ch. 5], for example.
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Additional computations

1. Using Gauss’s divergence theorem, tensor identity (B.4), and condi-
tion (3.20), one computes∮

∂Ω
n · (νρ(∇v) · v) dA =

∫
Ω

∇ · (νρ(∇v) · v) dV(B.7)

=

∫
Ω

(∇ · (νρ∇v) · v + νρ∇vT : ∇v) dV

=

∮
∂Ω

n · (νρ∇v) · v dA+

∫
Ω

νρ∇vT : ∇v dV

=

∫
Ω

νρ∇vT : ∇v dV dV.

The integrand in the final line on the right-hand-side of (B.7), is the viscous dissi-
pation in Svärd’s EFM, and for problems in pure heat conduction, it is reasonable
to assume this quantity is negligible, in which case the above implies (3.23):∮

∂Ω
n · (νρ(∇v) · v) dA = 0.

2. In [12, Eqs. (2)] and later in a section titled “Tentative update of the
modified model”, Svärd and Munthe discuss the idea of changing the original
EFM from [1] by replacing the energy balance equation (3.14) with the following:

(B.8)
∂E

∂t
= ∇ · (ν∇E − (E + p)v + κ∇T ).

The authors do not investigate thermal phenomena in [12]. However, using sim-
ilar analysis as in Section 3.2, I compute the altered EFM heat flux for pure
steady-state heat conduction as

(B.9) qEFM = −(ηcP + κ)∇T.

To match heat conduction experiments with the above, one would enforce
qEFM = q, and doing so, I find

(B.10) κ = ηcP

(
1

Pr
− 1

)
.

In my earlier study [6, Eq. (35)], I observed this parameter must be chosen as

(B.11) κ = ηcP

(
1

Pr
+

1

γ − 1

(
ζ

η
− 2

3

))
in order to match sound attenuation experiments. If one takes

ζ = 0 and γ = 5/3
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in the special case of ideal noble gases, then the value for κ computed by the
two formulas in (B.10) and (B.11) match. However, in general, these equations
give significantly different values for κ.
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