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This article describes an apparatus for testing viscoplastic metallic alloys in
tension at temperatures up to 400◦C. Its distinctive feature is a two-shelled furnace
which encompasses the test-piece. The extensometer is attached to the shoulders
of the specimen and remains outside the oven, so that it works at room tempera-
ture. The strain εrs in the reduced section inside the tight fitting oven is calculated
with the help of a finite element software from the strain εext given by the exten-
someter. In the elastic range, the set-up was used for the measurement of Young’s
moduli. In the plastic and viscoplastic ranges, it was used to draw work-hardening
curves and to perform relaxation tests representative of in-service conditions. In this
later case, a method to derive the strain rate sensitivity from the decrease with time of
the registered stress is presented. The furnace can be easily machined in a mechanical
workshop for all shapes and dimensions of test-pieces, so that it can be adapted to
various studies of the workability of metallic alloys, especially those which necessitate
a rapid rise and precise maintenance in temperature.
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1. Introduction

Tensile tests are useful to characterize the mechanical properties of
the metals (yield strength, work-hardening modes etc.) and to study damage and
fracture [1]. They ignore friction problems, so cumbersome when specimens stick
to the anvil in compression at elevated temperatures, as documented by Mon-
theillet and Desrayaud [2]. Numerous universal tensile testing machines,
either hydraulic or electromagnetically powered, are available on the market.
To heat the specimens, some additional gear (sometimes homemade) has to be
mounted on the test-rigs.

The heating systems are mainly of three types and based on:
– Volume heating: an electric current crosses the specimen, which is

heated by the Joule effect. This is the specificity of the GleebleTM machines.
They allow rapid rises in temperature (several hundreds of degrees per second).
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Fabrègue et al. [3] have taken advantage of this in the study of microstructural
transformations.

– Induction: the specimen is heated by the eddy currents produced by a high
frequency alternating current in an induction coil. A few turns of wire are wound
around the test-piece. It works with ferromagnetic steels but also with other
metals. An example of realization is given in Codrington et al. [4].

– Contact: the specimen is surrounded by a hot or warm atmosphere (air or
inert gas against oxidation), in a furnace or in a climatic chamber. The heat-
ing energy is provided by electrical resistances under 600◦C and by radiative
rods through the reflection on the walls of the oven for higher temperatures.
It is the best as regards the homogeneity in temperature of the specimen. That
is why it is recommended by the ASTM E21 Standard Test Methods for Elevated
Temperature Tension Tests of Metallic Materials [5].

All these devices must be compatible with some way of measuring the defor-
mation of the specimen. The displacements of the crossbars can be known accu-
rately, for example by using Linear Variable Differential Transformers (LVDT);
but the rig yields under the load so it is better to measure the displacement on
the specimen itself. Several techniques are available:

– Contact strain measurement techniques include strain gauges. Their at-
tachment to the test-piece may be affected by temperature and some expertise
is needed to correct the deviations caused by thermal expansion.

– Contact measurement also encompasses a wide range of extensometers.
Some are specially designed for high temperatures, featuring alumina or silicon
carbide extensions to keep the transducer away from the heated zone. Part of
them has to lie outside the furnace.

– Non-contact strain measurement techniques: the heating gear must be pro-
vided with a glass window to follow the deformation of the specimen. This is the
way the change in the form of a test-piece placed in a furnace was quantified at
1300◦C [6]. Digital Image Correlation (DIC) techniques allow to determine com-
plete strain fields, provided that oxidation does not blur the marks on the metal.
Luong et al. [7] showed their feasibility up to 700◦C with a speckle pattern
deposited on a titanium specimen.

The present article features a tensile testing apparatus in which the central
part of the specimen is heated by electrical resistances. The furnace is a two-
shelled oven which encloses the test-piece. The extensometer is placed outside
the furnace. The set-up was devised and machined in the LGF (Laboratoire
Georges Friedel) of Saint-Etienne (France) which specializes in the deformation
at temperature of metallic alloys. It can work in tension, stress relaxation and
in complex tests including sequences of both changes of strain rate and temper-
ature. All these tests are described in Lemaitre and Chaboche [8, pp. 256
et seq].
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The paper is organized as follows. Section 2 offers a description of the ap-
pliance. Section 3 investigates the use of the apparatus in the elastic range,
determines Young’s moduli and discusses the accuracy of the measurements.
Section 4 deals with the plastic and viscoplastic ranges with two applications:
the determination of work-hardening curves when the apparatus is used in ten-
sion and the measurement of strain rate sensitivities when relaxation tests are
performed. The conclusions try to assess the qualities and drawbacks of the ap-
pliance. The Appendix presents in detail the method used to calculate strain rate
sensitivity from the decrease with time of the stress which maintains constant
the deformation of the test-piece.

2. Design of the appliance

As it is stressed later, this section presents the set-up for a particular sheet
type specimen. It can be adapted to other dimensions and other cases (plates,
cylindrical test-pieces, rods, bars, pipes).

Mechanical set-up

Figure 1 pictures the apparatus. The testing machine is a hydraulic powered
InstronTM 1186 with a capacity of 200 kN. The holding system consists of two
serrated wedge grips in contact over about 36 mm with the shoulders of the
specimen. The later, machined out of a 4 mm thick sheet, is shown in Fig. 2.

Fig. 1. Global view of the appliance.

It features shoulders 16mm wide. The reduced section has a square cross
area of 4mm in side and is 24mm long. The fillet radius is 6mm. This geometry
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Fig. 2. Rectangular tension test-piece used in the experiments.

has been especially studied for the sake of homogeneity in temperature of the
central part. Two gauge marks have been drawn on the shoulders for the knives
of an extensometer to fit into. Close to one of them, a hole has been drilled to
place a 4th thermocouple outside the furnace. So the extensometer measures the
elongation of a piece of material initially 48mm long, 4mm thick, whose width
varies from 16 to 4mm.

The material chosen for the subsequent calculations and experiments was
a 2024 T3 aluminum, the composition of which is given in Table 1. This alloy
is widely used for aircraft structures because of its good machinability. It has
been hot-rolled into a 4 mm thick sheet, solution treated, quenched, levelled and
submitted to natural ageing. Its measured hardness is 125HV5.

Table 1. Chemical composition of the 2024 alloy in wt%.

Cu Mn Mg Fe Si Al

4.4% 0.6% 1.5% 0.5% 0.3% balance

Heating system

The oven consists of two halves shown in Fig. 3. When screwed together,
these two shells encompass the reduced section and the fillets but only the edges
of the shoulders, as detailed in Fig. 2. Four electrical resistances are set into the
holes of each half of the furnace. The grooves which appear in Fig. 3 between
the electrical resistances allow to insert three thermocouples.

The four resistances can raise the temperature to 400◦C in only 40 s followed
by a holding time of five minutes, as appears in Fig. 4. The data were recorded
every second. The maintenance at the set-point value was ensured by the upper
and lower thermocouples. Once the temperature is stabilized, the difference be-
tween them is of the order of one degree, due to the symmetry of the appliance.
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a) b)

Fig. 3. Design of the furnace: a) front and inner side views of one half oven, b) fitting of the
test-piece into it.

a) b)

c)

Fig. 4. Rise and stabilization of the temperatures in the oven: a) disposition of the
thermocouples, b) curves T (t) within the furnace and outside it, c) magnification of the

readings of the framed box of inset b).
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The middle thermocouple was not linked to the PID system. Its record has also
been reported in the figure. An enlargement of the three curves in the stabilized
zone (last minute of the recording) is shown in inset c).

The 4th thermocouple inserted in one of the heads of the specimen shows that
the temperature falls rapidly outside the furnace. Figure 4 pictures its evolution,
parallel to what happens inside the oven, but with much damped oscillations
and some one hundred ◦C below.

Figure 4 prompts the following comments:
– oscillations: during the raise in temperature, there are no oscillations since

the system works at full power. The oscillations correspond to the activation
of the electrical resistances by the PID control. They affect the thermocouples
simultaneously, as can be seen in the inset c);

– in the stabilized zone, they are roughly periodical with a period of about 15 s.
Their amplitude depends on the sensitivity of the PID regulation. In the present
experiments, the temperature of the ‘Upper’ and ‘Lower’ thermocouples varied
of about 1.5◦C around its mean value. The oscillations of the ‘Middle’ one are
more than double (around 3.5◦C);

– since heat flows at the ends of the oven, there is a parabolic profile of
temperatures within it, hence the difference between the ‘Upper’ and ‘Lower’
recordings on one hand, the ‘Middle’ one on the other. The difference is a function
of the heat flow. It is maximum when a maximum of power is injected in the
system, at the end of the rise in temperature. After 40 s of heating it reaches 22◦C.
Then it decreases to 4◦C in the stabilized zone.

The standard ASTM E21 specifies at least two thermocouples for a reduced
section of less than 50 mm and a variation in temperature of less than the 3◦C
between them. In the present experiment, it lacks one degree to meet these
requirements at approximately 39mm in the immediate vicinity of the electrical
resistances. Heating more slowly or maintaining intermediate temperature levels
could improve this performance.

It was thought of interest to have not two measurements, but a full temper-
ature map of the phenomenon. This required a finite element calculation which
serves later for mechanical considerations, since the constitutive law of the ma-
terial is temperature-dependent.

The specifications for the F.E. simulations were as follows:
– it was performed with the AbaqusTM software (version 6.20);
– because of the variations in width of the test-pieces and the loss of heat at

the contact with the wedge grips, a 3D analysis was deemed necessary. Axis 1
was chosen as the direction of tension, axis 2 for width, axis 3 for thickness.
Only the steady state was considered since it is achieved before starting the
tests;
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– continuum 3D elements C3D8 were used (brick elements with 8 nodes and
linear integration). The mesh was uniform and the cubic elements about one
millimeter in size (four of them in the thickness);

– thermal boundary conditions: between the electrical resistances, the set
point temperature was imposed on the four faces of the specimen. It ranged
between 20 and 400◦C. The thermal conductivity of the 2024 T3 alloy was taken
as λ = 147 W/(m ·K).

The temperature of the wedge grips was set at T = 20◦C, for the massive
heads of the testing machine showed no sign of heating. On the surfaces of the
shoulders, on which they grip, which are 16mm wide and about 36mm long,
the heat transfer coefficient of 2000W/(m2 ·K) was introduced. On the surfaces
which are in contact with the air, where there are neither oven or grips, the heat
transfer coefficient was set to 25W/(m2 · K). Only one eighth of the specimen
was modelled due to the symmetries, the fixed point being at its center.

The results of the simulation are shown in Fig. 5 drawn at T = 400◦C for
clarity’s sake. The temperature varies little with the width and the thickness, so

Fig. 5. Decrease in temperature along axis 1.
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only the large, flat side of the specimen appears in the upper inset of the figure.
The evolution of the temperature along axis 1 is plotted in the lower inset.

Figure 5 pictures the map of temperatures in the median plane of the test-
piece. It does not change along axis 2 so that the decrease along axis 1 contains
all useful information. The F.E. simulation was done by taking values of the liter-
ature for the heat transfer coefficients (25 and 2000W/[m2 ·K]). Adjusting them
would have required more thermocouple measurements and the fitter drilled only
one of them in the test-piece. Nevertheless, the agreement between the simula-
tions and the recordings is reasonable, as shown in Table 2. The important point
is that the decrease in temperature outside the oven is gradual.

Table 2. Temperatures calculated and measured by the 4th thermocouple.

Set point T [◦C] 100 200 300 400
Measured T 71 148 222 291
Calculated T 80 156 232 309

Extensometer

The distinctive feature of the present appliance is the position of the exten-
someter, which is set entirely outside the furnace. In the literature, the authors
found an example of tensile tester in which the central part of the test-piece is
heated while its heads are cold gripped [9].

However, it uses high temperature extensometers directly attached to the
gage length of the specimen. The extensometers have ceramic extensions which
penetrate inside the oven while the rest is kept outside. This necessitates drilling
slits in the walls of the furnace, which introduces a dissymmetry in the gear. The
consequence is that it takes time to achieve a steady thermal state.

The conditions in which the extensometer works are as follows. Its legs locate
its main body at about 10mm off the furnace, in the open air of the laboratory
where the radiation due to the small oven hardly rises the temperature. For
the present experiments, the extensometer was an InstronTM n◦ 2620-604. It
is designed to work between – 80 and 200◦C and measures the displacements
with an uncertainty of 1µm. Only its knives are in contact with the heads of
a test-piece. As can be seen in Fig. 5, the temperature at these spots may rise up
to 300◦C, but the legs, made of stainless steel, are thin and poor heat conductors.

Once the thermal steady state is obtained, the extensometer has to be cali-
brated for each temperature. It is positioned symmetrically with respect to the
furnace, so that there is no thermal gradient between the knives.

Now, due to the heat, elongation takes place in the test-piece. According
to Fig. 2, at room temperature, the distance between the knives is 48mm,
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although there is some tolerance in the machining of the housings. With alu-
minum alloys, the expansion coefficient is 23×10−6/◦C (more than most metals),
so that at 400◦C the elongation reaches 0.4 mm. The question arose whether this
had to be taken into account when calculating engineering strains (displacement
divided by an initial length). At 400◦C, the discrepancy is 0.87%, less than the
uncertainty of the measurements (see Subsection 3.2). For the sake of simplic-
ity, in this paper the strain measured by the extensometer was specified as the
displacement divided by 48mm at all temperatures.

One of the reasons of the design of the present apparatus is the commitment
to a tight fitting furnace with rapid, homogeneous heating. If the strain in the
heated part of the specimen cannot be reached in direct mode, it can be deduced
from the readings of the extensometer, as shown in Sections 3 and 4.

3. Extensometry in the elastic range

As soon as in 1955, Thomas and Calson [10] performed tensile and creep
tests placing the knives of their extensometer on the shoulders of their test-pieces,
because oxidation limited the effective life of attachment fixtures. By optical
extensometry, they spotted the contrasted deformations of the shoulders, filets
and reduced section. Now that finite element software is available, it is possible
to quantify all this and to predict what happens inside the oven.

In order to measure strains, the first investigation was to check that the
presence of the furnace does not perturb the results of the mechanical tests.
Indeed, when screwed together, its two halves allow some clearance between them
and the specimen. Two tests were performed up to fracture at room temperature
with the same crosshead speed. Special care was taken to the alignment of the
test-piece and the heads of the testing machine. In the first test, only the test-
piece was placed between the grips. In the second, the test-piece bore the fully
geared furnace, but electricity was not turned on. The measured displacements
were exactly the same.

3.1. Elastic deformation of the specimen

The specimen is designed to undergo a homogeneous deformation in its re-
duced section. This was checked by a F.E. simulation done with the AbaqusTM

Software used in the previous section. The runs were performed on the 2024 T3
aluminum alloy at T = 20◦C, 200◦C and 400◦C. The elastic limits were set,
respectively, at 345MPa, 138MPa and 20MPa. Young’s moduli were 72.5GPa,
70.4GPa and 68GPa, hence maximum elastic deformations of 4.75×10−3 (20◦C),
1.96× 10−3 (200◦C) and 0.30× 10−3 (400◦C).
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a)

b)

Fig. 6. Strain in the test-piece according to F.E. simulations; a) distribution of EE11 in the
median plane of the test-piece at 20◦C, b) EE11 along axis 1 at three temperatures.

Among the local strain outputs proposed by AbaqusTM, the total strain E
and its elastic part EE were chosen. EE11 is the component along axis 1. Its
distribution in the median plane appears in Fig. 6 at room temperature for the
conventional elastic strain of 2× 10−3.

In the fillets, the strain varies along axis 2 and the edge at the junction of
the fillet and the shoulder is nearly unaffected by the deformation. No shear
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was found in the thickness of the specimen. The evolution of EE11 along axis 1
appears in Fig. 6b at three temperatures for various elastic strains: in the three
cases, the evolution is of the same type. In the reduced section, the total length
of which is 12×2 = 24mm, the strain is constant at 20mm. The standard devia-
tion of the nodes such as x < 10mm is of the order of 10−7 at room temperature
and 10−8 at 400◦C. Then EE11 drops smoothly in a parabolic form up to the
spot where the grip comes into contact with the head. At this point, EE11 drops
sharply and becomes almost zero for x > 43mm, leaving 25mm of strain-free
shoulder.

To account for the global deformation of the test-pieces, engineering strains
were chosen as follows:

– εext (extensometer) is the engineering strain obtained by dividing the dis-
placement of one of the grooves of the test-piece by L0 = 24mm which is its
initial distance to the center of the specimen (see Fig. 2). For that, 44 nodes
meshing the cross section situated under the groove were considered, their dis-
placements averaged and divided by 24mm (only one eighth of the specimen is
entered in the software because of the symmetries). These displacements were
examined in various thermo-mechanical conditions and they were always found
to be quite close. Even far in the plastic range the difference between them does
not exceed half a µm, that is less than the resolution of the extensometer;

– εrs (reduced section) is the engineering strain obtained as follows eight
nodes such as x ≈ 10mm were chosen in the cross section. They feature the
groove of a virtual extensometer which stands for the one which cannot be placed
on the reduced section because of the tight fitting furnace εrs is obtained by
averaging the eight displacements and dividing by l0 = 10mm.

The values of εrs as a function of εext appear in Fig. 7.
In Fig. 7, the graphs of εrs = f(εext) at the three considered temperatures

are straight lines and their slopes are indistinguishable, though of course the
extension of the elastic domain varies. This linearity is due to the elastic be-
havior and to the design of the test-piece. A least squares method gave the
slope: 1.315.

Note: this 1.315 value was compared to the result of a one-dimensional ana-
lytical calculation in which the strain in the test-piece is supposed uniaxial. The
calculation was performed at room temperature, case in which Young’s modulus
is uniform. With these hypotheses, the contribution of each section of the test-
piece to the lengthening is inversely proportional to its width. The reduced sec-
tion accounts for 24mm, the shoulders within the grooves for 2×6×4/16 = 3mm.
The contribution of each fillet could be calculated analytically as

6∫
0

dx

4−
√

3x− x2/4
= 4.172 mm.
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Fig. 7. Elastic range. Calculated strain in the reduced section εrs versus εext strain
measured by the extensometer for a 2024 T3 aluminum alloy at three temperatures.

The total is 35.344mm, while the distance between the knives of the exten-
someter is 48mm. This yields a slope 48/35.344 = 1.358 instead of 1.315. This
analytical checking of the results of the F.E. simulation puts in evidence the
highly unidirectional character of the deformation in the test-piece.

3.2. Measurement of Young’s moduli and assessment of their accuracy

The previous section has shown that in the elastic range, the strains through-
out the test-piece can be calculated with the accuracy. This prompted to try and
measure Young’s moduli with the present appliance. They are required to per-
form F.E. simulations. Broadly speaking, they are available in the literature at
room temperature and seldom above.

Young’s moduli can be measured in a variety of ways. Ultrasonic resonance
techniques are readily available at 20◦C and specialised equipment can work
at elevated temperatures. Impulse excitation techniques [11] are now commer-
cially available. These are dynamic measurements, in opposition to the static
measurements reported below.

The protocol used in the present experiments followed ASTM E111 Standard
Test Method for Young’s Modulus, Tangent Modulus and Chord Modulus [12].
The speed of the crossbar was set at 10−2 mm · s−1. The materials were: the
already described 2024 T3 alloy, an A304 stainless steel, Zircaloy-4 used for fuel
cladding in nuclear reactors and a grade of brass containing one-third of zinc and
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two-thirds of copper. Five temperatures were considered: 20◦C, 100◦C, 200◦C,
300◦C, 400◦C. Preliminary tensile tests were performed to determine the intervals
[0, Fmax] in which the deformation of the alloys is linear. Fmax ranged from
6.7 kN for the stainless steel at room temperature down to 3.5 kN for aluminum
at 400◦C. Young’s moduli were measured during unloading between Fmax and
F0 = 0.5 kN. The displacements ranged from 61µm (A304 at 400◦C) to 137µm
(Zy-4 at 20◦C).

Young moduli were calculated as E = σ
εrs

where σ = ∆F
S0

, S0 = 16mm2, εrs =

1.315εext, εext = ∆l
L0

in which ∆l is the elongation measured by the extensometer
and L0 the distance between its knives (L0 = 48mm). Figure 7 has shown that
the ratio εrs/εext varies very little with temperature. It remained identical with
other alloys in the subsequent F.E. simulations.

Hence, the accuracy of the measurements depends on:
– the force sensor. In the present experiments, it had a sensitivity of 10N.

A cell force of 20 kN was used, so that the loads were measured with an accuracy
of the order of 10−3;

– the extensometer. This is the key point in the elastic range, since the
displacements are small. Here, it had a sensitivity of 1µm so the accuracy was
of the order of 1 or 2%, an order of magnitude above the stresses.

The results are displayed in Fig. 8.
E is given in GPa and T in◦C. The red bars indicate the uncertainty in the

measurement.

Comments in Fig. 8

a) At room temperature, Young’s modulus of aluminum 2024 was measured
by ultrasounds at the LGF laboratory and the authors found E (20◦C) =
72.6GPa. This value was superior to the value they found with the present
apparatus (E (20◦C) = 66GPa). Such discrepancies between mechanical and
ultrasonic measurements have often been noted, see for example [12]. Instead of
exact values at 20◦C, difficult to obtain with mechanical gears, the most valu-
able piece of information yielded by the experiments under consideration is the
decrease in temperature.

The results with the present aluminum sample appear in Fig. 6a. They are
in good agreement with Hopkins et al. [13] and Mondolfo [14]. The decrease
of E(T ) is approximately linear between 20 and 400◦C, a phenomenon which is
noted in the three following examples. The least squares methods applied to the
experimental point yields:

(3.1) E(T ) = 66.7− 0.037T (E in GPa, T in ◦C).

b) The results for stainless steel A304 are reported in Fig. 6b. The moduli
are two or three times larger than in other cases, hence the larger error bars.
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a) Aluminum b) Stainless steel

c) Zircaloy d) Brass

Fig. 8. Decrease of Young’s moduli E with temperature for four metallic alloys.

The measures collected by Kim and et al. [15], have reported that the figure and
their decrease is the same as the one found in the present experiment:

(3.2) E(T ) = 185.8− 0.069T.

From another source [16, Fig. 26] the authors calculated b = −0.075. Such scat-
terings were found when they tried similar comparisons with the other alloys.

c) The Zircaloy-4 sample, provided by the CEZUS company, had been
β-treated. Pan et al. [17] noted that the values of Young’s moduli differ ac-
cording to the heat treatment of the alloy: E(T ) decreases more rapidly in
recrystallized alloys. Pan et al. results concerning alloys with Widmanstätten
microstructures have been reported in Fig. 6c, along with those obtained by the
present apparatus. This led to:

(3.3) E(T ) = 96.1− 0.048T.
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Pan et al. noted a strong dependence of E(T ) on the texture in these hexagonal,
anisotropic metals. On the contrary, the composition of the alloy has little in-
fluence, as shown by Northwood et al. [18] who investigated various grades of
alloyed zirconium, among which Zircaloy-2. To use the data of the literature, it
is necessary to be documented on the heat treatments undergone by the material
and it is not always the case.

d) Such a situation was encountered in the LGF laboratory with a brass alloy
containing one-third of zinc and two-thirds of copper. The proportion between
zinc and copper varies much among brass alloys, so that no data were available
for this precise composition. The experiment gave E = 100.3GPa at 20◦C. As
expected, it was intermediate between zinc (E = 83GPa) and copper (E =
117GPa). The decrease with temperature was:

(3.4) E(T ) = 101.2− 0.043T.

The relation was needed for forming calculation. Other applications include the
determination of the residual stresses which appear when metallic pieces are
cooled and the search for values of the elastic constants required in the micro-
scopic laws of behavior based on the mechanics of dislocations.

4. Extensometry in the plastic and viscoplastic ranges

For many metals, foremost aluminum, there is no precise limit between the
elastic and the plastic ranges. Likewise, viscous phenomena appear progressively
when the temperature is raised. It is the type of tests performed on the speci-
mens which reveals these different aspects. In the first part of this section, the
apparatus is used in tension for the drawing the work-hardening curves, plastic
or viscoplastic as the case may be. Then it is used for relaxation tests which
put in evidence the viscosity and allow the determination of strain rate sensi-
tivities.

4.1. Determination of work-hardening curves

Whereas the elastic behavior of all metals is roughly linear, their work-
hardening curves σ(ε) have contrasted shapes although all increase monotonously
up to some ultimate tensile strength. A priori, the relation between the strain
εrs in the reduced section and the strain εext given by the readings of the exten-
someter should be established for each material, temperature and velocity rate.
Happily, things are simpler, as shown in the present subsection which succes-
sively:

– presents the experiments performed on the abovementioned 2024 T3 alu-
minum alloy,
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– for the sake of comparison, repeats the corresponding calculations on stain-
less steel,

– discusses the use of the linear approximation εrs = kεext suggested by the
above experiments in the case of other alloys.

Experiments on the 2024 T3 alloy

In the first place, the σ(ε) behavior of the alloy was measured at room tem-
perature on the apparatus described above. The curve was almost identical to
the recordings of the supplier (French aluminum manufacturer Constellium). The
latter also provided curves at various temperatures, which the authors used as
an independent, experimental basis not relying on an external extensometer.

The work-hardening curves of the 2024 T3, obtained at a velocity rate of
ε̇ = 1.6 × 10−3 s−1, appear in Fig. 9a for strains up to 10%. After that, they
are almost flat. The points entered as material behavior into the AbaqusTM

software are marked by round dots on the graph. The displacement applied to
the grooves of the extensometer was 2.4mm. This produced a strain of about
10% in the reduced section.

a) b)

Fig. 9. Work-hardening curves for a) the 2024 T3 alloy (T = 20◦, 200◦ and 400◦C),
b) the A 304 alloy (T = 20◦C, 600◦C and 800◦C).

The strains εext and εre were measured and calculated as in the elastic range,
since the reduced section also deforms plastically in a homogeneous manner on
2× l0 = 20mm. The values of εrs as a function of εext appear in Fig. 10.

Figure 10a prompts the following comments:
– as a proof of the homogeneity of the deformation in the reduced section in

the plastic range, the values of the total strain E strain of all the nodes such as
x < 10mm were collected. Their standard deviation was less than 1.5× 10−3 up
to 10%;
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a) b)

Fig. 10. Calculated strain in the reduced section versus strain measured by an extensometer
placed outside the furnace: a) 2024 T3 aluminum alloy, b) A 304 stainless steel.

– temperature has little influence on the εrs = f(εext) curves. The difference
between 20◦C and 400◦C has a mean value of ∆ε = 1.1× 10−3 with a maximum
of ∆ε = 2.2× 10−3. Three stages can be distinguished:

– in the elastic range, the slope is 1.315, as noted in Fig. 7. It appears as
a dotted line in Fig. 10a. In Fig. 10, it appears distinctly only for the 2024 T3
alloy at 20◦C; in the other cases, the elastic domain is too small,

– in the plastic (or viscoplastic) range the curve is close to a straight line.
Nevertheless, in the case of the 2024 T3 alloy, it can be approximately divided
into two parts:

– for 0.005 < εext < 0.03, the slope of the curve was found equal to 2.01 at
20◦C and to 1.95 at 400◦C by the least squares method. It can be noted that
with the geometry of the present test-piece, the slope would be exactly 2 if the
specimen had rigid shoulders and fillets and a deformable reduced section 24 mm
long (see Fig. 2.),

– for εext > 0.03, the slope of the curve rises slowly. In the 0.04 < εext < 0.05
interval it reaches 2.38 at 20◦C and 2.34 at 400◦C.

The strain maps provided by the AbaqusTM post processor at each increment
of calculation show that the transition around occurs when the deformation
ceases in the shoulders and the fillets and concentrates in the reduced section.
Were the test-piece made of a deformable gage length of 20 mm, all the rest being
rigid, the slope would be 48/20 = 2.40. That is almost the case at εext = 0.05,
when the work-hardening is close to zero.



92 M. Darrieulat, A. Aoufi, Ch. Desrayaud

Comparison with stainless steel

The previous section has shown that in the case of the 2024 T3 alloy, the
relation between the strain in the reduced section and the strain given by the
outer extensometer is piecewise linear, if not globally linear.

A few numerical simulations showed that varying the thermal parameters
in the input data produced almost no change in the εrs = f(εext) curves. Has
the type of work-hardening more influence? In aluminum alloys, at large strains,
σ = f(ε) is rather flat. On the contrary, in stainless steels, the work-hardening
curves exhibit a steady slope before reaching the ultimate tensile stress.

Hence, it was decided to repeat the calculations on the A 304 alloy used
in Section 3.2. The data of work-hardening were taken from Lemaitre and
Chaboche [8, page 165, fig. 1b] and appear in Fig. 9b. For the AbaqusTM runs,
Young’s modulus was set to 191GPa at 20◦C and 135GPa at 800◦C. The thermal
conductivity was set to λ = 16 W/(m.K). The corresponding εrs = f(εext) curves
appear in Fig. 10b.

Temperature has still less influence than in the case of aluminum, since the
difference between 20◦C and 400◦C has a mean value of ∆ε = 0.8 × 10−3 with
a maximum of ∆ε = 1.1× 10−3. For εext < 0.03, the slope of the curve is equal
to 1.92 at all temperatures. It lowers to 1.82 when approaching εext < 0.05.
The difference with aluminum must be related to the fact that, in the case of
stainless steel, work-hardening is strong up to εext = 0.05. Thus the curve is
closer to εrs = 2εext than in the case of the 2024 T3 alloy.

Validity of a linear approximation in the case of aluminum and stainless steel

It has already been pointed out that their onset, εrs = f(εext) and εrs =
2εext differ since the slope is 1.315 instead of 2. Assessing the consequences of
a global linear approximation on the resulting work-hardening curves implies to
compare:

– the curves σ = f(ε) entered in the software as representative of the true
mechanical behavior of the material. It was assumed that they have been deter-
mined by the most accurate methods available. As mentioned above, the authors
checked it in the case of aluminum at room temperature,

– the curves σ = f(2εext) drawn from the readings of the extensometer and
the cell force.

Six graphs, each picturing two curves, the original one and the one obtained
with σ = f(2εext), have been drawn for aluminum and stainless steel at room
and elevated temperatures. In the six cases, they are quite close. The most
illustrative may be that of the stainless steel at 800◦C. Figure 11 pictures the
difference between the original curve (the same which appears in red in Fig. 9b
and the green one drawn with the εrs = 2εext assumption.
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Fig. 11. Original work-hardening curve of A304 stainless steel at 800◦C (in red) and curve
drawn using the εrs = 2εext approximation (in green).

Figure 11 prompts the following comments:
– the main difference in the curves is found at the elastic-plastic transition

zone and does not exceed 1.6MPa, as seen in the inlet. After ε > 0.05 the curves
are almost indistinguishable;

– the consequence for the representation of the transition zone can be better
seen on the enlargement. For its introduction in the AbaqusTM software, the
experimental curve had to be drawn with an elastic limit chosen at 125MPa,
the corresponding strain being 0.6×10−3. Now, the elastic strain in the reduced
section is overestimated by the approximation εrs = 2εext. This changes the
elastic limit on the recalculated curve and it appears at 121MPa. This is largely
an artificial effect since in most alloys, including aluminum alloys and stain-
less steels, there is no sharp transition between the elastic and plastic domains.
Nevertheless, setting a limit was required by the F.E. software;

– the difference between the two curves must be weighed against the uncer-
tainties in the measurements of stress and strain. As seen above, for the stresses,
the accuracy is around 10−3 beyond the elastic range. For strains, with the ex-
tensometer used in this paper, it decreases from 5 · 10−3 at the end of the elastic
range to less than 10−3 in the plastic range. This is the order of magnitude of
the discrepancy shown in Fig. 11: 1.3% at the maximum in the elastic range,
almost zero at ε = 0.1.
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The ratio k = εrs/εext and its dependence on work-hardening

As shown by the following simulations, k is not always equal 2. First and
foremost, it depends on the geometry of the tensile-test pieces. In most of them,
at high strain, the deformation concentrates in the gauge length. So k is linked
primarily to the ratio between the length of the reduced section and the distance
between the knives of the extensometer. This ratio is equal to 2 in this paper
but it would vary with other test-pieces and heating gears since the knives of
the extensometer must be placed outside the furnace.

For the test-pieces used in this paper, the effect of various factors influenc-
ing the relation εrs = f(εext) were examined. It began by the influence of the
experimental conditions and of the material properties on the ratio k. Changes
in the thermal parameters and boundary conditions had almost no consequence
on the results of the F.E. simulations.

Changes in the strain rate vary the level of stress at elevated temperatures
but do not cause much change in the form of the work-hardening curves. An
example is given in [8, p. 255]. Increasing the strain rate from to 10−4/min. to
2.5× 10−2/min when testing an Udimet nickel alloy roughly doubles the strain
but not the characteristics of hardening.

Changes in the set-point temperature affect the level of the stress and the
form of the hardening curve.

To distinguish between the effects of these two factors, F.E. simulations were
made with work-hardening curves differing only in the elastic limit. The resulting
εrs = f(εext) relations in the plastic range were parallel lines, the offset between
them has been due to the different extensions of the elastic ranges in which
εrs = 1.315εext.

This shows that the crucial factor influencing k is the form of the work-
hardening curves. The latter relate to three main types:

a) after the linear elastic range, there is much work-hardening so that the ulti-
mate tensile strength σmax is well above the conventional σel. A typical example
are austenitic stainless steels;

b) high stresses are reached elastically and there is a limited range of plastic
deformation and even no plastic deformation at all. Steels with a high carbon
content behave in that way;

c) once σel is reached, the stress keeps at a constant level for some time and
then has a small increase, so that σmax is not much higher than σel; such are
unalloyed and mild steels.

A case has been investigated with aluminum and stainless steel. Extra simula-
tions were made on the nickel alloy Udimet 720. Work-hardening curves at 20◦C
and 700◦C were taken from Terzi [19, page 56]. They appear in Fig. 12a. The
corresponding εrs = f(εext) relations appear in Fig. 12b. The phenomena already
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Fig. 12. Evaluation of the strain within the furnace in the case of various alloys: S 235,
pre-tensioning wire, Udimet 720 at 20◦C and 700◦C. The limiting cases are elasticity and

perfect plasticity; a) work-hardening curves, b) εrs = f(εext) curves.

mentioned for aluminum and stainless steel are plainly visible: εrs = f(εext) is
close to a straight line; at room temperature, the calculated slope is 1.96, close
to 2; at 700◦C, with the flattening of the work-hardening curve, it raises slowly
and reaches 2.14 for 0.07 < εrs < 0.12.

Figure 12 also documents the results of the investigation of cases b and c:
– steel for pre-stressing wires was chosen as an example for case b. The cor-

responding εrs = f(εext) curve could be fitted by εrs = 1.538εext. As expected,
this k coefficient is close to the slope characteristic of the elastic range. The
limiting case is the infinitely elastic material for which k = 1.315;

– structural steel S 235 was chosen as an example for case c. Here the approx-
imation reads εrs = 2.403εext. The limiting case is the perfectly plastic material
and it yields k = 2.404.

The slopes of the infinitely elastic and perfectly plastic materials appear as
boundaries for the εrs = f(εext) (relations in Fig. 12b).

Practical rules for the use of the above apparatus

Given some metallic alloy with an unknown plastic behavior, the present set-
up allows to draw its work-hardening curves, at least in an approximate manner.
The authors prescribe the following steps for the study.

i) At room temperature, it is possible to perform tensile tests on the set-up
and to register σ(εext). This suffices to distinguish between cases a, b and c.
Indeed, only case a is considered below, been by far the most important for
forming problems:

– provided the furnace has been let aside, the set-up allows to place a second
extensometer on the gauge length of the test-piece. In this case, the curve σ(ε)
is precisely known at 20◦C,
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– if only σ(εext) is available, the hardening curve can be approximated by
σ(ε) = σ(2εext).

Then, a way of obtaining a more precise result is to enter this σ(2εext) curve
as a data for the F.E. software and calculate the εrs = f(εext) relation. It yields
a more precise value of k and it may be slightly different from 2.

ii) At elevated temperatures, only σ(εext) is available and work-hardening
often diminishes beyond a certain strain, the consequence of it has been some
rise in the slope of εrs = f(εext). According to the degree of accuracy required,
several strategies can be used:

– keep σ(kεext) as the work-hardening curve. In this formula, k is the coef-
ficient determined by the experiments at room temperature. This can lead to
an underestimation of ε at large strains. It has little practical consequence since
the curve is almost flat at this stage. Indeed, if f(x) ≈ Cst, there is no point in
determining x with accuracy;

– nevertheless, the obvious idea to refine the result is to use the method
already mentioned for room temperature: enter the σ(kεext) curve as a data in
the F.E. software. It yields a relation εext = g(εrs) which allows to calculate
the σ(g(εrs)) curve. In the authors’ experience, the difference from the σ(kεext)
curve is quite small.

4.2. Measurement of strain rate sensitivities by relaxation tests

A relaxation test consists of i) a tensile test which imposes an elastic strain ε,
ii) a period of time in which ε is maintained constant while the stress decreases.
Sometimes it drops to zero, sometimes it reaches a value which appears as
a plateau on the graph σ(t). Over time, the initially elastic deformation trans-
forms, totally or partially, into a plastic one. Hence the viscous character of the
transformation. Assuming the additive decomposition ε = εe+εp (elastic+plastic
deformations), derivation with respect to time yields ε̇ = ε̇p + ε̇e = 0 so that

(4.1) ε̇p +
σ̇

E
= 0,

where E is Young’s modulus.
Along with tensile and creep tests, relaxation tests are the powerful means

of investigating the warm and hot viscoplasticity of metallic alloys. Neverthe-
less, they are not as common as the previous ones. Lemaitre and Chaboche
[8, p. 262] have collected some early experimental results. Recently, Prasad
et al. [20] have used them to assess the ductility improvement of aluminum alloys
and Yang et al. [21] have fitted the decrease in stress with exponential functions.
The relaxation tests are well adapted to the study of service life expectancy: tur-
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bine blades submitted to centrifugal forces, fasteners, nuclear reactor vessels in
pressurized water reactors maintained during years at 290◦C, not to mention
heat exchangers.

Derivation of m, strain rate sensitivity, from the relaxation tests

The sensitivity to the strain rate was first introduced in forming problems.
Consider, for example, wire drawing. At a given temperature, the stress necessary
to the elongation of the wire raises with the drawing speed; hence the interest
of:

(4.2) m =
∂ Lnσ

∂ Ln ε̇p
,

where σ and ε̇pare measured in a steady state. In the case of relaxation, formula
(4.2) can be specified as follows. Since ε̇p = −σ̇/E with σ̇ 6 0:

(4.3) m =
∂ Lnσ

∂ Ln |σ̇|
.

A priori, m fluctuates with t. Nevertheless, the interest of the parameter is that
it is approximately constant once a steady state is reached. It increases with
temperature.

As stated in Lemaitre and Chaboche [8, p. 264], at temperature a mul-
tiplicative form σ = Kεnp ε̇

m
p is often assumed for metals tested in tension with

σ(0) = 0. Strain hardening is accounted for by the exponent n. In relaxation
tests, σ(0) = σ0 and there is no work hardening (n = 0). If m is constant in
some period of time, the Appendix shows that σ(t) takes the form of a power
law of an exponent −m/(1−m) which writes:

(4.4) log10[σ(t)− σa] = m log10[ε̇p(t)] + cst.

The Appendix gives details on how to smooth the relaxation curves affected by
interferences and on how to check relation (4.4) in certain intervals of recording.

Experimental results

Relaxation tests were performed on the 2024 T3 alloy. The initial tension
was done at a deformation rate of 2 × 10−4 s−1 to avoid creep during the elas-
tic phase. Three initial stresses σ0 were selected: 80, 160 and 240MPa and four
temperatures chosen: room temperature, 150, 250 and 350◦C. Since 240MPa is
too much for 350◦C (see Fig. 9), only eleven tests were recorded. The results
appear in Fig. 13. All the curves σ(t) present two phases. In Phase 1, the stress
decreases rapidly from the initial σ0. In Phase 2, the derivative σ̇(t) is much
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a) σ0 = 80 MPa

b) σ0 = 160 MPa

c) σ0 = 240 MPa

Fig. 13. 2024 T3 alloy. Stress versus time for eleven relaxation tests.
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smaller, although no asymptote could be determined. A parallel can be done
with the primary and secondary phases of the creep tests, although the anal-
ogy may not be complete. The tests are presented in a period of four hours,
because after that only straight, almost horizontal lines appear on the graphs.
Phase 1 lasts between a quarter of hour and an hour and a half. Its duration
increases with temperature. The data were recorded every 0.1 s and they are
noised (see the Appendix). This can be attributed to electrical interferences.
The discretization of the stress data is about 0.6MPa and the typical noise is
a variation of 0.6 or 1.2MPa around a fitting line obtained by the least squares
method.

For a given temperature, the form of the curves does not change much with σ0.
They are almost parallel for 80 and 160 MPa. The initial fall is somewhat more
marked at 240 MPa. At any given time t, the stress is lower with increasing T
and the deformation rate ε̇(t) = σ̇(t)/E is consequently higher. E(T ) is given by
Eq. (3.1).

The difference between Phases 1 and 2 can be quantified by calculating the
apparent activation energy Q from the relaxation curves. This parameter mea-
sures the sensitivity of the material to the temperature along the deformation
path. It intervenes in laws of behavior such as the one proposed by Sellars and
Tegart [22]. As exposed by Montheillet [23, p. 233], in the case of forming
problems, Q can be calculated either as:

(4.5a) Q =
∂ Ln ε̇

∂(1/T )

∣∣∣∣
ε,σ

or

(4.5b) Q =
R

m

∂ Ln(∆σ)

∂(1/T )

∣∣∣∣
ε,ε̇

,

where R is the perfect gas constant and T the absolute temperature. In relaxation
tests, ε = 0. Thus (4.5.a) can be used with values ε̇ taken at the same level of
stress and (4.5.b) with values of σ taken at the same level of the strain rate.
Hence:

– In a first step, the initial deformation rates ε̇(0) were considered. They
happen to be close for the three σ0, so that they have been averaged and depend
only on the temperature. They appear in Table 3.

Table 3. Initial values of the deformation rates in relaxation.

T [◦C] 20 150 250 350

ε̇(0) (× 10−6 s−1) 0.31 0.63 1.36 2.08
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According to Fig. 13, the calculation is possible between 150 and 250◦C
for σ0 = 160 and 240MPa. Formula (4.5a) yields Q ≈ 15 kJ/mole, a value
characteristic of the beginning of Phase 1.

– In a second step, the decreases ∆σ from the initial σ0 were considered
for common values of ε̇. Formula (4.5b) was applied between 150 and 250◦C
for ε̇(t) = 10−7 s−1 (at the end of Phase 1) and ε̇(t) = 5 × 10−8 s−1, 10−8 s−1,
0.5×10−8 s−1 in Phase 2. This part of the σ(t) curve being rather flat, no wonder
that ∆σ varies little for these different rates. Strain rate sensitivity m was taken
as the average between the values for 150 and 250◦C (see Table 5 below), that
is m = 0.034. With these assumptions, the result was Q ≈ 300 kJ/mole.

Values of 100 to 400 kJ/mole are currently found when metals undergo trans-
formations controlled by diffusion [23]. It is thus possible to say that:

– In Phase 2, some microstructural transformation takes place. This is typical
of what happens in service conditions. The corresponding values of m can be
compared to the values obtained by tensile and creep tests.

– In Phase 1, phenomena take place of a mechanical origin, they take place
simultaneously. Just after the displacement of the movable crossbar has been
stopped, there may intervene clearance compensation or alignment of the mount-
ing balls. Proof of that is that the phenomenon appears at 20◦C, although there
is little microstructural activity at this temperature. The values of m can be
calculated but they have no straightforward interpretation because of the mixed
origin of the stress relaxation.

m values

To evaluate m, the following tools were chosen:
– the calculations were done in a Python environment,
– the Golay–Sawitzki smoothing was used in σ(t) and allowed to calculate

its derivative σ̇(t) (see Appendix for further details).

Results of the calculation of m in Phase 2

They appear in Table 4 as the result of the analysis of the eight curves for
which the relaxation was not complete (σ(tf ) = 0 at tf = 14 400 s).

Table 4. Values of the strain rate sensitivity as a function of temperature.

T [◦C] 20 150 250

m 0.015 0.028 0.040

Table 4 suggests the following remarks:
– m values are constant during Phase 2 in the range ε̇ = 10−7 to 10−9 s−1.

They were calculated on three curves with different initial stress σ0 for
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T = 20 and 150◦C and on two curves for T = 250◦C. The results varied little
with σ0;

– In the literature, the authors could not find data on the 2024 alloy in the
T3 temper but on other grades of aluminum alloys. As can be seen in Frost
and Ashby [24, Fig. 4.16], m values vary among aluminums, the higher have
been found for grades of high purity. But on the whole, they are of the same
order of magnitude. The reference which best fits the experiments of this paper
was found in [8, pp. 260 and 264]. It gives m = 1/N = 0.038 at T = 180◦C
for an AU2GN and m = 0.037 at T = 200◦C for a quenched and aged AU4G.
At room temperature, Langille [25, Fig. 10], who varied the rate of deformation
in his tensile tests on grades of the 6000 series, found 0.10 to 0.15 in his up-
charge measurements. Zenasni [26] used torsion tests and found m = 0.010 at
T = 20◦C [25, Fig. I-4] and m = 0.050 at T = 250◦C [25, Fig. I-6];

– It was not possible to measure the rate sensitivity at 350◦C since the
stress falls to zero prematurely. As already mentioned, m increases with rising
temperatures. For example, Chovet-Sauvage [27, page 69] found values around
m = 0.14 for 6000 grades at 400◦C.

As a summary, it can be said that:
– relaxation tests with the present apparatus gave values of m and Q for low

deformation rates (e.g. 10−7 s−1). This may be their distinctive advantage on
work-hardening and creep tests, which do not reach such low values;

– in the case of aluminum, the range of temperature in which they could be
measured did not exceed 300◦C because σ0 could not be raised over 240MPa.
Such a limitation would not be met with ferrite or copper, for example. Besides,
temperature could have been raised up to 500◦C with the aid of other heating
resistors.

5. Conclusions

A simple thermomechanical gear has been mounted on a tensile-testing appa-
ratus. Its characteristic feature is a two-shelled furnace which encompasses the
test-piece. The extensometer is placed outside the heated zone. Heating relies
on electrical resistances and, in the present case, does rise above 400◦C. The
temperature in the reduced section of the test-piece is perfectly homogeneous.
The thermal steady state is attained in only one minute with a variation of less
than 1◦C. The furnace could be machined in an ordinary mechanical workshop
so it can be adapted to test-pieces of various sorts, plates, sheets or rounded
specimens (wires, rods and bars).

The relation between the global strain εext recorded by the extensometer
and the homogeneous strain εrs in the reduced section within the furnace is
the key point in the use of the apparatus. In the elastic range, it has been
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found to be εrs = 1.315εext. This allowed to determine Young’s moduli. In the
plastic and viscoplastic ranges, the εrs = f(εext) relations are close to straight
lines. At large strains, for the considered geometry, the latter could be approx-
imated by εrs = 2εext as a first approach. More precise results can be obtained
using the F.E. software. All this allows the drawing of work-hardening curves
σ = g(ε, ε̇, T ). Indeed, an asymptotic behavior is expected for most of the test-
pieces, since these are designed so that their deformation concentrates in their
reduced section at large strains. Nevertheless, the εrs = f(εext) relation must be
recalculated for each form of test-piece and position of the extensometer.

The apparatus was also used for relaxation tests, in which there is no change
in strain. These tests work down to low strain rates (5× 10−8 s−1), common in
in-service conditions, beyond the reach of conventional creep tests. A method
of derivation of the strain rate sensitivity from the curves of decreasing stress
has also been proposed. The Appendix documents how it can be implemented
in a Python environment.

The present article thus validates the performances of short, tight-fitting fur-
nace configurations. The strain inside the oven can be calculated. Nevertheless,
the set-up does not conform to one accepted practice. Standard ASTM 21 rec-
ommends that the knives of the extensometer should be directly attached to the
gage length of the specimen. For this reason, the present apparatus may not
be adopted for commercial verifications. For metrological purposes, specialized
equipment should be preferred, as evoked with impulse excitation techniques for
Young’s moduli.

In the authors’ opinion, the apparatus is a serviceable gear for laborato-
ries dealing with the deformation of metals at elevated temperatures. Materials
scientists can adapt it to their own needs using inexpensive, easily available com-
ponents such as room temperature extensometers, while taking advantage of the
fast rise and accurate maintenance in temperature of their test-pieces.

Appendix. Determination of strain rate sensitivities
from relaxation tests

Assuming the multiplicative form of the flow rule σ = Kε̇mp with a constant
m, some algebra yields:

(A.1) m
σ̈(t)

σ̇(t)
=
σ̇(t)

σ(t)

and σ(t) can be integrated analytically as a power law. With a suitable shift in
the origin of σ and t, it becomes:

(A.2) σ(t) = α+
β

(t− t0)m/(1−m)
.



Testing metals in tension and relaxation. . . 103

Since
ε̇p(t) = −σ̇(t)/E, ε̇p(t) =

m

1−m
b

E(t− t0)1/(1−m)
.

Writing α = σa since it is a stress and choosing appropriately the origin of time,
(A.2) takes the form:

(A.3) log10[σ(t)− σa] = m log10[ε̇e(t)] +K

with

K =
m

1−m
log10

[
m

1−m
β

1
m
−1

E

]
.

Hence the fitting of a set {ε̇(ti), σ(ti)} requires the identification of three
parameters α, β and m. This can be done in the Python environment according
to the subsequent procedure.

A representative sample of the noise affecting the σ(t) curves is given in
Fig. A-1. The perturbations last typically from 100 to 200 s and develop in 1000
or 2000 acquisitions.

Fig. A-1. Noise on the σ(t) curves.

Smoothing is necessary and the Golay–Sawitzky algorithm was chosen. Since
no calculation of the curvature is needed, polynomials of the order 2 were used.
The width of the window 2l + 1 was taken as l = 2000, hence the use of the
Python function Golay (4001,2). The derivation of the Golay smoothed curve
is straightforward with the Least Squares fitting, which requires the analytical
calculation of the Jacobian of the function:

(A.4) f(x) = α+ βxm,
f

α
= 1,

f

β
= xm,

f

m
= βxm Ln(x).
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This yields out α, β and m and can be illustrated with the example of the
test performed from σ0 = 160MPa at 250◦C (see Fig. 8b). The partition between
Phases 1 and 2 takes place around t = 6800 s, at ε̇ = 3.15 × 10−8 s−1, σ =
9.45MPa. On the log/log graph presented in Fig. A-2, Phase 1 is convex and
Phase 2 concave, hence m > 1 for the first and m < 1 for the second phases.

Fig. A-2. log-log representation of the cloud {ε̇k, σk}.

The fittings are quite tight as can be seen in Fig. A-3. m = 1.75 has no direct
physical interpretation, for reasons pointed above. On the contrary, m = 0.03975
corresponds to a classical order of magnitude m = 0.04 of the rate sensitivity of
2024 T at 250◦C.

Phase 1: m = 1.75787 Phase 2: m = 0.03975

Fig. A-3. Fittings on the σ(t) curves.
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