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Free flexural vibration of a simply supported sandwich beam on an elas-
tic foundation is the main purpose of the presented investigation. An analytical
model of multi-layered beam on elastic foundation has been prepared. The authors
submitted an original beam-foundation interaction model which based on variable
parameters of the foundation and their influence on the beam response. This expla-
nation leads to the possibility of continuous characterization of the beam-foundation
interplay. A nonlinear mathematical function for symmetrical properties of the foun-
dation has been adopted. The frequency equation as a function of geometric and
mechanical properties of the beam and the parameters of the elastic foundation was
derived using the Galerkin method. The analytical investigation has been divided
into two parts: the analysis of elastic foundation with constant and variable prop-
erties. The unconventional shape function and the function of deflection have been
introduced and employed. Moreover, the finite element analysis has been performed.
Sample analytical and numerical calculations have been performed, demonstrating
a good concurrence between both models. The difference between analytical and nu-
merical values of the fundamental natural frequency did not exceed 0.5%.
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1. Introduction

Construction-foundation interaction problems are substantial aspects
of strength analysis. This is particularly essential in case of roads, railroads, and
runways which are loaded not only with static but also dynamic forces. Therefore,
the dynamic analysis of constructions on an elastic foundation is a crucial aspect
of research. The examples of beams on an elastic foundation are as follows: strip
footings, railroad rails, bridges (bridge deck-girder structures resting on elas-
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tomeric bearings, bridge abutments, piers), circular concrete tanks, rigid concrete
pavements, layered pavements, open foundations for buildings, laterally loaded
piles, aqueducts, excavation retaining walls, base slabs of conventional retaining
walls, cross support beams, and tunnels in soil foundation. Structures resting on
elastic foundations with variable properties can be used for elements placed on
variable ground surfaces (foundations for motorways, airports, railroads, sports
fields, parking lots, storage capacities, dams, and embankments).

The Winkler model is the simplest description of an elastic foundation be-
haviour. In this model, it is granted that the displacement of any point on the sur-
face is independent of the displacements of other points. Moreover, the influence
of the foundation at a selected point on the surface is proportional to the displace-
ment. Developments of new constructions led to the expansions of new models
that allow to determine more detailed influence of the foundation on various
constructions: two-parameter (e.g. Filonenko–Borodich, Vlasov–Leontiev, and
Pasternak models) and three-parameter models (e.g. Heteneyi [1], Kerr [2],
and Reissner models). In addition, the following models can be found in the
literature: the elastic-plastic Rhines [3] model and bilinear model [4]. In case
of the elastic continuous models, the following can be distinguished: isotropic
and anisotropic models, a non-homogeneous model as well as a layered model.
The models of the foundation can also be divided due to the physical criterion.
According to this assumption, ones can differentiate: linear-elastic, nonlinear-
elastic, viscoelastic, elastic-plastic as well as viscoelastic-plastic models [5].

Sandwich beams are the examples of structures resting on elastic foundation.
They should be designed in such a way to meet the basic structural criteria
(favorable weight to the transferred load ratio and high stiffness). The faces
should be thick enough to resist tensile, compressive, and shear stresses. The
core, on the other hand, should be characterized by a high strength in order to
withstand the shear stresses caused by loads and be thick enough to prevent
buckling of the structure. Moreover, the values of the adhesive forces should be
sufficient to transfer the shear stresses between the core and the faces.

Research related to the dynamic response of sandwich beams is an essential
issue during investigation of constructions. Free vibration is characterized as the
vibration of the damped or undamped system of masses with a motion completely
influenced by their potential energy. It occurs when there is no externally applied
vibration forcing. The free vibration solution is usually approximately sinusoidal.
The beam vibration can be defined as the amount and direction of movement that
a beam exhibits away from the point of the applied load or support. Vibration
factors include type of the material, length of the beam, the value of load applied
into the construction or the properties of elastic foundation.

Free vibration of viscoelastic functionally graded sandwich shells with tunable
auxetic core has been analyzed by Li and Liu [6]. The equations of motion were
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derived based on Hamilton’s principle. The influence of geometry, temperature,
and core parameters were taken into the consideration. It was revealed that the
type of shells (cylindrical, spherical, saddle) has a direct influence on the value
of natural frequency. Furthermore, the value of frequency decreases with the in-
crease of the viscoelastic loss factor and increases with the increase of the gradient
index. Free linear vibration of three-layered sandwich beams with a magnetorhe-
ological fluid core has been investigated by Soroor et al. [7]. Euler–Bernoulli
and Timoshenko theories were adopted to model the faces and the core respec-
tively. The analysis allowed to formulate the following conclusions: the increase
of the magnetic flux density increases the value of natural frequency of the beam,
the increase of the core thickness decreases the natural frequencies. Moreover,
the increase of the gradient index entails the increase of natural frequencies. Free
vibration of bidirectional functionally graded sandwich beams has been consid-
ered by Le et al. [8]. The beam included three layers: an axially functionally
graded core and two faces. The properties of the faces varied in thickness and
length directions. Disparate boundary conditions were taken into account during
the numerical analysis. It was acknowledged that the values of natural frequen-
cies computed based on the Voigt model are higher than those obtained based
on the Mori–Tanaka model. Free vibration analysis of functionally graded sand-
wich curved beams has been carried out by Sayyad and Avhad [9]. The beam
being tested was made of functionally graded faces and a homogeneous core.
A fifth-order curved beam theory was introduced into the analysis (the effects of
transverse shear and normal deformations were included). It was affirmed that
the value of non-dimensional fundamental frequency increases with the decrease
of the radius of curvature. It was also concluded that the frequency decreases
with the increase of the power-law index. Natural frequencies for out-of-plane
free vibration of three-layered symmetric sandwich beams have been studied by
Gholami et al. [10]. The dynamic stiffness matrix has been introduced and
employed into the analysis. The exact frequencies and the corresponding vibra-
tion modes were attained. Free vibration analysis of symmetric and unsymmetric
sandwich beams has been performed by Garg et al. [11]. The faces were adopted
to be made of functionally graded carbon nanotubes reinforced material and the
core was made of balsa wood. The authors conceded that the core thickness
and carbon nanotube graduation law play an important role in a mechanical
response of beams. Free vibration of sandwich beams with a soft core has been
described by Khdeir and Aldraihem [12]. The zig-zag theory was implemented
into the analysis. The authors compared the obtained results with those avail-
able in the literature (experimental, analytical, and numerical studies). It was
stated that the zig-zag theory can be used for predicting the natural frequencies
in sandwich beams with a soft core. Free vibration analysis (experimental and
numerical) of a sandwich beam with a corrugated core has been formulated by
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Xu et al. [13]. The graded lattice core was adopted as a continuum solid. The
effects of graded parameters, face thickness, core height, and beam length were
under consideration. It was concluded that the value of natural frequency can
be modified by alternating the graded parameter. Moreover, natural frequencies
of the beam increase with the increase of the face thickness and the core height.
Nonlinear free vibration analysis of a shear deformable sandwich porous beam
has been conducted by Chen et al. [14]. The beam was constructed of two faces
and a functionally graded core with internal pores. The effects of the porosity
coefficient as well as slenderness and thickness ratios were studied to designate
the response of the beam. In addition, the influence of transverse shear defor-
mation and rotary inertia were incorporated, based on the Timoshenko beam
theory. The analysis allowed to formulate the following conclusions: the nonlin-
ear frequency ratio increases with the increase of the vibration amplitude, the
nonlinear frequency ratios decrease with varying amplitudes when the porosity
coefficient increases, the linear fundamental frequency is strictly associated with
the slenderness ratio [14]. Free vibration analysis of a debonded curved sandwich
beam has been presented by Sadeghpour et al. [15]. Radial and circumferential
rigidities of the core were considered. The displacement in the core was assumed
in a form of a quadratic polynomial distribution. The high order theory was
introduced and employed by the authors. The analysis revealed that the angle
of curvature and boundary conditions are major factors affecting the dynamic
response of the beam.

If the reaction force provided by the continuous support is assumed as a func-
tion of the displacement of the construction, the support is called the elastic one.
A beam resting on an elastic support is called a beam on an elastic foundation.
The models of elastic foundations may be considered as an elastic layer of an
infinite extent resting on a rigid base and consisted of an infinite sequence of
elastic columns. Research related to vibration of beams on an elastic foundation
has been conducted by a varying number of authors. Natural vibration of a sand-
wich beam on the elastic Winkler foundation has been described by Kubenko
et al. [16]. The authors applied the Bernoulli hypotheses in their work to exam-
ine the kinematics of faces. Analytical and numerical analyses were introduced
and employed. The analysis revealed that the elastic foundations of medium and
high stiffness significantly affect the values of natural frequencies of a sandwich
beam. Free vibration of a three-layered sandwich beam has been investigated by
Banerjee et al. [17]. The material of the face and the core were assumed to
be homogeneous and isotropic. In addition, the cross-section of the construction
was asymmetric. The dynamic stiffness matrix was developed by the authors.
The values of natural frequencies and mode shapes were prepared. Thermo-
mechanical vibration analysis of functionally graded (FG) beams and function-
ally graded sandwich beams (FGSW) resting on disparate elastic foundations has
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been studied by Pradhan and Murmu [18]. The Winkler and two-parameter
elastic foundations have been taken into the consideration. The evaluation of re-
sults acknowledged a good agreement with the values reported in the literature. It
was stated for the Winkler and two-parameter foundations that the frequency of
beams decreases with the temperature increase. Moreover, the effect of Winkler
foundation stiffness on the frequency is higher, compared with two-parameter
foundations. Dynamic stability of a functionally graded sandwich beam resting
on the Winkler foundation has been considered by Mohanty et al. [19]. The
finite element method has been used to solve the problem. The beam, hinged at
both ends, was subjected to a dynamic axial load. The analysis affirmed that
the frequencies and stability of beam increase with the increase of Winkler’s
modulus. In addition, the stability of beam is diminished for higher values of
core thickness. Dynamic stability of smart sandwich beams resting on the Win-
kler foundation and subjected to harmonic axial loads has been analyzed by
Tabassian and Rezaeepazhand [20]. The electro-rheological core was a part
of beams. Numerical methods were employed to evaluate the critical dynamic
loads. Beam geometry, elastic foundation stiffness, static loads, voltage, and core
properties have been taken into the consideration to discuss the behaviour of
beams. It was concluded that the occurrence of the electric field in the core in-
creases the values of dynamic critical loads. Furthermore, the increase of critical
loads values is also linked to the presence of the elastic foundation. Free vibra-
tion analysis of functionally graded sandwich beams with a variable cross-section
and resting on the variable Winkler elastic foundation has been conducted by
Demir et al. [21]. The width altered exponentially along the beam length. The
influence of material, geometry, elastic foundation parameters, and the slender-
ness ratio were taken into account. Analytical and numerical models of the beam
were performed. It was conceded that the increase in volume fractions of ceramic
leads to the decrease in natural frequencies of the beam. In addition, the frequen-
cies increase with the increase of the elastic foundation index. Moreover, natural
frequencies decrease with the increase of the slenderness ratio. Free vibration
analysis of a non-symmetric functionally graded sandwich square plate resting
on the Winkler–Pasternak foundation has been carried out by Saidi et al. [22].
Hamilton’s principle has been adopted to derive the equations of equilibrium and
boundary conditions. The authors assumed that the transverse shear displace-
ment varied sinusoidal across the thickness. Numerical values were obtained and
compared with those available in the literature. The results depict that the values
of natural frequencies increase as the ratio of side to plate thickness increases.
Moreover, the frequencies increase with the increase of elastic foundation param-
eters. Free vibration of a three-layered asymmetric sandwich beam resting on the
variable Pasternak foundation has been described by Pradhan et al. [23]. The
beam was subjected to a pulsating axial load. Disparate boundary conditions as
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well as the parameters of the beam and the elastic foundation were taken into
the consideration by the authors. The elastic foundation stiffness was assumed
to have parabolic variation of the form. The results indicate that the values of
natural frequencies of the beam increase with the increase of elastic foundation
parameters. Flexural vibration of functionally graded sandwich plates resting
on a two-parameter elastic foundation has been investigated by Tossapanon
and Wattanasakulpong [24]. The Chebyshev collocation method has been
implemented in this work to acquire the results with several parametric studies.
Various factors were taken into account. Good agreement between the obtained
numerical results and those available in the literature was observed. Furthermore,
it was concluded that the springs constants of the foundation have a meaningful
impact on the frequencies values. The higher the values of these parameters,
the higher the values of frequencies are attained. Nonlinear dynamic character-
istics of a composite orthotropic plate resting on the Winkler–Pasternak elastic
foundation have been studied by Gao et al. [25]. Natural frequency, linear and
nonlinear vibration as well as nonlinear dynamic responses were examined. The
research also took into the consideration the influence of temperature on the
structure. The plate was subjected to different axial velocities. It was acknowl-
edged that the temperature changes affect the values of vibration frequencies
and amplitudes. In addition, the Winkler–Pasternak foundation has an impact
on structural dynamic responses of the plate.

Free vibration analysis of functionally graded sandwich Timoshenko beams
resting on a nonlocal (size-dependent) elastic foundation has been performed by
Zhang et al. [26]. The equations of motion as well as boundary conditions were
derived with the use of Hamilton’s principle. Comparative studies were formu-
lated to validate the numerical model. The beam was assumed to have function-
ally graded faces and a homogeneous core. It was conceded that the increase of
nonlocal parameter values causes the increase of natural frequency. Vibration
of a porous nanocomposite sandwich beam resting on the Kerr viscoelastic foun-
dation has been formulated by Keshtegar et al. [27]. The beam included two
nanocomposite piezoelectric faces. The viscoelastic foundation was composed of
two dampers, two springs, and one shear element. It was affirmed that the in-
crease of porous coefficient values decreases the wave velocity and frequency.
In addition, the authors conferred that the wave velocity for the Kerr-type vis-
coelastic foundation would be higher than that obtained for the Pasternak-type
and Winkler-type viscoelastic ones. Numerical analysis of forced vibration of
a cracked double-beam system connected by a viscoelastic layer has been con-
ducted by Chen et al. [28]. The beam was resting on the Winkler–Pasternak
elastic foundation and was subjected to harmonic loads. It was indicated that
the decrease of natural frequency is associated with the increase of the crack
depth ratio. The location of the crack also plays a decisive role in the dynamic
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characteristic of a double-beam system. Moreover, the stiffness of the connecting
layer affects the values of natural frequencies of the construction. Vibration of
simply supported sandwich plates with a pyramidal truss core resting on the
Winkler–Pasternak elastic foundation has been discussed by Chai et al. [29].
The influence of geometric parameters of the plates, material properties as well
as the parameters of elastic foundation were taken into the consideration. Two
faces and the core were manufactured of the same material. Analytical solution
performed by the authors was compared with numerical one. Good accordance
between two distinct methods was regarded. The analysis revealed the following
conclusions: natural frequencies increase and then decrease with the increase of
a core truss radius, the values of frequencies increase with the increase of thick-
ness of the faces. Furthermore, natural frequencies increase with the increase of
elastic foundation parameters [29]. Dynamic stability analysis of an asymmetric
sandwich beam varying exponentially and resting on the Pasternak elastic foun-
dation has been carried out by Mohanty et al. [30]. It was adopted that the
elastic foundation stiffness varied linearly with the displacement. The top layer of
the beam was made of aluminum, the bottom layer-steel, and the core was com-
posed of glass fiber. In addition, the beam was subjected to an axial pulsating
load and one dimensional temperature gradient. The effect of, inter alia, the elas-
tic foundation parameter, shear and taper parameters was taken into account.
It was acknowledged that the advantageous dynamic stability of the beam can
be attained when the values of d/l (diameter/length), shear parameter, and tem-
perature gradient increase. Opposite situation appears when the values of taper
parameters, elastic foundation parameters, and the modulus ratio increase [30].
Free vibration of a sandwich beam with a soft core and resting on the Pasternak
foundation has been analyzed by Arefi and Najafitabar [31]. Two function-
ally graded graphene nanoplatelets reinforced composite faces were incorporated
into the construction. The extended high-order sandwich panel theory for free
vibration was adopted in the numerical model. It was stated that the natural
frequencies decrease with the increase of length to the thickness ratio. Moreover,
addition of a slight quantity of nano reinforcement induces the increase of natural
frequencies. Research conceded that the application of graphene nanoplatelets
as a reinforcement leads to a considerable amelioration of mechanical properties
of the beam [31].

Dynamic analysis of functionally graded sandwich plates under multiple mov-
ing loads has been carried out by Songsuwan et al. [32]. Equations of motion
were derived and solved by Ritz and Newmark time integration methods. The ef-
fects of, inter alia, boundary conditions, moving load velocity, and layer thickness
ratio were taken into the consideration. It was acknowledged that the dynamic
deflection alters its values in relation to moving load velocity changes. More-
over, another parameters considered by the authors also play an important role
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in predicting the dynamic deflection values. A nonlinear transient response of
sandwich beams with the functionally graded porous core has been investigated
by Songsuwan et al. [33]. Beams were made of two isotropic faces, a porous
core and were subjected to a moving load. Nonlinear free and forced vibrations
were examined with the use of numerical methods. The analysis affirmed that
the parameters such as, inter alia, boundary conditions, slenderness ratio, porous
coefficient, types of porous distribution, vibration amplitude or velocity of load
have a meaningful influence on nonlinear deflection of sandwich beams. The tran-
sient or dynamic response of sandwich plates with a functionally graded core and
subjected to time-dependent loads has been discussed by Wattanasakulpong
and Eiadtrong [34]. The plates were made of two isotropic faces and a function-
ally graded core with open-cell internal pores. The Ritz method based on Jacobi
polynomials was adopted to solve the equations of motion and to study the
dynamic behaviour of plates. The authors formulated the following conclusion:
increasing the amount of internal pores in the core entails considerable improve-
ment of flexural stiffness. Vibration of porous functionally graded beams resting
on the variable Winkler–Pasternak foundation has been presented by Mellal
et al. [35]. The high-order shear deformation theory has been implemented into
the research. Parameters of the Winkler foundation in longitudinal direction had
various distribution: linear, parabolic, sinusoidal, cosine, exponential, and uni-
form. Further analysis conceded that the type of the Winkler foundation has
a valid effect on dimensionless fundamental natural frequencies. In addition, the
frequencies decrease with the increase of the volume fraction index.

The application of constructions on elastic foundation is a complex issue for
engineers. Many instances involve a comparatively rigid structure supported by
a more flexible foundation. Such foundations appear in civil engineering where
buildings are supported on an elastic medium. However, models describing the
elastic foundations comprise some inaccuracies. Literature review, performed
by the authors, affirmed one common feature of all elastic substrate models:
constant foundation parameters. Due to this assumption, elastic foundation is
considered not to play a major role in strength or dynamic analysis of the struc-
ture. One could say that it plays an indirect role. The authors submitted the
original beam-foundation interaction model which based on variable parameters
of the foundation and their influence on the beam response. Thanks to this ap-
proach, it is possible to control the behaviour of structure by changing the elastic
foundation parameters. The main purpose of the presented study is free flexu-
ral vibration of a simply supported sandwich beam resting on elastic foundation.
The foundation was depicted by a mathematical function c(x) having changeable
parameters. The application of this function allowed for control of foundation
parameters and analysis of their impact on free vibration. Analytical and nu-
merical examination were carried out, showing a good agreement between both
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methods. Stability analysis of a three-layered beam was thoroughly described in
previous work of the authors [36]. The presented model in this cited paper [36] is
similar to the one considered in this current work. However, the similarity only
applies to the model of elastic foundation. The novelty of this work is free vi-
bration investigation of a beam on an elastic foundation (time-dependent issue);
governing equations of the considered phenomenon, the solution method and its
general nature are different. This work concentrates on the dynamic analysis
of a simply supported sandwich beam on an elastic foundation with variable
parameters which is a continuation of previous research.

2. Analytical model of a beam

The subject of the paper is a simply supported symmetrical sandwich beam
of the length L resting on an elastic foundation (Fig. 1). The width of this beam
is b, thicknesses of faces are hf , the thickness of the core is hc, consequently, the
total depth h = hc + 2hf . The analytical model of this beam is developed with
consideration of the ‘broken line’ theory (Fig. 2).

Fig. 1. Scheme of a sandwich beam.

According to that, individual displacement components u(x, y, t) for each
layer have the form:

– the upper face: −1
2h ≤ y ≤ −

1
2hc

(2.1) u(x, y, t) = −
[
y
∂v

∂x
+ uf (x, t)

]
= −h

[
η
∂v

∂x
+ ψf (x, t)

]
,

where −1
2 ≤ η ≤ −1

2χc η = y
h – dimensionless coordinate, χc = hc

h – dimen-
sionless thickness of the core, and ψf (x, t) =

uf (x,t)
h – dimensionless function,

– the core: −1
2hc ≤ y ≤

1
2hc

(2.2) u(x, y, t) = −y ∂v
∂x

+ 2y
uf (x, t)

hc
= −hη

[
∂v

∂x
− 2

χc
ψf (x, t)

]
,

where −1
2χc ≤ η ≤

1
2χc,
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– the lower face: 1
2hc ≤ y ≤

1
2h

(2.3) u(x, y, t) = −y ∂v
∂x

+ uf (x, t) = −h
[
η
∂v

∂x
− ψf (x, t)

]
,

where 1
2χc ≤ η ≤

1
2 .

Then the strains:
– the upper face

(2.4) εufx (x, η, t) =
∂u

∂x
= −h

[
η
∂2v

∂x2
+
∂ψf
∂x

]
, γufxy (x, η, t) =

∂u

∂y
+
∂v

∂x
= 0,

– the core

(2.5)
εcx(x, η, t) =

∂u

∂x
= −hη

[
∂2v

∂x2 −
2

χc
·
∂ψf
∂x

]
,

γcxy(x, η, t) =
∂u

∂y
+
∂v

∂x
=

2

χc
ψf (x, t),

– the lower face

(2.6) εlfx (x, η, t) =
∂u

∂x
= −h

[
η
∂2v

∂x2 −
∂ψf
∂x

]
, γlfxy(x, η, t) =

∂u

∂y
+
∂v

∂x
= 0,

where t – time [s].
Normal and shear stresses are as follows:
– the upper face

(2.7) σufx (x, η, t) = Ef · εufx (x, η, t), τufxy (x, η, t) = 0,

where Ef is the Young modulus of the face,
– the core

(2.8) σcx(x, η, t) = Ec · εcx(x, η, t), τ cxy(x, η, t) =
Ec

2(1 + νc)
· γcxy(x, η, t),

where Ec is the Young modulus of the core, and νc is the Poisson ratio of the
core,

– the lower face

(2.9) σlfx (x, η, t) = Ef · εlfx (x, η, t), τ lfxy(x, η, t) = 0.

The displacement components u(x, y, t) of a sandwich beam have been deter-
mined based on the ‘broken line’ theory (Fig. 2). Shear stresses, after adopting
this theory, are equal to zero in the faces (the upper and the lower one), and
other than zero in the core. When the core is characterized by constant proper-
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Fig. 2. Scheme of the deformation of the sandwich beam planar cross-section – the ‘broken
line’ theory [37].

ties, the values of shear stresses in the core are also constant. When the core is
characterized by various properties, the values of shear stresses in the core are
also various. It is also assumed that the deflections of layers are consistent with
the deflection of beam axis.

The equations of motion as well as boundary conditions were derived with
the use of Hamilton’s principle which is assumed in the following form:

(2.10) δ

t2∫
t1

[Uk − (Uε −W )] dt = 0,

where Uk is the kinetic energy of the beam, Uε – the elastic strain energy of the
beam,W – the work of load – reaction of the elastic foundation, and t is time [s].

Hamilton’s equations of motion correspond to Lagrange’s equations, but they
are more adequate for the analysis of motion systems since they are of first-order
and highly symmetrical.

The kinetic energy of the beam has the form:

(2.11) Uk =
1

2
bhρb ·

L∫
0

(
∂v

∂t

)2

dx,

where ρb = (1−χc)ρf +χcρc = [1−χc +
√
ecχc]ρf is mass density of the beam,

ρc, ρf – mass density of the core and the faces respectively, ρb=[1−(1−
√
ec)χc]ρf ,√

ec = ρc
ρf
, ec = Ec

Ef
. Thus, Eq. (2.11) can be expressed in the following form:

(2.12) Uk =
1

2
bhρf [1− (1−

√
ec )χc] ·

L∫
0

(
∂v

∂t

)2

dx.
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The elastic strain energy of the beam is as follows:

Uε =
1

2
bh3

L∫
0

{
Ef

−χc/2∫
−1/2

[
η2

(
∂2v

∂x2

)2

+ 2η
∂2v

∂x2 ·
∂ψf
∂x

+

(
∂ψf
∂x

)2 ]
dη

+ Ef

1/2∫
χc/2

[
η2

(
∂2v

∂x2

)2

− 2η
∂2v

∂x2 ·
∂ψf
∂x

+

(
∂ψf
∂x

)2]
dη

+ Ec

[(
∂2v

∂x2

)2

− 4

χc
· ∂

2v

∂x2 ·
∂ψf
∂x

+
4

χ2
c

(
∂ψf
∂x

)2]
·

χc/2∫
−χc/2

η2 dη

+ Ec
2

1 + νc
· 1

χc
·
ψ2
f (x, t)

h2

}
dx.

Thus, the above equation is assumed in the following form:

(2.13) Uε =
1

2
bh3

L∫
0

{
Ef

[
1

12
(1− χ3

c)

(
∂2v

∂x2

)2

− 2 · 1

4
(1− χ2

c)
∂2v

∂x2
·
∂ψf
∂x

+ (1− χc)
(
∂ψf
∂x

)2]
+

1

12
Ec · χ3

c

[(
∂2v

∂x2

)2

− 2 · 2

χc
· ∂

2v

∂x2
·
∂ψf
∂x

+
4

χ2
c

(
∂ψf
∂x

)2]
+ Ec

2

1 + νc
· 1

χc
·
ψ2
f (x, t)

h2

}
dx.

The last part of Eq. (2.10), the work of load, has the form:

W = −1

2

L∫
0

qf (x) · v(x) dx,

where qf (x) = c(x) · v(x) is the reaction of elastic foundation
[

N
mm

]
, c(x) – the

shape (nonlinear function) of elastic foundation
[

N
mm2

]
, v(x) – the deflection of

beam.
The shape function (Fig. 3) with variable properties of the foundation is as

follows:

(2.14) c(x) = cfd[1 + αf sinn(πξ)],

where ξ = x/L is dimensionless coordinate and 0 ≤ ξ ≤ 1, n – natural exponent,
cfd – the elastic foundation constant

[
N

mm2

]
, and αf – the coefficient of the

foundation reaction where −1 ≤ αf ≤ 1.
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Fig. 3. Shape of nonlinear function c(x) of the foundation [36].

It was adopted that the function (2.14) is symmetrical to both ends of the
sandwich beam. However, a nonsymmetrical shape function may also be used
for calculations.

The sandwich beam introduced in this article is resting on a variable elastic
foundation. The foundation being analyzed is flat but it has a changeable inten-
sity of the foundation reaction. This intensity can be compared to the intensities
of soil foundations. Soil foundations have a flat structure but their properties
vary with respect to density changes.

Figures 4 and 5 depict the function for variable values of cfd, αf , and n param-
eters. The figures reveal that the parameter n is a substantial factor that alters
the shape of the function (2.14). The peak in the graph changes its shape, depend-
ing on the adopted value of the natural exponent. Furthermore, cfd and αf pa-
rameters also play a significant role in the characteristics of an elastic foundation.

The function of deflection of sandwich beam is assumed in the following form:

(2.15) v(x) = va · sin(mπξ) · sinn(πξ),

where va is the amplitude of deflection, whereas m and n are natural numbers.
Therefore, the work of load equation can be expressed in the following form:

(2.16) W = −1

2

L∫
0

c(x) · v2(x) dx.

The variations of kinetic energy of the beam Uk, the elastic strain energy Uε as
well as the work of the load W have the forms:

δUk = −bhρf [1− (1−
√
ec)χc] ·

L∫
0

∂2v

∂t2
δv dx,(2.17)
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Fig. 4. Shape of c(x) function for variable values of n parameter [36].

Fig. 5. Examples of shape function c(x) for variable parameters [36].

δUε = bh3

L∫
0

{
Ef

[
1

12
(1− χ3

c)
∂4v

∂x4
· δv − 1

4
(1− χ2

c)
∂3ψf
∂x3

· δv(2.18)

+
1

4
(1− χ2

c)
∂3v

∂x3
· δψf − (1− χc)

∂2ψf
∂x2

· δψf
]

+
1

12
Ecχ

3
c

[
∂4v

∂x4
· δv − 2

χc
·
∂3ψf
∂x3

· δv +
2

χc
· ∂

3v

∂x3
· δψf

− 4

χ2
c

·
∂2ψf
∂x2

· δψf
]

+ Ec
2

1 + νc
· 1

χc
·
ψf (x, t)

h2
· δψf

}
dx,



Free flexural vibration of a sandwich beam. . . 633

δW = −
L∫

0

c(x) · v(x) · δv dx.(2.19)

Taking into account Hamilton’s principle one obtains:

• the variation of δv:

bhρf [1− (1−
√
ec )χc] ·

∂2v

∂t2
+ bh3

{
1

12
[Ef (1− χ3

c) + Ec · χ3
c ]
∂4v

∂x4

−
[

1

4
Ef (1− χ2

c) +
1

6
Ecχ

2
c

]
∂3ψf

∂x3

}
+ c(x) · v(x) = 0,

(2.20)

bhρf [1− (1−
√
ec)χc] ·

∂2v

∂t2
+

1

12
Efbh

3

{
[1− (1− ec)χ3

c ]
∂4v

∂x4

− [3− (3− 2ec)χ
2
c ]
∂3ψf
∂x3

}
+ c(x) · v(x) = 0,

• the variation of δψf :[
1

4
Ef (1− χ2

c) +
1

6
Ecχ

2
c

]
∂3v

∂x3
−
[
Ef (1− χc) +

1

3
Ecχc

]
∂2ψf
∂x2

+ 2
Ec

1 + νc
· 1

χc
·
ψf (x, t)

h2
= 0,

(2.21)
1

12
Ef [3− (3− 2ec)χ

2
c ]
∂3v

∂x3
− 1

3
Ef [3− (3− ec)χc]

∂2ψf
∂x2

+ Ef
2

1 + νc
· ec
χc
·
ψf (x, t)

h2
= 0,

[3− (3−2ec)χ
2
c ]
∂3v

∂x3
−4[3− (3− ec)χc]

∂2ψf
∂x2

+
24

1 + νc
· ec
χc
·
ψf (x, t)

h2
= 0.

Therefore, the above equations of motion (2.20) and (2.21) can be presented in
the following form:

bhρf · cm ·
∂2v

∂t2
+
Efbh

3

12

(
cvv ·

∂4v

∂x4
− cvψ ·

∂3ψf

∂x3

)
+ c(x) · v(x) = 0,(2.22)

cvψ ·
∂3v

∂x3
− cψψ ·

∂2ψf
∂x2

+ cψ ·
ψf (x, t)

h2
= 0,(2.23)

where cm = 1 − (1 −
√
ec )χc, cvv = 1 − (1 − ec)χ

3
c , cvψ = 3 − (3 − 2ec)χ

2
c ,

cψψ = 4[3− (3− ec)χc], cψ = 24
1+νc

· ecχc .
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The analytical investigation has been divided into two parts: the analysis of
elastic foundation with constant and variable properties. The main objective of
the presented work is free vibration analysis of a sandwich beam on an elas-
tic foundation with variable properties. Therefore, the part related to constant
properties is only presented for a compliance confirmation of the equations used
as well as for a comparison of the results obtained.

2.1. The elastic foundation with constant properties (αf = 0)

During the analysis, the following assumptions have been applied: c(x) = cfd,
ξ = x/L, λ = L/h, v̄(ξ, t) = v(ξ,t)

L , where λ is the ratio of the beam length to its
height and v̄(ξ, t) is the dimensionless deflection of the beam.

After making the above assumptions, the equations of motion (2.22) and
(2.23) can be transformed into the dimensionless forms:

ρf · cm ·
∂2v̄

∂t2
+

Ef

12λ2L2

(
cvv ·

∂4v̄

∂ξ4
− cvψ ·

∂3ψf
∂ξ3

)
+
cfd
bh
· v̄(ξ) = 0,(2.24)

cvψ ·
∂3v̄

∂ξ3
− cψψ ·

∂2ψf
∂ξ2

+ cψ · λ2 · ψf (ξ, t) = 0.(2.25)

The frequency equation has been obtained for a simply supported beam
(pivot ends of the beam). The differential equations of motion (2.24) and (2.25)
were approximately solved with the use of two assumed functions:

v̄(ξ, t) = v̄a(t) · sin(πξ),(2.26)
ψf (ξ, t) = ψfa(t) · cos(πξ),(2.27)

where v̄a is the amplitude of flexural vibration and v̄a(t) = v̄a · sin(ωt).
Substituting (2.26) and (2.27) into Eq. (2.24) once obtained:

ρf · cm ·
d2v̄a
dt2
· sin(πξ) +

Ef

12λ2L2 (π4 · cvv · v̄a(t)− π3 · cvψ · ψfa(t)) · sin(πξ)

+
cfd
bh
· v̄a(t) · sin(πξ) = 0.

Substituting (2.26) and (2.27) into Eq. (2.25) once obtained:

−π3 · cvψ · v̄a(t) · cos(πξ) + π2 · cψψ · ψfa(t) · cos(πξ)

+ cψ · λ2 · ψfa(t) · cos(πξ) = 0,

(π2 · cψψ + cψ · λ2)ψfa(t) = π3 · cvψ · v̄a(t),(2.28)

ψfa(t) =
πcvψ

cψψ + cψ
(
λ
π

)2 v̄a(t).



Free flexural vibration of a sandwich beam. . . 635

Thus, the first equation of motion (2.24) can be expressed in the following
form:

(2.29) ρf · cm ·
d2v̄a
dt2

+
π4Ef

12λ2L2

[
cvv −

c2
vψ

cψψ + cψ
(
λ
π

)2] · v̄a(t) +
cfd
bh
· v̄a(t) = 0.

Based on the above equations, the frequency equation of a sandwich beam
on an elastic foundation has been found:

(2.30)

ω2 =
π4Ef

12λ2L2

{
cvv −

c2
vψ

cψψ + cψ
(
λ
π

)2 +
12

π4
λ3L

b
·
cfd
Ef

}
1

cm · ρf
,

ω =

√
3π2 · 103

6λL
·

√√√√[cvv − c2
vψ

cψψ + cψ
(
λ
π

)2 +
12

π4
λ3
L

b
·
cfd
Ef

]
Ef

cm · ρf
.

Equation (2.30) is solved with the use of v̄a(t) function and ω [rad/s] or
fz = ω/2π [Hz] is the fundamental natural frequency.

Sample analytical values of natural frequency have been presented for the
following data: Ef = 72 GPa, Ec = 3.0 GPa, ec = 1

24 , ρf = 2710 kg
m3 , ρc = 553 kg

m3 ,
ρc
ρf

=
√
ec = 0.2041, h = 20mm, hc = 18mm, hf = 1mm, cfd = 8MPa, νc = 0.3,

b = 20mm, λ = L/h, and λb = L/b. The results for diverse proportions of beam
length have been performed (Table 1). The calculations below confirmed the
correctness of the equations used. The values of the natural frequency decrease
with the increase of the beam length.

Table 1. The values of natural frequency of sandwich beam on elastic foundation with
constant properties.

L [m] 0.2 0.3 0.4 0.5
λ 10 15 20 25

ω

2π
[Hz] 1383.55 962.77 863.82 833.75

The definition of free vibration is adopted when there is no external load
which can induce the motion and the motion is the outcome of initial conditions.
In the situation studied, the values of free vibration frequencies are influenced
by the change of the beam length. The parameters of an elastic foundation are
not taken into the consideration since they are assumed to be constant. During
free vibration analysis, energy will remain the same, it is not added or removed
from the body. The body keeps vibrating at the same amplitude.

Some examples of free vibration are: oscillations of a simple pendulum, oscil-
lations of an object connected to a horizontal spring, sound produced by a tuning
fork in a short distance, notes of musical instruments, an organ pipe, etc.
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2.2. The elastic foundation with variable properties (αf 6= 0)

During the analysis, the following assumptions have been applied:

c(ξ) = cfd[1 + αf sinn(πξ)], v̄(ξ, t) =
v(ξ, t)

L
, n = 1, 2, 3, . . . .

After making the above assumptions, the equations of motion (2.22) and
(2.23) can be transformed into the dimensionless forms:

ρf · cm ·
∂2v̄

∂t2
+

Ef

12λ2L2

(
cvv ·

∂4v̄

∂ξ4 − cvψ ·
∂3ψf
∂ξ3

)
(2.31)

+
cfd
bh

[1 + αf sinn(πξ)] · v̄(ξ) = 0,

cvψ ·
∂3v̄

∂ξ3 − cψψ ·
∂2ψf
∂ξ2

+ cψ · λ2 · ψf (ξ, t) = 0.(2.32)

The frequency equation has been obtained for the simply supported beam
(pivot ends of the beam). The differential equations of motion (2.31) and (2.32)
were approximately solved with the use of two assumed functions:

v̄(ξ, t) = [sin(πξ) + kv sin(3πξ)] · v̄a(t),(2.33)
ψf (ξ, t) = [cos(πξ) + kψ cos(3πξ)] · ψfa(t),(2.34)

where kv and kψ are the dimensionless coefficients.
Substituting (2.33) and (2.34) into Eq. (2.32) once obtained:

kψ = 27
π2cψψ + λ2cψ
9π2cψψ + λ2cψ

· kv,(2.35)

ψfa(t) =
πcvψ

cψψ +
(
λ
π

)2 · cψ · v̄a(t),(2.36)

where
d4v̄

dξ4 = π4[sin(πξ) + 81kv sin(3πξ)] · v̄a(t),(2.37)

d3ψf
dξ3

= π3[sin(πξ) + 27kψ sin(3πξ)] · ψfa(t).(2.38)

Therefore, after substituting (2.33) and (2.34) into Eq. (2.31) once obtained:

ρf ·cm[sin(πξ)+kv sin(3πξ)]
d2v̄a
dt2

+
Ef

12λ2L2

{
π4cvv[sin(πξ)+81kv sin(3πξ)] · v̄a(t)

− π3cvψ[sin(πξ) + 27kψ sin(3πξ)] ·
πcvψ

cψψ +
(
λ
π

)2 · cψ · v̄a(t)
}

+
cfd
bh

[1 + αf sinn(πξ)] · [sin(πξ) + kv sin(3πξ)] · v̄a(t) = 0.
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After simple transformations, the first equation of motion (2.31) can be simplified
into the following form:

(2.39) ρf · cm[sin(πξ) + kv sin(3πξ)]
d2v̄a
dt2

+
π4Ef

12λ2L2
{cvv[sin(πξ) + 81kv sin(3πξ)]− cse[sin(πξ) + 27kψ sin(3πξ)]} · v̄a(t)

+
cfd
bh

[1 + αf sinn(πξ)] · [sin(πξ) + kv sin(3πξ)] · v̄a(t) = 0,

where

cse =
c2
vψ

cψψ +
(
λ
π

)2 · cψ .
The frequency is calculated using the Galerkin method. The main condition of
this method is as follows:

(2.40)
1∫

0

Ω(ξ, t) · [sin(πξ) + kv sin(3πξ)] dξ = 0.

The general solution can be defined in the following form (integration of the
Eq. (2.31)):

1

2
ρfcm(1 + k2

v)
d2v̄a
dt2

+
π4Ef

12λ2L2

{
1

2
cvv(1 + 81k2

v)−
1

2
cse(1 + 27kvkψ)

}
· v̄a(t)

+
cfd
bh
· Jn · v̄a(t) = 0.

Therefore, the above equation is as follows:

(2.41) ρfcm(1 + k2
v)
d2v̄a

dt2

+
π4Ef

12λ2L2

{
cvv(1 + 81k2

v)− cse(1 + 27kvkψ) +
24

π4
λ3L

b
Jn
cfd
Ef

}
· v̄a(t) = 0.

Equation (2.41) is solved with the use of v̄a(t) = v̄a · sin(ωt) function, where v̄a –
the amplitude of flexural vibration, ω [rad/s] or fz = ω/2π [Hz] – the fundamental
natural frequency.

Thus, substituting the function into Eq. (2.41) one obtains:

(2.42) ρfcm(1 + k2
v) · ω2

=
π4Ef

12λ2L2

{
cvv(1 + 81k2

v)− cse(1 + 27kvkψ) +
24

π4
λ3λbJn

cfd
Ef

}
,



638 K. Magnucki, I. Wstawska, P. Kędzia

where

L∫
0

[sin(πξ) + kv sin(3πξ)]2 dξ =
1

2
(1 + k2

v),(2.43)

1∫
0

[sin(πξ) + 81kv sin(3πξ)] · [sin(πξ) + kv sin(3πξ)] dξ(2.44)

=
1

2
(1 + 81k2

v),

1∫
0

[sin(πξ) + 27kψ sin(3πξ)] · [sin(πξ) + kv sin(3πξ)] dξ(2.45)

=
1

2
(1 + 27kvkψ),

Jn =

1∫
0

[1 + αf sinn(πξ)] · [sin(πξ) + kv sin(3πξ)]2 dξ.(2.46)

Based on the above equations, the frequency equation of the sandwich beam
on an elastic foundation has been found:

(2.47) ω = min
kv

{√
3π2 · 103

6λL

·

√[
cvv(1 + 81k2

v)− cse(1 + 27kvkψ) +
24

π4
λ3λbJn

cfd
Ef

]
1

1 + k2
v

·
Ef

cm · ρf

}
.

The frequency ω is a function of geometric and mechanical properties of
the beam, elastic foundation parameters (n and αf parameters) as well as the
kv coefficient.

Formula (2.47) presents the concept of a minimum frequency which depends
on the values of αf and kv parameters. In specific elastic foundation conditions,
where αf = 0 and n = 200, the value of the parameter kv is equal to 0 and the
frequency is equal to fz (n→∞) = 962.77Hz (Table 2).

Table 2. Sample values of natural frequency of sandwich beam on elastic foundation with
variable properties.

αf −0.50 −0.25 0 0.25 0.50
kv −0.002580 −0.001294 0 0.001294 0.002580

ω

2π
[Hz] 943.34 953.12 962.77 972.30 981.72
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3. Results and discussion

3.1. Analytical studies

Sample analytical values of natural frequency have been presented for the
following data: Ef = 72GPa, Ec = 3.0GPa, ec = 1

24 , ρf = 2710 kg
m3 , ρc = 553 kg

m3 ,
ρc
ρf

=
√
ec = 0.2041, h = 20mm, hc = 18mm, hf = 1mm, cfd = 8MPa, νc = 0.3,

L = 0.3m, b = 20mm, λ = L/h = 15, and λb = L/b = 15. The results for various
αf , n, and kv parameters have been presented below.

Table 3. Sample values of kv of sandwich beam on elastic foundation with variable
properties.

αf = −0.50 αf = −0.25 αf = 0 αf = 0.25 αf = 0.50

n = 1 −0.003966 −0.001989 0 0.001996 0.004001
n = 2 −0.005832 −0.002925 0 0.002941 0.005901
n = 3 −0.006788 −0.003405 0 0.003425 0.006871
n = 4 −0.007290 −0.003656 0 0.003678 0.007376
n = 5 −0.007546 −0.003784 0 0.003805 0.007630
n = 10 −0.007534 −0.003774 0 0.003788 0.007591
n = 15 −0.007047 −0.003528 0 0.003538 0.007085
n = 20 −0.006565 −0.003286 0 0.003292 0.006591
n = 30 −0.005788 −0.002896 0 0.002900 0.005803
n = 40 −0.005217 −0.002610 0 0.002612 0.005227
n = 50 −0.004183 −0.001763 0 0.003075 0.005495
n = 100 −0.002939 −0.001141 0 0.002453 0.004249
n = 200 −0.002580 −0.001294 0 0.001294 0.002580

The frequency values are determined by αf and n parameters. The highest
magnitudes can be reached for the highest values of αf (the coefficient of the
foundation reaction). The highest frequency (in the studied area) was equal to
ω
2π = 1098.34Hz and has been obtained for αf = 0.5 and n = 1, according to
Eq. (2.47).

In addition, for negative values of αf , natural frequency of the beam increases
with the increase of n parameter, and decreases for positive values of αf . This
phenomenon is related to the shape of c(x) function and, above all, the peak
size on the graph. Narrow peaks do not have much influence on the dynamic
response of a sandwich beam. Only wider peaks (lower values of n parameter)
change the reaction of analyzed system. Higher values of n tend to stabilize the
beam frequency. Therefore, complex analysis of the influence of narrow peaks is
not necessary to understand the free vibration phenomenon in sandwich beam.
Results of calculations have been introduced in Figs. 6 and 7.
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Table 4. Sample values of natural frequency ω
2π
A [Hz] of sandwich beam on elastic

foundation with variable properties.

αf = −0.50 αf = −0.25 αf = 0 αf = 0.25 αf = 0.50

n = 1 804.40 887.16 962.77 1032.81 1098.34
n = 2 824.23 896.25 962.77 1024.87 1083.30
n = 3 838.19 902.72 962.77 1019.13 1072.37
n = 4 848.69 907.63 962.77 1014.74 1063.99
n = 5 856.95 911.51 962.77 1011.24 1057.29
n = 10 881.75 923.26 962.77 1000.52 1036.71
n = 15 894.75 929.48 962.77 994.77 1025.61
n = 20 903.05 933.47 962.77 991.05 1018.40
n = 30 913.37 938.46 962.77 986.36 1009.29
n = 40 919.73 941.55 962.77 983.44 1003.59
n = 50 924.19 943.72 962.77 981.36 999.53
n = 100 935.35 949.18 962.77 976.12 989.24
n = 200 943.34 953.12 962.77 972.30 981.72

Figure 6 represents the values of natural frequencies of the beam in a function
of variable values of the parameter n (natural exponent in Eq. (2.14)). It is
affirmed that negative values of αf tend to increase the natural frequency while
for positive values of αf the situation is opposite (with simultaneous increase
of the parameter n). The sing of αf (the coefficient of the foundation reaction)

Fig. 6. The influence of n parameter on the values of beam natural frequency.
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Fig. 7. The influence of n parameter on the values of kv coefficient kv.

plays a significant role in calculations. Based on the assumptions from Eq. (2.14),
the minimum value of frequency should appear for αf = −1 while the maximum
value – for αf = 1 (n = 1).

Figure 7 demonstrates the values of the coefficient kv for variable values of
n parameter. It is apparent from the graph and from the calculations that kv
coefficient is closely dependent on the elastic foundation parameters. Formula
(2.47) is a minimum frequency conception of a multi-layered beam. Elastic foun-
dation parameters change the dynamic response of a sandwich beam. In addition,
the non-linearity in Fig. 7 is the effect of low values of the coefficient kv – these
values stabilize for higher values of the parameter n.

3.2. Numerical studies

Numerical examination of a sandwich beam has begun with the convergent
study and validation in order to verify the accuracy of adopted solutions. The
simply supported and symmetrical (symmetry according to the centre line) sand-
wich beam was considered. The presented numerical results of natural frequencies
included the influence of variable parameters of the elastic foundation. Material
parameters and dimensions had the same values as those used in the analytical
investigation.

Finite element investigation has been accomplished with the use of Solid-
Works software. Bonded constraints have been adopted between the core and
the faces. The elastic foundation has been substituted by the arrangement of
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8 discrete elastic supports. For each elastic support, the value of stiffness has been
calculated based on the formula (2.14). Analysis assumptions were as follows:
• number of nodes: 18525,
• number of finite elements: 10298,
• size of the individual element: 5mm (the tolerance equal to 0.25mm),
• type of finite elements: SOLID (the second order shape function),
• form of finite elements: tetrahedron (10 nodes),
• type of contact between the core and the faces: bonded with a compatible

mesh.
Table below compares the analytical and numerical values of frequency in the

sandwich beam on the elastic foundation. Analysis involved the shape function
(2.14) where the exponent n was a natural number. The frequency values were
dependent on αf and n parameters. The highest results can be achieved for the
highest values of αf . In addition, for negative values of αf , natural frequency
values of the beam increase with the increase of n parameter, and decrease for
positive values of αf . The difference between analytical and numerical values of
the fundamental natural frequency does not exceed 0.5%.

Table 5. Natural frequency ω
2π
FE [Hz] of sandwich beam on elastic foundation with variable

properties with relative differences δ [%] to analytical calculations (in brackets).

αf = −0.50 αf = −0.25 αf = 0 αf = 0.25 αf = 0.50

n = 1 801.19 (0.40) 883.54 (0.41) 958.75 (0.42) 1028.40 (0.43) 1093.60 (0.43)
n = 2 821.06 (0.38) 892.64 (0.40) 958.75 (0.42) 1020.40 (0.44) 1078.50 (0.44)
n = 3 835.00 (0.38) 899.11 (0.40) 958.75 (0.42) 1014.70 (0.43) 1067.60 (0.44)
n = 4 845.47 (0.38) 904.00 (0.40) 958.75 (0.42) 1010.30 (0.44) 1059.20 (0.45)
n = 5 853.70 (0.38) 907.86 (0.40) 958.75 (0.42) 1006.90 (0.43) 1052.60 (0.44)
n = 10 878.35 (0.39) 919.55 (0.40) 958.75 (0.42) 996.19 (0.43) 1032.10 (0.44)
n = 15 891.25 (0.39) 925.72 (0.40) 958.75 (0.42) 990.48 (0.43) 1021.00 (0.45)
n = 20 899.49 (0.39) 929.68 (0.41) 958.75 (0.42) 986.79 (0.43) 1013.90 (0.44)
n = 30 909.72 (0.40) 934.63 (0.41) 958.75 (0.42) 982.13 (0.43) 1004.80 (0.44)
n = 40 916.04 (0.40) 937.70 (0.41) 958.75 (0.42) 979.23 (0.43) 999.18 (0.44)
n = 50 920.42 (0.41) 939.83 (0.41) 958.75 (0.42) 977.20 (0.42) 995.21 (0.43)
n = 100 931.53 (0.41) 945.27 (0.41) 958.75 (0.42) 971.99 (0.42) 984.99 (0.43)
n = 200 940.21 (0.33) 949.54 (0.38) 958.75 (0.42) 967.84 (0.46) 976.82 (0.50)

Example of the beam vibration mode is shown in figure below (Fig. 8). The
system is conservative if the energy is maintained; the algebraic sum of potential
and kinetic energy is constant during the motion. It can be acknowledged that all
unforced constructions vibrate harmonically. Discrete frequencies which appear
at this time are the natural frequencies of a system. Harmonic vibration appears
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for simple systems, such as the spring – mass system. Notwithstanding, more
complex structures, such as the sandwich beam, have more than one natural
frequencies so they do not vibrate harmonically. Majority of vibration issues for
multi-layered beams have similar equations of motion. Therefore, these equations
might be solved once and used to describe alternative and similar approaches.

Fig. 8. Example of the beam vibration mode for αf = 0.50 and n = 1. Amplitude of
vibration is normalized due to maximum displacements.

Natural frequency of the beam is strictly related to the stiffness of the non-
linear elastic foundation. The values being tested increase with the increase of the
foundation stiffness. Increase of αf parameter induces the increase of frequency.
The use of the proposed analytical calculations in conjunction with the numerical
method allows for a comprehensive analysis of beams on elastic foundations.

4. Conclusions

The main objective of above work was free flexural vibration of a simply
supported sandwich beam resting on an elastic foundation. The studies aimed
to determine the influence of variable properties of the elastic foundation on the
dynamic response of the multi-layered beam. The elastic foundation being tested
has been described with the use of an adequate mathematical function (2.14).
Alternating parameters of the function have been taken into account: n – natural
exponent and αf – the coefficient of the foundation reaction, which is a novel
approach to the analysis of structures on elastic foundations (continuous descrip-
tion of beam-foundation interaction). The investigation confirmed that variable
parameters of the elastic foundation have a crucial effect on the dynamic prop-
erties of the sandwich beam.
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In addition, numerical analysis has been carried out. Sample analytical and
numerical calculations have been performed, sharing a good convergence between
the results acquired with both models. The disparity between analytical and
numerical values of the fundamental natural frequency did not exceed 0.5%.
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