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Honeycomb structures with zero Poisson’s ratio show promising potential
for application in variable-sweep wing aircraft. The shear properties of these honey-
comb structures serve as a crucial indicator of their morphing capacity. This paper
derives the linear and non-linear shear properties of a honeycomb structure with zero
Poisson’s ratio. A modified factor is introduced to establish a relationship between
the linear and non-linear shear modulus of the honeycomb structure, simplifying the
calculation method of the non-linear shear modulus. The validity of theoretical pre-
dictions is then confirmed using the finite element method Furthermore, the influences
of the geometric parameters on the shear properties of the honeycomb structure with
zero Poisson’s ratio are investigated, highlighting the varying contributions of these
cell geometric parameters to the shear properties.
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1. Introduction

Honeycombs have higher porosity and lower mass density than their
matrix materials due to the interconnected network of unit cells filling the in-
ternal space, thus resulting in high specific strength/stiffness and specific energy
absorption [1–3]. The topology configuration of the repeating unit cells can sig-
nificantly influence the mechanical properties of the honeycombs. Various topolo-
gies with different Poisson’s ratio have been studied to date, including classical
hexagonal [4] and triangular [5] honeycombs with positive Poisson’s ratio (PPR),
re-entrant [6], chiral [7, 8] and double V-shaped [8, 9] honeycombs with nega-
tive Poisson’s ratio (NPR), as well as semi re-entrant [10] and semi-periodic
sinusoidal [11] honeycombs with zero Poisson’s ratio (ZPR). The structure with
negative or positive Poisson’s ratio expands or shrinks laterally when stretched
in the axial direction. In contrast, a structure with ZPR will not deform lat-
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erally under axial tension. Honeycombs with ZPR offer distinct advantages on
some special occasions especially in the aviation field, when they can serve as
a reliable support structure for flexible skin. These honeycombs provide sufficient
out-of-plane stiffness to withstand surface aerodynamic loads while maintaining
low in-plane stiffness to accommodate high strain capacity [12, 13]. In variable-
sweep wing aircraft, honeycomb structures are subject to shear loads, making it
crucial to accurately predict their equivalent shear properties for the convenient
and efficient overall structure design [14].

The honeycomb structures are often assumed to be homogeneous and or-
thogonally anisotropic by predicting their equivalent properties in engineer-
ing [15, 16]. In recent years, extensive research has been conducted on the me-
chanical properties of honeycomb structures with ZPR, predominantly tensile
and shear properties. Olympio et al. [17] proposed a hybrid honeycomb and
an accordion cellular structure, providing elastic properties for these structures.
Gong et al. [18] introduced a four-point star-shaped honeycomb structure with
ZPR that can deform in two dimensions. Huang et al. [19] found that the cell-
wall thickness and corner radius will affect the elastic characteristic of the two
types of honeycombs with ZPR by means of the finite element method. Grima
et al. [10] proposed a novel hexagonal honeycomb structure composed of both
a conventional non-re-entrant form and an auxetic re-entrant form, and results
show that they exhibit a zero Poisson’s ratio in one direction and a higher than
normal Young’s modulus in the orthogonal direction. The equivalent elastic prop-
erties of the ZPR honeycomb structure with various elastic beams were deduced
in detail by Liu et al. [11, 20, 21], Chen et al. [22] calculated the in-plane me-
chanics of an accordion honeycomb structure with ZPR under small deflection.
To sum up, the review of the previous literature indicates that the effective elastic
properties of honeycombs have been extensively studied under small deforma-
tion. However, the mechanical properties of honeycombs under large deforma-
tion considering geometric nonlinearity, are considerably more complicated than
under small deformation. The Euler beam is employed to derive the effective
elastic properties of the honeycombs. For the honeycombs with a large ratio of
wall thickness to wall length, the influence of the shearing effect on the deforma-
tion of the honeycomb wall must be considered in deriving the effective elastic
properties by the beam theory. Otherwise, it will cause significant errors [23, 24].

Considering geometric nonlinearity, the mechanical behavior of the honey-
comb structures under large deflection differs significantly from that of small
deflection, resulting in more complex mechanical properties. For non-linear me-
chanical performance research, Song et al. [25] deduced the nonlinear tensile
and compressive modulus of the honeycomb structure with ZPR under large de-
flection without considering the shear deformation. Lan et al. [26] presented the
non-linear constitutive relationship of traditional hexagonal honeycomb struc-
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tures with PPR under shear load. Fu et al. [14] studied the shear behavior of
concave hexagonal honeycomb structures with NPR under large deflection. Soon
afterward, Zhong et al. [27] analyzed the nonlinear mechanical responses of the
tetrachiral honeycomb structures with NPR under large deflection. However,
there are limited reports on the theoretical study of the nonlinear shear proper-
ties of honeycomb structures with ZPR. To expand the application of honeycomb
structures in the aviation field, it is necessary to consider the shear deformation
of honeycomb structures with ZPR under both small and large deflection.

This paper aims to derive the shear properties of a honeycomb structure with
ZPR under both small and large deflection. A modified factor is also introduced
to characterize the relationship between linear and nonlinear shear modulus.
Furthermore, the correctness of the linear and non-linear theoretical results was
verified by the finite element simulation. Finally, a detailed analysis is conducted
to examine the influence of the geometrical parameters of the honeycomb struc-
ture on its shear properties.

2. Theoretical analysis

Figure 1(a) shows a schematic diagram of the honeycomb structure with
ZPR, where the x-direction and the y-direction represent the transverse and
vertical directions, respectively. In the deformation analysis process, only the unit
cell is considered as a homogeneous plate with effective modulus owing to the
periodic substructure of the honeycomb structure [23], as illustrated in the red-
marked area. Figure 1(b) illustrates the various parameters involved including h
representing the length of the vertical walls, α representing the cell aspect ratio t
denoting the thickness of all the walls, µ indicating the wall thickness ratio,
l representing the length of inclined walls and θ (where θ = π − ϕ) representing
the internal angle between two walls.

(a) (b)

Fig. 1. Schematic diagram of the honeycomb structure with ZPR.
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2.1. Linear shear properties

Figure 2 demonstrates the schematic diagram of the unit cell modeled to
calculate the linear equivalent shear modulus of the ZPR honeycomb structure
under small deformation where the fixed boundary is set at the left end of the
model. The right end is set with a concentrated force F along the y-direction
and a moment M along the x-direction.

Fig. 2. Schematic illustration of unit cell model used to calculate the linear equivalent shear
modulus.

According to the equilibrium equations, it can be concluded that the mo-
ment M is zero owing to the symmetry and:

(2.1) F = τbh,

where b is the honeycomb’s thickness perpendicular to the x-y plane.
The vertical deformation induced by a shear force can be obtained according

to the Euler–Bernoulli beam theory [28]:

(2.2) δ =
2ωFl3

EsI
sin2 θ,

where

(2.3) ω =
4

3
− 12(α+ cos θ)2

α3 + 12α2 + 24α cos θ + 16 cos2 θ
.

According to the homogenization theory [29], it can be concluded that the
shear strain is:

(2.4) γ =
δ

2l sin θ
.

According to the definition of the shear modulus, the homogenized and shear
modulus can be written as:

(2.5) G∗xy = ES
µ3

12αω sin θ
,

where ES is the equivalent shear modulus of the honeycomb structures with
ZPR.
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2.2. Nonlinear shear properties

The analysis in Section 2.1 is based on the small deformation assumption.
This section analyzes the non-linear shear behavior of the honeycomb structure
under large deflection. Figure 3 shows the schematic diagram of the theoretical
model used to calculate the non-linear shear modulus of the honeycomb structure
with ZPR. The homogeneous plate composed of four cell walls AB, CB, DB, and
EB is selected as the representative analysis unit for analyzing the non-linear
shear properties of the honeycomb structure with ZPR in this section, which
is shown in the red rectangular dashed box in Fig. 3(a) [30]. It can be clearly
observed from Fig. 3(b) that when the cell walls of the honeycomb structures
are subjected to shear load, they will show anti-symmetric deformations about
their respective midpoints [7].

Fig. 3. Nonlinear analytical model of the honeycomb structure with ZPR.

Figure 4(a) shows the force distribution obtained from the analysis of the
representative analysis unit under shear force applied to the honeycomb struc-
ture with ZPR. The deflection of the cell walls of the honeycomb structure is
anti-symmetric, resulting in zero bending moments at sections A, B, C, and D.
The forces received at these four sections are denoted as F1, F2, F3, and F4, re-
spectively. Specifically, F1 is parallel to F2 and oriented y-direction, while F3 is
parallel to F4 and oriented x-direction. Figure 4(b) illustrates the deflection re-
sults of the representative analysis unit.

As shown in Fig. 4(a), the shear stress, τxy, of the representative analysis
unit is written as:

(2.6) τxy = F3/(2blθ).

The shear strain, γxy, of the representative analysis unit can be written as:

(2.7) γxy =
u

h
=
xAB + xCB + xDB + xEB − 2l sin θ

h
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Fig. 4. Representative analysis unit of the honeycomb structure with ZPR under shear load.

with

(2.8) u = xAB + xCB + xDB + xEB − 2l sin θ,

where u is the sum of the displacements of the four points A, C, D, and E
along the x-direction; xAB, xCB, xDB, and xEB, respectively, correspond to the
projection lengths of the deformed walls AB, CB, DB, and EB on the x-axis.
Finally, the shear modulus of the honeycomb structure with ZPR is solved by
combining Eqs. (2.6) and (2.7):

(2.9) Gxy =
τxy
γxy

=
F3

u
· α

2b sin θ
.

In order to represent the curve length of each deformed cell wall, we establish
a curve coordinate system denoted by s, with points A, C, D, and E serving as
the starting points. Let us consider the deflection of the wall AB as an example.
The deflection of the inclined wall AB under the action of the applied force is
depicted in Fig. 5. Here, s represents the length of the deformed curved wall AB
starting from point A, while β denotes the angle between the tangent of a point
on the deformed curve AB and the original wall AB. The angle β at sections A
and B is denoted as βA and βB, respectively. Based on the elastic bending theory
of beam [28], the second order differential equation for the wall AB is obtained
from:

(2.10) ESI
d2β

ds2
= −F1 sin(θ − β),

where I represents the second moment of inertia of the cell wall which states
that I = bt3/12. Then, Eq. (2.10) can be further transformed into

(2.11)
dβ

dS
= −2πf1

√
cos2(θ/2− βA/2)− cos2(θ/2− β/2),



Shear properties of a honeycomb structure. . . 527

Fig. 5. Deflection of the inclined cell wall AB.

where S = s/l denotes the length of the dimensionless curved wall AB, and

(2.12) f1 =

√
F1

Pcr1
=

√
F1

π2ESI/l2

is the introduced dimensionless force Pcr1 = π2ESI
l2

.
Equation (2.11) can be further rewritten as the following expression:

(2.13) dS = − dβ

2πf1 cos(θ/2− βA/2) cos η
= − dη

πf1 sin(θ/2− β/2)

with

(2.14) η = arcsin

(
cos(θ/2− β/2)

cos(θ/2− βA/2)

)
.

Then, use the elliptic integral to adapt the dimensionless force f1 as:

(2.15) f1 =
2

π
[F (m)− F (η1,m)] =

2

π

π/2∫
η1

1√
1−m2 sin2 η

dη,

where

m = cos(θ/2− βA/2),(2.16)

η1 = arcsin

(
cos(θ/2 + βB/2)

cos(θ/2− βA/2)

)
,(2.17)
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F (m) =

π/2∫
0

1√
1−m2 sin2 η

dη,(2.18)

F (η1,m) =

η1∫
0

1√
1−m2 sin2 η

dη.(2.19)

Combining Eqs. (2.13)–(2.15), it can be derived that the bending moment of the
cell wall AB at section B is:

M1 = ESI
dβ

dS

∣∣∣∣
S=1

(2.20)

= 4
√

2ESI[F (m)− F (η1,m)]
√

cos(θ − βA)− cos(θ + βB).

Based on the geometric relationship in Fig. 5, the projection length expression
of the deformed curved wall AB on the x-axis can be derived as:

(2.21) xAB = l

1∫
0

cos[π/2 + (θ − β)] dS = l
2 cos(θ/2− βA/2) cos η1

F (m)− F (η1,m)
.

Similar to the way to derive xAB and f1 related to wall AB, the force exerted
on the cell wall CB and its projection length on the x-axis can be obtained. The
solved expression of the dimensionless force f2 is as follows:

(2.22) f2 =

√
F2

Pcr2
=

2

π
[F (m)− F (η2,m)],

where

Pcr2 =
π2ESI

l2
,(2.23)

F (m) =

π/2∫
0

1√
1−m2 sin2 η

dη,(2.24)

F (η2,m) =

η2∫
0

1√
1−m2 sin2 η

dη,(2.25)

with

(2.26) m = cos((π − θ)/2− βc/2),



Shear properties of a honeycomb structure. . . 529

and

(2.27) η2 = arcsin

(
cos((π − θ)/2 + βB/2)

cos((π − θ)/2− βC/2)

)
.

The bending moment of the wall CB at section B can be written as:

M2 = 4
√

2ES [F (m)− F (η2,m)](2.28)

×
√

cos((π − θ)− βC)− cos((π − θ) + βB).

The projection length expression of the deformed curved wall AB on the
x-axis can be derived as:

(2.29) xCB = l

1∫
0

cos[π/2 + ((π− θ)−β)] dS = l
2 cos((π − θ)/2− βc/2) cos η2

F (m)− F (η2,m)
,

where

E(m) =

π/2∫
0

√
1−m2 sin2 η dη,(2.30)

E(η2,m) =

η2∫
0

√
1−m2 sin2 η dη.(2.31)

The deflection of the vertical wall DB under the action of force F3 is shown
in Fig. 3(a). The second order differential equation for the wall DB is obtained
from the following:

(2.32) ESI
d2β

ds2
= −F3 sin

(
π

2
− β

)
.

Adopting a calculation process similar to the derivation of the mechanical
parameters of the inclined wall, the solved expression of the dimensionless force
f3 is as follows:

(2.33) f3 =

√
F3

Pcr3
=

2

π
[F (m)− F (η3,m)],

where

Pcr3 =
π2ESI

h2
,(2.34)

F (m) =

π/2∫
0

1√
1−m2 sin2 η

dη,(2.35)
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F (η3,m) =

η3∫
0

1√
1−m2 sin2 η

dη,(2.36)

where

(2.37) m = cos(π/4− βD/2)

and

(2.38) η3 = arcsin

(
cos(π/4 + βB/2)

cos(π/4− βD/2)

)
.

Combining Eqs. (2.32) and (2.33) the bending moment of the wall DB at section
B can be written as:

M3 = ESI
dβ

dS

∣∣∣∣
S=0.5

(2.39)

= 2
√

2ESI[F (m)− F (η3,m)]
√

cos(π/2− βD)− cos(π/2 + βB).

The projection length expression of the deformed curved wall DB on the
x-axis can be derived as:

(2.40) xDB = h

1∫
0

cos(π/2− β) dS =
h

2
− [E(m)− E(η3,m)]

F (m)− F (η3,m)
h,

where

E(m) =

π/2∫
0

√
1−m2 sin2 η dη,(2.41)

E(η3,m) =

η3∫
0

√
1−m2 sin2 η dη.(2.42)

The deflection of the wall EB and the wall DB are the same, and the dimen-
sionless parameter, f4, the moment, M4, and the projection length of deformed
curved wall EB on the x-axis, xEB, are obtained in the same way.

As shown in Fig. 3, the resultant force received by the representative analysis
unit in the x-direction and y-direction are respectively equal to zero, that is,∑
Fx = 0 and

∑
Fy = 0, we can further obtain:

f1 = f2,(2.43)

f3 = f4.(2.44)
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The bending moments at node B have the relationship ofM1+M2 = M3+M4,
and Eq. (2.45) can be obtained by substituting Eqs. (2.20), (2.28), and (2.39)
into it, as follows:

(2.45) 2f1

√
cos(θ − βA)− cos(θ + βB)

+ 2f2

√
cos((π − θ)− βC)− cos((π − θ) + βB)

= f3

√
cos(π/2− βD)− cos(π/2 + βB)

+ f4

√
cos(π/2− βE)− cos(π/2 + βB).

In addition, according to the shear stress reciprocity theorem, the force equi-
librium formula in Fig. 4(a) is given by:

(2.46)
F1

2h
= τxy = τyx =

F3

2l sin θ
.

This paper uses Matlab to calculate the equations composed of Eqs. (2.33),
(2.43), and (2.46) numerically. A specific value is assigned to F3 in the equation
to derive the values of βA, βB, βC , βD, and βE . Those obtained values are then
substituted into Eqs. (2.8), (2.21), (2.29), and (2.40) to solve for the combined
displacements u at points A, C, D, and E. Finally, substituting u into Eq. (2.9)
to solve the shear modulus of the honeycomb structure with ZPR.

The relationship between the linear and non-linear shear modulus of the
honeycomb structure with ZPR is expressed as follows:

(2.47) Gxy = kG∗xy,

where k is the non-linear modified factor to establish the relationship between
the shear modulus of the honeycomb structure under small and large deflection.

By solving Eqs. (2.5), (2.9), (2.21), (2.29), (2.40), and (2.47), the expression
of the non-linear modified factor k can be obtained as:

(2.48) k =
f3

2
π2lw

2

1

xAB + xCB + xDB + xEB − 2l sin θ
.

It can be seen from Eq. (2.48) that the non-linear modified factor k is related
to the geometric structure of the honeycomb structure but not independent of
the wall thickness ratio µ, so the change in the relative density will not affect
the non-linear modified factor k.

3. Finite element simulation

This section employed the commercial finite element (FE) software ABAQUS
(version 6.14) to conduct numerical simulation and validate the linear and non-
linear shear theoretical results obtained by the above-mentioned methods. The
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Fig. 6. (a) FE model and (b) boundary conditions of the honeycomb structure with ZPR.

material properties considered were an aluminum alloy with an elastic modulus
of 76GPa and Poisson’s ratio of 0.33. The full-size representative volumes were
given by 5*17 unit cells, as shown in Fig. 6(a). The elements used in the models
have constant linear elastic and isotropic material properties. A 2-node linear
element B21 is used to model the honeycomb block with an element size of
0.1mm. The lower boundary is set as a fixed support constraint, and the points
on the upper boundary are coupled to apply displacement along the x-direction
to ensure that the upper and lower boundaries are parallel to each other after
deflection, as shown in Fig. 6(b). In order to avoid Saint-Venant effects from
the borders, the stress and strain were calculated within the central unit cell
(red section in Fig. 6(a)) [31]. For linear FE simulation, refer to Fig. 1(b) to
model the geometric structure in the simulation and consider the influence of
geometric configuration on the linear shear modulus from three aspects: the cell
aspect ratio α, the wall thickness ratio µ, and the internal angle θ. An internal
geometric parameter of l = 10mm was adopted. The simulation was carried out
with α = 2, µ = 0.15, b = 1mm and θ ranged from 20◦ to 45◦ with even step
at 5◦. For the non-linear FE simulation, the geometric parameters of the unit
cell are l = 10mm, θ = 45◦, b = 1mm, α = 2, µ = 0.15. The shear strain, γxy, is
defined as the displacement of the upper boundary of the central unit cell in the
x-direction divided by its original projection in the y-direction. Similarly, the
shear stress, τxy, is calculated as the force acting on the upper boundary of the
central unit cell divided by its original projection in the x-direction. The relative
percentage error is given as follows:

Error(%) =
|ωtheoretical − ωFEM |

ωtheoretical
× 100%,

where ωtheoretical and ωFEM are the theoretical and simulation results, respec-
tively.
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Figure 7 shows the theoretical and FE results of linear effective shear prop-
erties of the ZPR honeycomb structure under different internal angles. One can
see that the theoretical predictions of the shear modulus are consistent with the
simulation results. The mean relative percentage error for the shear modulus
is 1.2% with a maximum deviation of 1.5% and a minimum of 0.9%. It should
be noted that the simulation results are somewhat below the theoretical ones,
contributing to the difference between the simulation model and the theoretical
model [32]. The FE results of the honeycomb structure with 17*5 unit cells are
also depicted in Fig. 7. It can be found that there are minimal differences in the
FE results between 5*17 and 17*5 unit cells. If the forces acting on a small por-
tion of the surface of an elastic body are replaced by another statically equivalent
system of forces acting on the same portion of the surface, this redistribution of
loading produces substantial changes in the stresses locally but has a negligible
effect on the stresses at distances which are large in comparison with the linear
dimensions of the surface on which the forces are changed [33].

Fig. 7. Theoretical and simulation results of linear effective shear properties of the ZPR
honeycomb structure.

Figure 8 presents a comparison of the stress-strain curve of non-linear theoret-
ical results linear theoretical results and the FE results (5*17) with dimensionless
shear stress. The non-linear theoretical results exhibit slightly higher values com-
pared to the FE results. The three curves coincide well when γxy is less than 0.15.
However, as the strain increases, the FE results and non-linear theoretical results
gradually deviate from linear theoretical results, with the non-linear theoretical
results matching the FE results. These discrepancies between the analytical and
FE results can be attributed to several reasons. Firstly the FE simulation uti-
lizes the Timoshenko beam model, while the theoretical analysis employs the
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Euler–Bernoulli beam model, resulting in the FE results being slightly lower
than the analytical ones [18]. Secondly, the deformation of the vertical wall of
the honeycombs is disregarded. Figure 8 validates the accuracy of the analytical
formulas derived in Section 2.2.

Fig. 8. Stress-strain relationship of the honeycomb structure with ZPR.

4. Results and discussions

In this section, theoretical calculations are carried out to explore the influ-
ences of the geometric parameters on the shear properties of the honeycomb
structure with ZPR.

Figure 9 illustrates the effects of α and µ on the linear shear modulus G∗xy of
the honeycomb structure with ZPR versus θ. When α and µ are held constant,

(a) (b)

Fig. 9. The effects of (a) α and (b) µ on the linear shear modulus G∗xy of the honeycomb
structure with ZPR versus θ.
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G∗xy gradually decreases with increasing θ. As shown in Fig. 9(a), keeping θ and
α constant, G∗xy increases as µ increases. Furthermore Fig. 7(b) reveals that when
θ and µ remain constant, an increase in α results in a decrease in G∗xy.

According to Eq. (2.9) γxyα and θ administrate Gxy/ES of the honeycomb
structure with ZPR. Figures 10 and 11 plot the relationship between the geo-
metric configuration and the dimensionless nonlinear shear modulus Gxy/ES . It
can be distinctly found that Gxy/ES increases with γxy but decreases with an
increase in α and θ.

Fig. 10. The influences of cell aspect ratio α and shear strain, γxy on the dimensionless
nonlinear shear modulus with µ = 0.15, θ = 45◦.

Fig. 11. The influences of internal angle θ on the dimensionless nonlinear shear modulus
with µ = 0.15, α = 2.
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The relative density ρr is generally considered to be a crucial parameter that
determines the shear properties of honeycomb structures. The relative density
expression of the honeycomb structure is:

(4.1) ρr =
ρ∗

ρs
=
ht+ 2lt

2hl sin θ
,

where ρ∗ and ρs represent the density of the honeycomb structure and the
raw material, respectively. Equation (2.49) gives the mathematical relation-
ship between relative density ρr and geometric parameters of the honeycomb
structure. By fixing θ and α, the relative density ρr can be maintained con-
stant by altering the thickness t. Utilizing numerical calculations in Matlab

Fig. 12. The influences of internal angle θ with α = 2 and ρr = 0.212.

Fig. 13. The influences of cell aspect ratio α with θ = 45◦ and ρr = 0.212, 0.18, 0.15.
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we can determine the effects of θ and α on Gxy of the honeycomb structure
with ZPR. Figure 12 illustrates that for a fixed l of 10mm, α of 2 and ρr of 0.212,
Gxy increases with increasing θ, reaching a maximum at approximately 85◦ and
then decreases. Additionally, considering l = 10mm, θ = 45◦ and varying rel-
ative density of ρr = 0.212, 0.18, and 0.15, it can be found from Fig. 13 that
Gxy increases with α, reaching a maximum at around 2.75 and then decreases.
Furthermore Fig. 13 demonstrates that Gxy increases with the increasing relative
density.

The modified factor k establishes the relationship between the shear modulus
of the honeycomb structure under small deflection and large deflection Eq. (2.48)
reveals that α and θ play a significant role in determining the value of k. Nu-

Fig. 14. The influences of cell aspect ratio α and internal angle θ on the modified factor k.

Fig. 15. Comparison of the modified factor k of ZPR, NPR and PPR honeycomb.
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merical calculations demonstrates that the value of k starts at 1 and increases
with γxy, as well as with an increase in α and θ, as depicted in Fig. 14. This
parameter, k, not only explains the disparity between the linear and non-linear
shear modulus but also enables the quick determination of the non-linear shear
modulus when the linear shear modulus is known.

Conventional, re-entrant hexagonal honeycombs with NPR and regular hexa-
gonal honeycombs with PPR are widely used in engineering. Thus, to distinguish
the differences in shear mechanical properties among the honeycomb with ZPR,
NPR and PPR, three honeycombs with θ = 60◦ are selected to compare their
modified factor k. The variation in k value for PPR and NPR honeycombs was
consistent with that of ZPR honeycombs. That is to say, the k value of the three
honeycombs starts from 1 and increases with the increase of shear strain, γxy.
In addition, k value of regular hexagonal honeycombs with PPR is larger than
that of honeycomb with ZPR and NPR while the k value of honeycombs with
NPR is the smallest. The variations of the k value of the honeycomb with ZPR,
NPR and PPR are related to their effective area.

5. Conclusions

In this work, the linear and non-linear effective shear modulus of the honey-
comb structure with ZPR under small deflection and large deflection has been
derived by the Euler–Bernoulli beam theory and the elastic bending beam the-
ory. The FE results validate the correctness and effectiveness of the theoretical
predictions. Results reveal that the linear shear modulus increases with the wall
thickness ratio µ but decreases with the cell aspect ratio α and the internal
angle θ. On the other hand, the nonlinear shear modulus increases with shear
strain but decreases with α and θ. For α = 2 and ρr = 0.212, the nonlinear
shear modulus of the honeycomb structure with ZPR increases with increasing θ,
reaching the maximum at approximately 85◦ and then decreases. Similarly, when
θ and ρr are kept constant, the nonlinear shear modulus increases as α increases
reaching a maximum at around 2.75 and then decreases. The modified factor, k,
exhibits an increasing trend with shear strain and increases with α and θ, in-
dicating a more pronounced difference between the linear and non-linear shear
modulus; k allows for converting the linear shear modulus under small deflection
to the non-linear shear modulus under large deflection. Importantly, k is inde-
pendent of relative density, simplifying the calculation of the non-linear shear
modulus for honeycomb structures with varying relative densities.

Overall, this study serves as a valuable manual for designing ZPR honey-
comb structures, facilitating the configuration design to meet the shear per-
formance requirements in different engineering applications and under various
conditions.
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