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Based on the Lord–Shulman thermoelectric elasticity theory, the piezo-
electric effect on the thermoelastic Lamb wave propagation in the functionally graded
material (FGM) plate is investigated. The coupled wave equations are solved by em-
ploying the Legendre polynomial series approach (LSPA), which poses the advantages
of small scale of eigenvalues matrix and a convenient solution. It can directly obtain
the complex wave number solutions without iteration. The obtained complex solu-
tions, which represent the wave propagation and attenuation, are compared with
those available data. Numerical examples show that the influence of gradient is pro-
found. Results indicate that the piezoelectric effects on attenuation with the open and
closed circuit condition are consistent for the S0 and S1 modes, but are inconsistent
for the A0 and A1 modes. Although the piezoelectric effect is weak on the dispersion
and attenuation of thermal waves, it is notable for their physical field distributions.
In addition, the relaxation time is critical to electric displacements of a thermal wave
mode, but is not essential for those of Lamb-like modes. The results can be used for
the optimization of thermo-electric-elastic coupling structures.
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1. Introduction

Functional graded piezoelectric materials (FGPM) (Brischetto and
Carrera [1], Su et al. [2], Arefi et al. [3]) are a typical representative of the
Functional-Intelligent integrated advanced composites. Through the appropri-
ate combination of different materials, unique piezoelectric materials that meet
various needs and change in the desired direction of electroelastic properties
can be manufactured. As the advantages in intelligent control, damage detection
and signal transmission, play an important role in the field of structural health
monitoring (Pal and Singh [4]) and electromechanical system (Guo et al. [5]).

The research on the FGPM has involved various aspects of its mechanical
properties, such as vibration (Kumar and Harsha [6], Lu et al. [7]), bending
(He et al. [8], Sator et al. [9]), bulking (Ansari et al. [10], Torabi et al. [11]),
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nonlinearity (Komijani et al. [12], Zhou et al. [13]), wave motions (Norouz-
zadeh et al. [14], Guo et al. [15], Ezzin et al. [16]), etc. The wave character-
istics of FGPM structures are related directly to their performances in trans-
ducers, resonators and vibration filters, and have attracted a lot of attention.
Chaki and Singh [17] investigated the propagation characteristics of SH sur-
face waves in irregular imperfectly-bonded layered FGPM. Basing on the ax-
isymmetric isogeometric analysis, Li and Han [18] studied the dispersion prop-
erties of wave propagation in a sandwich structure composed of FG nanocom-
posite core and piezoelectric surface layers. Zhang et al. [19, 20] considered the
guided wave characteristics in FG hexagonal piezoelectric quasi-crystal cylin-
ders and in FGP cylindrical shells. Ezzin et al. [21] analyzed the response in FG
magneto-electro-elastic plates. Heydarpour et al. [22] considered a thermoe-
lastic response in FG cylindrical panels with piezoelectric layers. Saroj et al.
[23] discussed the Love-type surface waves characteristics in composite structures
with initial stress. Li et al. [24] investigated the thickness-twist waves in FGPM.
Sharma and Kumar [25] studied the Love-type wave in a layered structure con-
sisting of the FGPM stratum followed by a semi-infinite couple-stress substrate
exhibiting microstructural properties. Xue and Pan [26] discussed the longitu-
dinal wave in FG magneto-electro-elastic rod. Mohammadi [27] analyzed the
electro-elastic response of the porous cored-sandwich cylindrical pressure vessels
with piezoelectric face-sheets, immersed in the Pasternak foundation.

The FGPM usually works in the multi-physical fields’ environment, includ-
ing force field, electric field, temperature field, etc. Therefore, the influence of
temperature has to be considered in its wave analysis. To the author’s knowl-
edge, there are no relevant reports on thermoelastic wave propagation in FGPM
structures, although it is an important research aspect in the field of wave me-
chanics. Even now lacking of research on a guided wave in thermo-electric-elastic
coupling structures, the relevant available research can provide a basis. The re-
sults on a pure elastic wave in FGPM indicate that the piezoelectric effect has
a significant influence on the dispersion curves, displacement and stress distribu-
tions, but does not add new modes (Yu et al. [28]). Meanwhile, the results in the
functional graded materials (FGM) plates (Wang et al. [29]) showed that the
thermoelastic coupling produces thermal wave modes. Importantly, thermoelas-
ticity leads to a non-ignorable attenuation on the elastic waves. Sharma and
Pal [30] discussed the influences of insulated and isothermal boundary condi-
tions, as well as the propagation direction on Lamb-like waves in a piezoelectric
plate with the thermal effect, and results showed that the attenuation is re-
markable. With above discussions, intense interest is aroused on the study of
the piezoelectric effect on thermoelastic wave in the FGPM plate, especially on
its attenuation, as that the attenuation directly affects the structural perfor-
mance.
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In this paper, the piezoelectric effect on the thermoelastic Lamb wave in
FGPM plates is investigated based on the Lord–Shulman (LS) thermoelectric
elasticity theory (Sharma and Pal [30]). The Legendre polynomial series ap-
proach (LPSA) is extended to solve the coupled thermo-electric-elastic wave
equations. It can transform the coupled wave equations into linear eigenvalue
problems. Thus, the complex eigenvalues representing the propagation and at-
tenuation of guided waves can be obtained directly. The LPSA has advantages of
small matrix scale and convenient solution, and is widely used in wave propaga-
tion and vibration fields (Liu et al. [31], Othmani et al. [32], Zheng et al. [33]).
A comparative study and the convergence analysis show the validity of the LPSA.
In this paper, the piezoelectric effect on phase velocity, attenuation and phys-
ical field distributions are discussed for FGMP plates with different electrical
boundary conditions, and with different material distributions. Results reveal
some new wave characteristics, which are of great significance in designing the
thermo-electric-elastic coupling structures.

2. Mathematical model and solving process

2.1. Mathematical model

The geometry of a FGPM plate composed of two piezoelectric materials is
shown in Fig. 1. Its thickness is h. The guided waves propagate in the x-direction.
Based on the LS theory (Sharma and Pal [30]), the basic equations are listed
as follows:

σij,j = ρüi,(2.1a)
Dj,j = 0,(2.1b)

KjT,jj − ρCe(Ṫ + t0T̈ ) = T0βj(ε̇jj + t0ε̈jj)− T0P3(Φ̇,z + t0Φ̈,z).(2.1c)

Wave propagation

x

z

0

Fig. 1. A FGPM plate in Cartesian coordinate system.

Constitutive relations and geometric relations are:

σij = Cijklεkl − βjT − ejkEk,(2.2a)
Dj = ejklεkl + εjkEk + PjT,(2.2b)
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εjk =
1

2
(uj,k + uk,j),(2.2c)

Ej = −Φ,j ,(2.2d)

where σij , εij and uj are the components of the stress, strain and displacement,
respectively. Di indicates the electric displacement components. Cis, eis and εis
are the components of the elastic stiffness, piezoelectric constant and dielectric
constant, respectively. Pj is the pyroelectric constant; Φ is the electric poten-
tial; ρ is the material density; t and t0 indicate the time and relaxation time;
βj and Ce are the volume expanding coefficients and specific heat at constant
strain, respectively; Kj is the material constant characteristics; T and T0 are the
temperature variation and reference temperature, respectively; Ej is the electric
field intensity.

Considering the stress-free boundary condition, the z-direction stress com-
ponents should be zero as

(2.3) σjz|z=0,h = 0.

The adiabatic boundary condition is

(2.4) T,z|z=0,h = 0.

The electrical open circuit and closed circuit conditions are considered in this
paper, that is:

Φ|z=0,h = 0 closed circuit,(2.5a)
Dz|z=0,h = 0 open circuit.(2.5b)

For the convenience of solution, the dimensionlessness is given:

(2.6)

η =
(β̄1)2T0

ρ̄2C̄ev2
x

, x̂i =
vx
kx
xi, ûi =

v3
xρ̄

kxβ̄1T0
ui, τ0 =

v2
x

kx
t0,

T̂ =
T

T0
, T̂ij =

1

β̄1T0
σij , Φ̂ =

vxē33

kxβ̄1T0
Φ, D̂i =

C̄11

β̄1T0ē33
Di,

P̂i =
PiC̄11

β̄1ē33
, ε̂ij =

εijC̄11

(ē33)2
, Ĉij =

Cij
C̄11

, β̂i =
βi
β̄1
,

êij =
eij
ē33

, K̂i =
Ki

K̄1
, ρ̂ =

ρ

ρ̄
, Ĉe =

Ce
C̄e
,

where vx =
√
C̄11/ρ̄ is the longitudinal wave velocity, kx = K̄1/ρ̄C̄e being the

thermal diffusivity in thex direction; τ0 is the dimensionless relaxation time.



Piezoelectric effect on thermoelastic Lamb waves. . . 7

2.2. Solution for electrical open circuit condition

Considering the dimensionless Eq. (2.6), and rewriting •̂ to • for simplicity,
the electric-elastic boundary conditions can be expressed as:

Tzz =

(
C13

∂ux
∂x

+ C23
∂uy
∂y

+ C33
∂uz
∂z
− β3T + e33

∂Φ

∂ẑ

)
π0,h(z),(2.7a)

Tyz =

(
C44

∂uy
∂z

+ C44
∂uz
∂y

+ e24
∂Φ

∂y

)
π0,h(z),(2.7b)

Txz =

(
C55

∂ux
∂z

+ C55
∂uz
∂x

+ e15
∂Φ

∂x

)
π0,h(z),(2.7c)

Dz =

(
e31

∂ux
∂x

+ e32
∂uy
∂y

+ e33
∂uz
∂z
− ε33

∂Φ

∂z
+ P3T

)
π0,h(z),(2.7d)

π0,h(ẑ) is the rectangular window function,

(2.8) π(z) =

{
1, 0 ≤ z ≤ h,
0, else.

The effectiveness of rectangular window function in dealing with boundary
conditions has been proved (Lefebvre et al. [34]). In addition, the adiabatic
boundary condition is expressed by the orthogonal polynomial series of temper-
ature later.

Substituting Eqs. (2.2)–(2.7) into Eq. (2.1),

C11
∂2ux
∂x2

+ C12
∂2uy
∂x∂y

+ C13
∂2uz
∂x∂z

− β1
∂T

∂x
+ e31

∂2Φ

∂x∂z
+ C66

∂2ux
∂y2

(2.9a)

+ C66
∂2uy
∂x∂y

+
∂

∂ẑ
(C55)

∂ux
∂z

+ C55
∂2ux
∂z2

+
∂

∂z
(C55)

∂uz
∂x

+ C55
∂2uz
∂x∂z

+
∂

∂z
(e15)

∂Φ

∂x
+ e15

∂2Φ

∂x∂z

+

(
C55

∂ux
∂z

+ C55
∂uz
∂x

+ e15
∂Φ

∂x

)
∂π(z)

∂z
= ρ

∂2ux
∂t2

,

C66
∂2ux
∂x∂y

+ C66
∂2uy
∂x2

+ C12
∂2ux
∂x∂y

+ C22
∂2uy
∂y2

+ C23
∂2uz
∂y∂z

− β2
∂T

∂y
(2.9b)

+ e32
∂2Φ

∂y∂z
+

∂

∂z
(C44)

∂uy
∂z

+ C44
∂2uy
∂z2

+
∂

∂z
(C44)

∂uz
∂y

+ C44
∂2uz
∂y∂z

+
∂

∂z
(e24)

∂Φ

∂y
+ e24

∂2Φ

∂y∂z

+

(
C44

∂uy
∂z

+ C44
∂uz
∂y

+ e24
∂Φ

∂y

)
∂π(z)

∂z
= ρ

∂2uy
∂t2

,
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C55
∂2ux
∂x∂z

+ C55
∂2uz
∂x2

+ e15
∂2Φ

∂x2
+ C44

∂2uy
∂y∂z

+ C44
∂2uz
∂y2

+ e24
∂2Φ

∂y2
(2.9c)

+
∂

∂z
(C13)

∂ux
∂x

+ C13
∂2ux
∂x∂z

+
∂

∂z
(C23)

∂uy
∂y

+ C23
∂2uy
∂y∂z

+
∂

∂z
(C33)

∂uz
∂z

+ C33
∂2uz
∂z2

− ∂

∂z
(β3)T − β3

∂T

∂z

+
∂

∂z
(e33)

∂Φ

∂z
+ e33

∂2Φ

∂z2

+

(
C13

∂ux
∂x

+ C23
∂uy
∂y

+ C33
∂uz
∂z
− β3T + e33

∂Φ

∂z

)
∂π(z)

∂z

= ρ
∂2uz
∂t2

,

K1
∂2T

∂x2
+K2

∂2T

∂y2
+ K̂3

∂2T

∂z2
− β1η

(
1 + τ

∂
∂t

0

)
∂

∂t

∂ux
∂x

(2.9d)

− β2η

(
1 + τ

∂
∂t

0

)
∂

∂t

∂uy
∂y
− β3η

(
1 + τ

∂
∂t

0

)
∂

∂t

∂uz
∂z

+ P3η

(
1 + τ

∂
∂t

0

)
∂Φ

∂t∂z
= ρCe

(
1 + τ0

∂

∂t

)
∂T

∂t
,

e15
∂2ux
∂x∂z

+ e15
∂2uz
∂x2

− ε11
∂2Φ

∂x2
+ P1

∂T

∂x
+ e24

(
∂2uy
∂y∂z

+
∂2uz
∂y2

)
(2.9e)

− ε22
∂2Φ

∂y2
+ P2

∂T

∂y
+

∂

∂z
(e31)

∂ux
∂x

+ e31
∂2ux
∂x∂z

+
∂

∂z
(e32)

∂uy
∂y

+ e32
∂2uy
∂y∂z

+
∂

∂z
(e33)

∂uz
∂z

+ e33
∂2uz
∂z2

− ∂

∂z
(ε33)

∂Φ

∂z
− ε33

∂2Φ

∂z2

∂

∂z
(P3)T + P3

∂T

∂z

+

(
e31

ē33
∂ux
∂x

+ e32
∂uy
∂y

+ e33
∂uz
∂z
− ∈33

∂Φ

∂z
+ P3T

)
∂π(z)

∂z
= 0.

Since the wave propagates in the x direction, the displacements, electric potential
and temperature variables can be assumed as:

ux(x, y, z, t) = exp(ikx− iωt)U(z),(2.10a)
uy(x, y, z, t) = exp(ikx− iωt)V (z),(2.10b)
uz(x, y, z, t) = exp(ikx− iωt)W (z),(2.10c)
T (x, y, z, t) = exp(ikx− iωt)X(z),(2.10d)
Φ(x, y, z, t) = exp(ikx− iωt)Y (z).(2.10e)

Among them, U(z), V (z),W (z) are the displacement amplitudes in the x, y, and
z directions, respectively. X(z) and Y (z) are the temperature amplitude and the
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electric potential amplitude in the z direction, respectively; k is the wave number,
and k = Re(k) + i · Im(k). The real part of k represents the propagation of wave
and the imaginary part represents the attenuation; ω is the angular frequency.

Similar as Cao et al. [35], all material properties in the FGM are expanded
as follows:

(2.11)

Ĉij(z) = C
(l)
ij

(
2z − h
h

)l
, ρ̂i(z) = ρ

(l)
i

(
2z − h
h

)l
,

êij(z) = e
(l)
ij

(
2z − h
h

)l
, ε̂ij(z) = ε

(l)
ij

(
2z − h
h

)l
,

K̂i(z) = K
(l)
i

(
2z − h
h

)l
, β̂i(z) = β

(l)
i

(
2z − h
h

)l
,

Ĉe(z) = C(l)
e

(
2z − h
h

)l
, P̂i(z) = P

(l)
i

(
2z − h
h

)l
, l = 1, . . . , L.

On account of Eqs. (2.9)–(2.11), the following equations are obtained,

(2.12a)
L∑
l=0

(
2z − h
h

)l
{−k2C

(l)
11U + ik(C

(l)
13 + C

(l)
55 )W ′ − ikβ(l)

1 X

+ ik(e
(l)
31 + e

(l)
15)Y ′ + C

(l)
55U

′′ + (C
(l)
55U

′ + ikC
(l)
55W + ike

(l)
15Y )π′0,h(z)}

+
2

h

L∑
n=1

(
2z − h
h

)l−1

(C
(l)
55U

′ + ikC
(l)
55W + ike

(l)
15Y ) = −ω2

L∑
n=0

ρ(l)

(
2z − h
h

)l
U,

(2.12b)
L∑
l=0

(
2z − h
h

)l[
−k2C

(l)
66 V + C

(l)
44 (V ′′ + V ′π′0,h(z))

]
+

2

h

L∑
l=1

(
2z − h
h

)l−1

C
(l)
44 V

′π0,h(z) = −ω2
L∑
l=0

ρ(l)

(
2z − h
h

)l
V,

(2.12c)
L∑
l=0

(
2z − h
h

)l{
ikC

(l)
55U

′ − k2C
(l)
55W − k

2e
(l)
15Y + ikC

(l)
13U

′ + C
(l)
33W

′′

− β(l)
3 X ′ + e

(l)
33Y

′′ + (ikC
(l)
13U + C

(l)
33W

′ − β(l)
3 X + e

(l)
33Y

′)π′0,h(z)
}

+
2

h

L∑
l=1

(
2z − h
h

)l−1

(ikC
(l)
13U + C

(l)
33W

′ − β(l)
3 X + e

(l)
33Y

′)

= −ω2
L∑
l=0

ρ(l)

(
2z − h
h

)l
W,
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(2.12d)
L∑
l=0

(
2z − h
h

)l[
−k2K

(l)
1 X +K

(l)
3 X ′′ − (1− iωτ0)(kωηβ

(l)
1 U

− iωηβ(l)
3 W ′ + iωηP

(l)
3 Y ′)

]
=−iω

L∑
l=0

L∑
m=0

ρ(l)C(m)
e

(
2z − h
h

)l(2z − h
h

)m
(1− iωτ0)X,

(2.12e)
L∑
l=0

(
2z − h
h

)l{[
(ike

(l)
15U

′ − k2e
(l)
15W ) + ikP

(l)
1 X + k2 ∈(l)

11 Y
]

+ (ike
(l)
31U

′ + e
(l)
33W

′′ − ε(l)33Y
′′ + P

(l)
3 X ′)

+ (ike
(l)
31U + e

(l)
33W

′ − ε(l)33Y
′ + P

(l)
3 X)π′0,h(z)

}
+

2

h

L∑
l=1

(
2z − h
h

)l−1

(ike
(l)
31U + e

(l)
33W

′ − ε(l)33Y
′ + P

(l)
3 X) = 0.

Equation (2.12b) is independent of the others, and represents the SH waves.
The coupled wave Eqs. (2.12a, 2.12c–2.12e) express the thermo-electric-elastic
Lamb waves. In this paper, the SH waves are not considered.

To obtain the characteristics of thermo-electric-elastic Lamb waves, physical
field amplitudes are approximated by Legendre polynomials series:

(2.13)

U(z) =

∞∑
n=0

p(1)
n Qn(z), W (z) =

∞∑
n=0

p(2)
n Qn(z),

X(z) =
∞∑
n=0

p(3)
n Qn(z), Y (z) =

∞∑
n=0

p(4)
n Qn(z),

where

(2.14) Qn(z) =

√
2n+ 1

h
Pn

(
2z − h
h

)
.

With the increase of the expanded order n, the influence of higher-order
terms of polynomials on the overall results decreases rapidly. As a result, the
summation over Eq. (2.13) should be halted at some value N .

The adiabatic boundary condition can be expressed by a new Legendre poly-
nomials series,

(2.15) X ′(z) = π(z)
N∑
n=0

P 5
n

d

dz
Qn(z).
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The derivative ofX(z) must equal toX ′(z) (that is, the temperature gradient
expression). Multiplying both sides of Eq. (2.12) by Qj(z), j = 0, 1, . . . , N , and
integrating from 0 to h̄, the relationship of p(3) and p(5) can be obtained as:

(2.16) Hp(3) = Hp(5) ⇒ p(3) = p(5).

Therefore, although the expansion of the temperature gradient is given, the total
number of variables does not increase.

Similarly as in the process of Eq. (2.16), we have the following matrix equa-
tions:

(2.17) k2Ap+ kBp+ Cp = Mp,

here:

A =


A11 0 0 0
0 A22 0 A24

0 0 A33 0
0 A42 0 A44

, B =


0 B12 B13 B14

B21 0 0 0
B31 0 0 0
B41 0 B43 0

,

C =


C11 0 0 0
0 C22 C23 C24

0 C32 C33 C34

0 C42 C43 C44

, M =


M11 0 0 0

0 M11 0 0
0 0 M33 0
0 0 0 0

,
p =

[
p

(1)
n p

(2)
n p

(3)
n p

(4)
n

]T
.

The dimension of matrices Aij , Bij , Cij , Mij are (N + 1) × (N + 1), and their
detailed expressions can be found in Appendix A.

In order to reduce the solving difficulty, the quadratic eigenvalue problem
(2.17) is further transformed into a linear eigenvalue problem by using a new
wavenumber dependent vector

(2.18) q = kp,

and the final characteristic equation is obtained,

(2.19)
[

0 I
A−1(M − C) −A−1B

] [
p
q

]
= k

[
p
q

]
.

Basing on Eq. (2.19), the dispersion curves and physical field distributions can
be solved quickly.
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2.3. Solution for electrical closed circuit condition

The electrically closed circuit boundary conditions limit the electric potential
being zero at boundaries. The following changes can be made:

(2.20) Φ(x, y, z, t) = z(z − h) exp(ikx− iωt)Y (z).

The rectangular window function for Dz is removed from Eq. (2.7).
Replacing the corresponding expression in Eq. (2.10e) by Eq. (2.20), and

remaining others unchanged, the coupled wave equations are:

(2.21a)
L∑
n=0

(
2z − h
h

)n{
−k2C

(n)
11 U + ik(C

(n)
13 + C

(n)
55 )W ′ − ikβ(n)

1 X

+ ike
(n)
31 [z(z − h)Y ]′ + C

(n)
55 U

′′ + ike
(n)
15 [z(z − h)Y ]′

+ (C
(n)
55 U

′ + ikC
(n)
55 W + ike

(n)
15 Y )π′0,h(z)

}
+

2

h

L∑
n=1

(
2z − h
h

)n−1

(C
(n)
55 U

′ + ikC
(n)
55 W + ike

(n)
15 [z(z − h)Y ])

= −ω2
L∑
n=0

ρ(n)

(
2z − h
h

)n
U,

(2.21b)
L∑
n=0

(
2z − h
h

)n{
(ik(C

(n)
55 + C

(n)
13 )U ′ − k2C

(n)
55 W − k

2e
(n)
15 [z(z − h)Y ]

+ C
(n)
33 W

′′ − β(n)
3 X ′ + e

(n)
33 [z(z − h)Y ]′)

×
L∑
n=0

(
2z − h
h

)n
(ikC

(n)
13 U + C

(n)
33 W

′ − β(n)
3 X + e

(n)
33 [z(z − h)Y ]′)π′0,h(z)

}

+
2

h

L∑
n=1

(
2z − h
h

)n−1

(ikC
(n)
13 U + C

(n)
33 W

′ − β(n)
3 X + e

(n)
33 [z(z − h)Y ]′)

= − ω2
L∑
n=0

ρ(n)

(
2z − h
h

)n
W,

(2.21c)
L∑
n=0

(
2z − h
h

)n{
−k2K

(n)
1 X +K

(n)
3 X ′′

− (1− iωτ0)(kωηβ
(n)
1 U − iωηβ(n)

3 W ′ + iωηP
(n)
3 [z(z − h)Y ]′)

}
= −iω

L∑
n=0

L∑
m=0

ρ(n)C(m)
e

(
2z − h
h

)n(2z − h
h

)m
(1− iωτ0)X,



Piezoelectric effect on thermoelastic Lamb waves. . . 13

(2.21d)
L∑
n=0

(
2z − h
h

)n[
ik(e

(n)
15 + e

(n)
31 )U ′ − k2e

(n)
15 W + ikP

(n)
1 X

+ k2ε
(n)
1 z(z − h)Y + e

(n)
33 W

′′ − ε(n)
3 [z(z − h)Y ]′′ + P

(n)
3 X ′

]
+

2

h

L∑
n=1

(
2z − h
h

)n−1

(ike
(n)
31 U + e

(n)
33 W

′ − ε(n)
3 [z(z − h)Y ]′ + P

(n)
3 X) = 0.

It is noted that the main change of above formulas lies in the electric poten-
tial Y (z). As in the case of Eqs. (2.13)–(2.19), the solution for the electrical
closed circuit condition can be obtained. The expressions of sub-matrices can be
found in Appendix B.

3. Numerical examples and analysis

3.1. Verification and convergence of the LPSA

In order to verify the effectiveness of the LPSA, comparisons with open results
(Amor et al. [36], Al-Qahtani and Datta [37]) are given in Fig. 2. As men-
tioned earlier, due to lacking of available results, the comparison on dispersion
curves has to be reduced for an FGM plate in Fig. 2(a), and that on attenuation
is reduced for an uniform thermoelastic plate in Fig. 2(b). The consistent results
indicate that the validity of the presented LPSA.
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Fig. 2. Comparison with open results; (a) phase velocity [36], (b) imaginary parts [37];
kh – indicates the product of the wave number and thickness.

The convergence of the LPSA is exhibited in Figs. 3 and 4. It is clear that the
first three dispersion curves are exactly consistent in Fig. 3(a) when N = 6 and 7.
And, more mode curves agree with each other with increasingN , which is clear in
Fig. 3(b). A similar situation can be found on attenuation curves in Fig. 4, which
indicates that the first three modes are convergent with N = 6. This example
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Fig. 3. Convergence analysis of dispersion curves, L = 1; (a) Lamb-like wave dispersion
curves; (b) enlarged diagram of (a).
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Fig. 4. Convergence analysis of attenuation curves, L = 1; (a) Lamb-like wave attenuation
curves; (b) enlarged diagram of (a).

shows that the LSPA has order by order convergence. Rough judgment, the s-th
mode should be analyzed with 2s order expansion of the Legendre polynomial.
In this section, the first 4 modes are analyzed with N = 8.

3.2. Piezoelectric effect on wave propagation and attenuation

The piezoelectric effects on the Lamb-like wave and thermal wave are dis-
cussed in this section. The FGPM is composed of PZT-5A and CdSe. The mate-
rial parameters (Guha and Singh [38]) are shown in Table 1. The functionally
graded material parameters can be expressed as P (z) = V1P1(z)+V2P2(z)Pi(z),
Vi represents the volume fraction and the corresponding properties of upper
and lower surfaces, respectively. In this paper, the material gradient is stated as
P2(z) = (z/h)L and P1(z) = 1− (z/h)L. L = 1, 2, . . . .

As shown in Figs. 5 and 6, the red and black curves are thermoelastic waves
in the FGPM plates with the open and closed circuit conditions, respectively.
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Table 1. The material properties [35].

Property
C11 C12 C13 C33 C44 C55 e31 e33 e15

[109 N·m−2] [C·m−2]

CdSe 74.1 45.2 39.3 83.6 13.2 13.2 −0.16 0.347 −0.138
PZT-5A 139 77.8 75.4 113 25.6 25.6 −6.98 13.8 13.4
ε11 ε33 K1 K3 β1 β3 P1 P3 Ce ρ

[10−11 C2 ·N−1 ·m−2] [W·m−1 ·K−1] [106 N·K−1 ·m−2] [10−6 C·K−1 ·m−2] [J·kg−1 ·K−1] [103 kg·m−3]

8.26 9.03 9 9 0.621 0.551 −2.94 −2.94 260 5.504
600 547 1.5 1.5 1.52 1.53 −452 −452 420 7.75

The blue ones are those in the FGM plate without electricity. Clearly, the phase
velocity and attenuation curves of thermal waves are almost not affected by
the piezoelectric effect in Fig. 5. Figure 6 depicts the phase velocity curves of
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Fig. 5. Dispersion curves of thermal waves in the FGPM and FGM plates with L = 1;
(a) phase velocity curves, (b) attenuation.
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Fig. 6. Dispersion curves of Lamb-like waves in the FGM plate, L = 1.
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Lamb-like waves. Results indicate that the piezoelectric effect increases the phase
velocity, which is the same as that in [28]. The attenuation curves are shown in
Fig. 7. Considering the closed circuit condition, (a) the piezoelectric effect en-
hances the attenuation of A0 mode, but decreases that of A1 modes; (b) the
piezoelectric effect moves the minimal attenuation of S0 mode to a lower fre-
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Fig. 7. Attenuation curves of Lamb-like waves in FGM plate; (a) A0 mode, (b) S0 mode,
(c) A1 mode, (d) S1 mode.
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quency. Meanwhile, it has different influences on both sides of minimal attenu-
ation; (c) there is a frequency at which the attenuation intensity changes for S0
and S1 modes. For the closed circuit condition, the cases (b) and (c) also occur.
In addition, the piezoelectric effect raises the attenuation of A1 mode, but has
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Fig. 9. Attenuation curves of Lamb-like waves in FGPM plate with L = 1 and L = 2;
(a) A0 mode, (b) S0 mode, (c) A1 mode, (d) S1 mode.
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Fig. 11. Influence of piezoelectric effect, Ω = 2; electric open circut, – – – electric
closed circut, – · – · – without electricity.

no obvious trend on A0 mode. Overall, the piezoelectric effect is remarkable on
attenuation.

Furthermore, the dispersion and attenuation curves in a different graded ma-
terial are regarded in Figs. 8–10. The influence of gradient on phase velocities of
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higher modes is much larger than that on those of lower modes, either thermal
waves or Lamb-like waves. Specifically, for antisymmetric modes A0 and A1, the
phase velocities with L = 2 are larger than those with L = 1. But for symmet-
ric modes S0 and S1, it should be considered in sections. Figure 9 shows the
attenuation curves of the first four modes. Obviously, the attenuation trend of
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the S0 and A0 modes has an almost opposite law with their dispersion. How-
ever, the attenuation of S1 and A1 modes has the same law with the dispersion
for most frequencies. Besides, the attenuation with L = 2 is enhanced for the
first thermal wave mode, and is suppressed for the second thermal wave mode
in Fig. 10(b). Consequently, Figs. 8–10 show that the attenuation of funda-
mental modes (A0, S0 and the 1st thermal modes) is almost inconsistent with
their dispersion curves, with L = 1 and 2, but that of higher modes (A1, S1
and the 2nd thermal modes) is consistent with their dispersion curves for most
frequencies.

3.3. Piezoelectric effect on physical fields

The piezoelectric effect on displacements and temperature with Ω = 2 is an-
alyzed in Fig. 11. As the expansion coefficients p(i)

n are plural, the norm is used
in this computation. Thus, all the physical field quantity (ux, uz, T ) are positive
in this section. It is found from Fig. 11 that: (a) although the piezoelectric ef-
fect is weak on thermal wave dispersion and attenuation curves, it is clear on
their physical filed distributions. The temperature without an electric field is
larger than that with an electric field; (b) piezoelectric effects on temperature
of A0, S0 and thermal modes are remarkable, especially on the S0 mode with
an open-circuit condition; (c) the piezoelectric effect on stresses of A0 and S0

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6
 of Lamb-like A0 mode

0 0.5 1
0

0.2

0.4

0.6

0.8
 of L amb-like  S0 mode

0 0.5 1
0

0.35

0.70

1.05

1.40
 of 1st thermal wave mode

0 0.5 1
0

0.04

0.08

0.12

0.16

0.20
of La mb-like  A0 mode

0 0.5 1
0

0.1

0.2

0.3

0.4
of L amb-like  S0  mode

0 0.5 1
0

0.05

0.10

0.15

0.20

0.25
of 1st thermal wave mode

Fig. 13. Influence of relaxation time on electric displacements, Ω = 2;
τ0 = 1, – – – τ0 = 2, – · – · – τ0 = 3.
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modes is evident. On the whole, the piezoelectric effect has a significant influ-
ence on the distribution of physical fields, especially on those with open circuit
conditions.

3.4. Relaxation time on physical fields

Finally, the influence of relaxation time on physical field distributions is ex-
hibited with dimensionless τ0 = 1, 2, 3 in Figs. 12–13. The dimensionless fre-
quency Ω = 2. The A0 and S0 modes and the 1st thermal wave mode with
open circuit condition are considered here. Results show that only the stresses of
thermal wave mode are affected clearly in Fig. 12, which is similar to the open
results [29]. Meanwhile, Fig. 13 shows that the influence of the relaxation time
is remarkable on electric displacements of thermal wave modes, but is little on
those of Lamb-like modes. For the thermal wave mode, (a) a smaller relaxation
time means a larger electric displacements; (b) the influence is notable in the
inner of plate, but is negligible at the surface of plate.

4. Conclusions

In this article, the piezoelectric effect on the thermoelastic Lamb wave is
studied by the extended LPSA. The original wave problem is translated to a lin-
ear eigenvalue problem, which can directly obtain the complex wave number
representing the propagation and attenuation. Based on the LS thermoelectric
elasticity theory, the following conclusions can be found:

(1) The piezoelectric effect mainly affects the dispersion and attenuation
characteristics of Lamb-like waves. The effects on attenuation with the open
and closed circuit conditions are consistent for the S0 and S1 modes, but are
inconsistent for the A0 and A1 modes.

(2) The attenuation trends of fundamental modes (A0, S0 and the 1st thermal
modes) are almost inconsistent with their dispersion curves with L = 1 and 2,
but those of higher modes (A1, S1 and the 2nd thermal modes) are consistent
with their dispersion curves for most frequencies.

(3) The piezoelectric effect is significant on the physical field distributions
of thermoelastic Lamb waves, although it is weak on the thermal wave disper-
sion and attenuation curves. Meanwhile, the piezoelectric effect on temperature
of A0, S0 modes are also notable.

(4) The relaxation time has prominent effects on electric displacements of
thermal wave modes, but has little effects on those of Lamb-like mode. A smaller
relaxation time means a larger electric displacements for the thermal wave mode.
In addition, the influence is notable in the inner part of a plate, but is negligible
at the surface of a plate.
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Appendix A

Defining

u[n,m, j, p] =

1∫
−1

(
2z − h
h

)j
Qn(z)

dp

dzp
Qm(z) dz,

v[n,m, j, p] =

1∫
−1

(
2z − h
h

)j
Qn(z)

dp

dzp
Qm(z)

∂π(z)

∂z
dz,

t[n,m, j, p] =

1∫
−1

(
2z − h
h

)j
Qn(z)

dp

dzp
[z(z − h)Qm(z)]

∂π(z)

∂z
dz,

s[n,m, j, p] =

1∫
−1

(
2z − h
h

)j
Qn(z)

dp

dzp
[z(z − h)Qm(z)] dz.

The matrices in Eq. (2.17) are given here:

An,m11 = −C(j)
11 u[n,m, j, 0],

Bn,m
12 = i(C

(j)
13 + C

(j)
55 )u[n,m, j, 1] + iC

(j)
55 v[n,m, j, 0] + i

2j

h
C

(j)
55 u[n,m, j − 1, 0],

Bn,m
14 = i(e

(j)
31 + e

(j)
15 )u[n,m, j, 1] + ie

(j)
15 v[n,m, j, 0] + i

2j

h
e

(j)
15 u[n,m, j − 1, 0],

Bn,m
13 = −iβ(j)

1 u[n,m, j, 0],

Cn,m11 = C
(j)
55 u[n,m, j, 2] + C

(j)
55 v[n,m, j, 1] +

2j

h
C

(j)
55 u[n,m, j − 1, 1],

Mn,m
11 = −ω2ρ(j)u[n,m, j, 0],

An,m22 = −C(j)
55 u[n,m, j, 0],

An,m24 = −e(j)
15 u[n,m, j, 0],

Bn,m
21 = i(C

(j)
55 + C

(j)
13 )u[n,m, j, 1] + iC

(j)
13 v[n,m, j, 0] + i

2j

h
C

(j)
13 u[n,m, j − 1, 0],

Cn,m22 = C
(j)
33 u[n,m, j, 2] + C

(j)
33 v[n,m, j, 1] +

2j

h
C

(j)
33 u[n,m, j − 1, 1],

Cn,m23 = −β(j)
3 u[n,m, j, 1]− β(j)

3 v[n,m, j, 0]− 2j

h
β

(j)
3 u[n,m, j − 1, 0],

Cn,m24 = e
(j)
33 u[n,m, j, 2] + e

(j)
33 v[n,m, j, 1] +

2j

h
e

(j)
33 u[n,m, j − 1, 1],

Mn,m
22 = −ω2ρ(j)u[n,m, j, 0],
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An,m33 = −K(j)
1 u[n,m, j, 0],

Bn,m
31 = −ωη(1− iωτ0)β

(j)
1 u[n,m, j, 0],

Cn,m32 = iωη(1− iωτ0)β
(j)
3 u[n,m, j, 1],

Cn,m33 = K
(j)
3 (u[n,m, j, 2] + v[n,m, j, 1]),

Cn,m34 = −iωη(1− iωτ0)P
(j)
3 u[n,m, j, 1],

Mn,m
33 = −iω(1− iωτ0)ρ(j)C(m)

e u[n,m, j +m, 0],

An,m42 = −e(j)
15 u[n,m, j, 0],

An,m44 = ε
(j)
11 u[n,m, j, 0],

Bn,m
41 = i(e

(j)
15 + e

(j)
31 )u[n,m, j, 1] + ie

(j)
31 v[n,m, j, 0] + i

2j

h
e

(j)
31 u[n,m, j − 1, 0],

Bn,m
43 = iP

(j)
1 u[n,m, j, 0],

Cn,m42 = e
(j)
33 u[n,m, j, 2] + e

(j)
33 v[n,m, j, 1] +

2j

h
e

(j)
33 u[n,m, j − 1, 1],

Cn,m43 = P
(j)
3 u[n,m, j, 1] + P

(j)
3 v[n,m, j, 0] +

2j

h
P

(j)
3 u[n,m, j − 1, 0],

Cn,m44 = −ε(j)33 u[n,m, j, 2]− ε(j)33 v[n,m, j, 1]− 2j

h
ε
(j)
33 u[n,m, j − 1, 1].

Appendix B

Only matrices related to electric potential are displayed for that other ones
are unchanged:

Bn,m
14 = i(e

(j)
31 + e

(j)
15 )s[n,m, j, 1] + ie

(j)
15 t[n,m, j, 0] + i

2j

h
e

(j)
31 s[n,m, j − 1, 0],

An,m24 = −e(j)
15 s[n,m, j, 0],

Cn,m24 = e
(j)
33 s[n,m, j, 2] + e

(j)
33 t[n,m, j, 1] +

2j

h
e

(j)
33 s[n,m, j − 1, 1],

Cn,m34 = −iωη(1− iωτ0)P
(j)
3 s[n,m, j, 1],

An,m44 = ε
(j)
11 s[n,m, j, 0],

Cn,m44 = −ε(j)33 s[n,m, j, 2]− 2j

h
ε
(j)
33 s[n,m, j − 1, 1].
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