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The usual cellular pattern of the time averaged secondary flow circulation in
the central section of wide open channels shows a distorted (laterally or vertically)
structure due to the changes in bed configurations along lateral direction. The struc-
tures of these secondary circulations (under different bed configurations) are crucial
for different types of hydraulic modeling. This study presents mathematical mod-
els of the time averaged secondary velocities (lateral and vertical components) for
a turbulence-induced secondary current at the central section of a wide open-channel
flow under different types of elevated and non-elevated bed conditions. Starting with
the Reynolds Averaged Navier-Stokes equation and using the continuity equation,
at first the governing equation of secondary flow velocity is obtained including the
effects of the eddy viscosity and viscosity of the fluid. The model equations is solved
using a separation of the variable technique imposing the bed perturbation condition.
Full analytical solutions are achieved through mathematical analysis using suitable
boundary conditions consistent with experimental observations. Initially the models
are derived for a non-elevated bedforms comprised of alternating equal widths of
smooth and rough bed strips. These models are modified further for bedforms with
unequal widths of rough and smooth bed strips and elevated periodic bed structures.
Four different types of elevated bed configurations are investigated and a general
approach is suggested for other types of bed forms. All the proposed models are
validated with existing experimental results to ensure the applicability and in each
cases, improved results are observed. Obtained results show that the centre of circu-
lation of the cellular structure occurs above the junction of the rough and smooth
bed strips (consistent with experimental observations) and it gradually shifts to-
wards the smooth strip, when the length of the rough bed strip is increased. The
shifting as a function shows a non-linear pattern with the length of the rough bed
strip. A least-square model is proposed to identify the circulation center as a func-
tion of the ratio of rough to smooth bed strips. It is also found that the vertically
distorted secondary cells are generated when the bed slope strictly increase/decrease
throughout the length of the one whole circulation. Finally, all the proposed models
are compared with an existing model and an error analysis is done. Results of er-
ror analysis show that the present study can be more suitable as it yields improved
results.
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Notation

A empirical constant,
B width of the channel,
b bed function,
C1, C∗ and C∗∗ constants,
g gravitational acceleration (≈ 9.81m/s),
h flow height,
Jl longitudinal channel slope,
N number od data points,
p, q, r main, transverse and vertical velocity profiles,
p′, q′, r′ fluctuating main, transverse and vertical velocity profiles,
F amplitude of perturbation function,
G a periodic function,
L constant,
l u∗/Rmax,
P pressure,
PS, PC modified periodic functions,
R0 designated to secondary current component without bed elevation,
R1 designated to perturbed flow,
Rmax maximum up-welling velocity,
t time,
u∗ shear velocity,
Um mean primary flow velocity,
vcp computed velocity,
vob observed velocity,
x, y, z main, transverse and vertical Coordinate axis,
z0 zero primary flow velocity level,
α dip correction parameter,
ν kinematic viscosity,
νt Eddy viscosity,
κ von Karman coefficient,
Π Coles wake parameter,
∇ Laplacian operator,
ρ fluid density,
λ mean width of the bed strip = λup+λdn

2
,

λup width of the up-flow zone,
λdn width of the down-flow zone,
λr width of the rough bed strip,
λs width of the smooth bed strip,
λ∗ parameter for bed perturbation of bed elevation,
λ1 π

√
|Ξ|/2Σ,

Ξ ν̃ + ν̃t,
Σ 2(ν̃ − ν̃t),
Φ function of ỹ and z̃,
ψ stream function,
(.) the mean of the components,
(̃.) dimensionless components.
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1. Introduction

Secondary flows are omnipresent in natural and artificial open chan-
nel turbulent flows. The classification of secondary flows was first proposed by
Prandtl [1]. Due to the curvilinearity of the streamlines, the consequences
of the mean flow skewness can be seen in secondary currents which are called
Prandtl’s first kind, and the non-uniformities in the flow near to wall boundary
regions induced by anisotropy of turbulence are called Prandtl’s second kind.
Prandtl [1] also reported that the first kind is induced by the asymmetri-
cal mean flow in curved channels as well as the drifting rivers and this type
of secondary flow can be seen in both the laminar and the turbulent flows.
The second kind is caused by the non-homogeneity of the turbulence and it
is also known as shear or turbulence-driven secondary flow. Modeling and un-
derstanding the flow structure and determination of secondary velocities along
the vertical and transverse directions in a wide-open channel helps to under-
stand the transportation of sediments, variation of the shear stress on the bed
surface, distribution of the turbulent shear stress, and settling velocity distri-
bution of sediment particles in flow along the lateral direction. Several experi-
mental studies exist on the structure of secondary flow cells under various types
of bed conditions, though proper mathematical formulations and models are
limited [2–5]. Therefore more generalized mathematical approach and a model
under the different elevated and non-elevated beds in wide open channels are
needed.

Open channels are classified as narrow and wide according to the value of the
aspect ratio defined as Ar = b/h (b = channel width, h = channel depth). When
the aspect ratio Ar < 5, the channel is described as a narrow open channel.
Otherwise, it is called a wide open channel [6]. The existence of the secondary
flow in the open channel had been investigated by various researchers such as
Stearns [7], Francis [8], Gibson [9], Thomson [10]. Though secondary cur-
rents are seen in both these types of open channels, their mechanism of generation
is different. The characteristics of secondary currents in narrow open channels
were envisaged and investigated by Naot and Rodi [11] and Gibson [9]. The
secondary flow observed in the narrow open channel is composed of a free surface
vortex and bottom vortex which causes the ‘corner flows’ [12]. Several researchers
in the 1980s discovered that the secondary currents can be generated without the
‘corner flows’, with slightly perturbed channel beds. The experimental results by
Nezu and Rodi [2] and Wang and Cheng [13] showed that the lateral varia-
tion in the bed topography and bed surface roughness can lead to the generation
of the secondary flow cell. These types of secondary currents are free from the
sidewall effects of the channels [4, 14]. In wide open channels sidewall effects
are diminished gradually from the sidewall to the central section and secondary
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currents can be generated with changes in the bed configuration and roughness
along the lateral direction. The lateral variation of the bed configuration devel-
ops periodic streamwise vortices which have a dimension equal to the flow depth
of the channel [4]. These streamwise vortices appear as a pair of counter-rotating
cells of a total span of twice the flow depth [5, 15]. In straight wide open channels
this type of secondary flow can be seen throughout the whole cross-section. The
existence of spanwise secondary current in a wide-open channel was discovered
by Vanoni [16]. Coleman [17] observed the high sediment flow zone along the
streamwise direction, known as the “line of boil”, in natural resources. He further
observed that the lines of boil occur periodically and between two lines of boils
a low suspension zone exists. This observation also concludes the existence of pe-
riodic secondary currents in wide rivers. Further, Kinoshita [18] found that the
secondary currents in the streamwise direction consist of two counter-rotating
vortices with a diameter equal to the flow depth and having a spanwise spacing
of twice the flow depth.

In all types of open channel flows under different channel geometry, velocity
always has three components. These velocity components are functions of lateral
and vertical coordinates in a uniform flow along the main streamwise flow direc-
tion. In natural rivers and canals, the bed consists of sediments that continuously
move with flow under the bedload. As a result, bedforms occur (bed troughs and
bed ridges). These bed troughs and ridges generate cellular secondary current
cells. Experimental results of Wang and Cheng [5] further suggest that alter-
nately arranged equal and unequal length of non-elevated smooth and rough bed
surfaces also generates similar secondary flow cells. These cellular circulations
consist of up-flow and down-flow regions. These secondary currents change the
distributions of turbulent shear stress and the primary flow velocity in up-flow
and down-flow regions. The extensive studies of Yang et al. [19], Yang [20]
and Kundu and Ghoshal [21] showed that the vertical component of the sec-
ondary current changes the distribution of the turbulent shear stress form the
traditionally accepted linear type profile. As a result, the zero Reynolds shear
stress occurs below the free surface. The existence of the vertically downward
secondary flow velocity results in the zero shear stress point shifting downward
from the free surface [21]. The changes in the position of zero shear stress point
from the free surface cause the velocity dip-phenomenon [19]. Apart from this,
the deviation of the turbulent shear stress distribution from the linear profile in
a wide open channel with alternate rough and smooth bed forms was proposed
by [14]. Results of Wang and Cheng [14] show that a convex type profile in the
up-flow zone and a concave type profile in the down-flow zone may occur which
suggests the existence of a non-linear pattern of the shear stress distribution.
Apart from the results of the Reynolds shear stress distribution, a recent study
of Mohan et al. [22] has shown that the transverse velocity distribution depends
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on the formation of circular vortex in the cross-sectional plane and becomes pe-
riodic as the number of the circular vortex increases for an increasing aspect
ratio.

Due to the existence of erodible sediment beds in natural alluvial rivers, el-
evated bed forms occur. Therefore, careful consideration of different types of
elevated bedforms and analysis of the structure of secondary circulations are
essential elements of open-channel hydraulics. The knowledge and prediction
of such secondary cells help to give an idea about their effect on other hy-
draulic components. Experimental observations on vertical secondary velocity
data from Ohmoto et al. [23], Soualmia et al. [24] and Ghoshal et al. [25]
reveal that the maximum value of vertical secondary velocity may not always
occur at the middle of the flow depth. Thus existing empirical models need
careful improvements. Most of the previously proposed models of the secondary
current are developed using experimental data as well as theoretical with some
semi-empirical or empirical results. The models of secondary velocities that were
proposed before the year 2006, can only be applied to predict secondary veloc-
ities in non-elevated bedforms. The experiments of Nezu and Nakagawa [15]
and Wang and Cheng [5] suggest the structures of secondary cells change when
non-elevated bed strips (rough and smooth) of unequal lengths or elevated bed
forms are used. Further Wang and Cheng [5] showed that the structures of
cellular cells change under different bedforms. Wang and Cheng [5] proposed
models for secondary current using an empirical stream function that applies
only to wavy ridges and always predicts maximum vertical velocity at the mid-
dle of flow depth for non-elevated bed conditions. Recently Kundu et al. [26]
and Kundu and Chattopadhyay [27] have investigated the secondary velocity
only for equal and unequal non-elevated bed conditions. Till now, the models
of secondary current for different types of elevated bed forms/ridges are missing
in the literature, which gives the major motivation for the present investiga-
tion. In Table 1 the applicability and limitation of existing models in litera-
ture along with proposed models are given to give a more clear idea. Further,
since the numerical computations are computationally expensive and complex
from an applications perspective, efforts need to be given for an analytical ap-
proach.

The leading objectives of this study are (a) to find the analytical models
for profiles of the secondary flow velocities in turbulent flow through wide open
channels under elevated as well as non-elevated bed conditions; (b) to study the
effects of bed elevation on the contours of secondary cells; (c) to validate all the
proposed models with the experimental data and compare with previous models;
(d) to investigate the structures of cellular secondary cells under some different
bed structures; (e) to study the effects of bed structure on the location of the
center of circulation.
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ỹ
)

T
hi
s
m
od

el
do

es
no

t
co
nt
ai
n
eff

ec
t

of
vi
sc
os
it
y.

K
o
t
so

v
in

o
s

[3
5]

N
on

-e
le
va
te
d
eq
ua

l
le
ng

th
be

d-
st
ri
ps

ψ̃
=

−
A

si
n
(π
z̃
)
si

n
(π
ỹ
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(ỹ
)

Se
m
i-e

m
pi
ri
ca
l

m
od

el
pr
op

os
ed

ba
se
d

on
th
e

em
pi
ri
ca
l

fo
rm

of
th
e

st
re
am

fu
nc
ti
on

.
M
od

el
gi
ve
s

se
co
nd

ar
y

ve
lo
ci
ty

to
on

ly
w
av

y
ri
dg

es
ty
pe

of
el
ev
at
ed

be
d
fo
rm

s.

K
u
n
d
u

et
.
al
.
[2
6]

N
on

-e
le
va
te
d
eq
ua

l
sm

oo
th

an
d
ro
ug

h
be

d-
st
ri
p
co
nfi

gu
ra
ti
on

ψ̃
(ỹ
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2. Main governing equation

In the late 1980s, researchers found if the channel bed is slightly perturbed the
secondary currents can also be generated without “corners” in wide open chan-
nels. Nezu and Rodi [2] had given an experimental explanation of the lateral
dissimilarities in bed topography and also pointed out the significant differences
of secondary flows in both types of channels. It is necessary to clarify further
these differences in characteristics of turbulence between these two types of flows
because the anisotropic behavior of turbulence generates secondary currents and
these are independent of the sidewall effect [4, 14].

Considering Prandtl’s secondary currents of the second kind, the governing
equation for steady and consistent turbulent flow in a straight and wide open
rectangular-shaped channel is contemplated. Figure 1 shows the illustrative dia-
gram of the assumptions for the case of an elevated longitudinal bed condition.
Since secondary flow cells appear as counter-rotating circular type vortices with
a span of twice the flow depth apart in a periodic manner (due to the pres-
ence of alternative ‘sand ridges’ and ‘sand troughs’) [4], therefore, in our present
study, it is assumed that the formation of bed is periodical and it is comprised
of fine and rough sands. Since in a wide open channel secondary cells can be
generated either by variation of bed roughness or bed elevation [5], we consider
both the cases of non-elevated and elevated beds. In the first case, the sand
bed is not erodible (which can be made by fixing smooth and rough surfaces
over the channel bottom as presented in Wang and Cheng [5]. In the next
case, sand particles are considered erodible which during the flow, forms sand
troughs (composed of fine sand particles) and sand ridges (composed of rough
sand particles).

Figure 1 shows the up flow and down flow zones over the sand ridges and
sand troughs, respectively as observed in several experiments. Here λup and λdn
denote the half lengths of the up flow and down flow zones respectively and
λ is the mean width of the bed strip. It is to be noted that this configuration
of the bed is to initiate the problem formulation. Other different scenerios can
be generated upon this configuration. For example, by varying the lengths of
λup and λdn different bed structures can be obtained for the first case and by
changing the bed function, different bed forms that appear in real flows can be
obtained which is discussed towards the end of the manuscript. The main flow
is considered along the x direction and y and z denote the lateral and vertical
directions where the origin is considered at the central part of the channel.
The continuity equation and the Reynolds averaged Navier–Stokes momentum
equations along y and z directions are expressed as:

(2.1) qy + rz = 0



Analysis of time-averaged secondary flow cells. . . 177

z/h 

y/λ O B -B 
-1 1 

Smooth bed strip 

h 

Non-elevated equal bed strips 

Rough bed strip 

λ= (λs+λr)/2 

λup λdn 

1 -1 

z/h 

Non-elevated unequal bed strips 

Cellular secondary cells 

Laterally skewed secondary cells 

B -B 

S-75 

S-50 

λup λdn 

λ 

z/h 

y/λ O B 
-B -1 1 

Bed-function b(y/h)  

local 

channel 

height hl 

local bed height b 

Elevated periodic bed 

forms (general case) 

x 

llllococalocalal b bed beded hed h heieigheighght t ococalocalal b bed beded hed h heieigheighght t bb

λdnλup 

Downflow 

zone 

Upflow 

zone 

Upflow 

zone Downflow 

zone 

λ =(λup+ λdn)/2 

h 

Fig. 1. Schematic diagram of cellular secondary cells wide-open channel with equal and
unequal with non-elevated (equal and unequal length of bed strops) and elevated bed

configurations.

and

qt + qqy + rqz = −1

ρ
Py + ν∇2q +

[
∂

∂y
(−q′2) +

∂

∂z
(−q′r′)

]
,(2.2)

rt + qry + rrz = −gJl −
1

ρ
Pz + ν∇2r +

[
∂

∂y
(−q′r′) +

∂

∂z
(−r′2)

]
,(2.3)
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where g as gravitational acceleration, ν is the kinematic viscosity, t indicates
time, Jl is considered as longitudinal channel slope, P is the pressure, ρ is the
fluid density. Fluctuating velocity components are denoted by the primes and
the suffix denotes the partial derivatives. Since the flow through open channels is
mainly governed by gravity, therefore by eliminating the pressure gradient term
and differentiating the obtained equation concerning y the above equations we
get the governing equation after simplification as

(2.4) D∗∇2r =
∂3

∂y2∂z
(q′2 − r′2) +

(
∂2

∂z2
− ∂2

∂y2

)
∂

∂y
q′r′,

where D∗ is an operator defined as
(
∂
∂t − ν∇

2
)
in which ∇2 indicates the Lapla-

cian operator in two variables. To find the analytical solution of Eq. (2.4) for
the vertical velocity component r, closures for the turbulent shear stress q′r′
and the normal stresses q′2 and r′2 are required. Wang and Cheng [14] per-
formed experiments with alternative smooth and rough bedforms in wide open
channel flows. Their observation correlates the secondary circulation with smooth
and rough bed strips. They also observed that the distribution of the dimension-
less turbulent shear stress −p′r′

u2∗
changes with bed roughness. They reported

a transition of turbulent shear stress forms an upward convex profile to an up-
ward concave profile which transforms gradually along a transverse direction
with increasing roughness. The theoretical configuration assumed in this study
matches with the experiments of [14], the turbulent shear stress is modeled in
this study after including the effects of bed roughness and following [27] as

(2.5)
q′2 − r′2
u2
∗

=
−p′r′
u2
∗

=

(
1− z

h

)[
1− απ

{
z

h

}
cos

(
πy

λ

)]
,

where α indicates the dip correction parameter and it signifies the magnitude of
secondary current that can be determined from the experimental data. Kundu
and Chattopadhyay [27] validated Eq. (2.5) with observations of [14] and find
a good agreement with experimental data for the values of α = 0.2. It is needful
to mention here that for other types of bed configurations, its value can be
obtained from the observational data. In the present study, α = 0.2 is taken as
the fixed parameter. Further, the Reynolds shear stress −q′r′ can be expressed
by the eddy viscosity models as [28]

(2.6) − q′r′ = νt

(
∂q

∂z
+
∂r

∂y

)
,

where νt denotes the eddy viscosity which Ikeda [3] considered as νt = (ku∗h)/6,
a constant after considering the logarithmic law of primary velocity as in which
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u∗ is the averaged shear velocity along the transverse direction. Existing reports
in literature state that in such complex flows where secondary circulations occur,
cannot be described by the logarithmic law [29–31]. Recently, Patel et al. [31]
have proposed the second log-wake law for open channel flows which can describe
data well. Following Ikeda [3] and [31], the depth-averaged eddy viscosity model
is expressed as:

(2.7) νt = κu∗h

1∫
0

(
2

1− z̃2
+ πΠ

sin(πz̃)

z̃

)−1

dz̃,

where Π is the Cole’s wake parameter whose value is taken as 0.2 in this
study [28].

Using Eqs. (2.6) and (2.5), the simplified governing equation is expressed
form Eq. (2.4) as [26, 27]

(2.8) D∗∇2r =

[
u2
∗

λ2h
απ3 cos

(
π
y

λ

)(
1− 2

z

h

)]
+ νt

(
∂4r

∂z4
− 2

∂4r

∂y2∂z2
+
∂4r

∂y4

)
.

To make dimensionless Eq. (2.8), we introduce the following variables. In
such studies, the velocity component is usually made dimensionless by the shear
or friction velocity u∗ which depends on the bed shear stress. Since, due to the
variation of the bed roughness along the lateral direction, the shear velocity also
changes along the lateral direction [14]. Ikeda [3] considers the average shear
velocity to make dimensionless the secondary components of the velocity. So in
the present study velocity components r and q are made dimensionless at the ini-
tial stage. The vertical coordinate is made dimensionless with the flow depth h
for the case of non-elevated bedforms and the case of elevated bedforms, the
maximum value of the flow depth has been used. Along the lateral direction,
secondary currents are comprised of up-flow and down-flow zones which have
lengths λup and λdn, respectively. These lengths can vary depending on the bed
configuration. Therefore, the mean of these two lengths is used to make dimen-
sionless the lateral coordinate. For other variables, the dimensionless quantities
are defined as follows as:

(2.9) r̃ =
r

u∗
, q̃ =

q

u∗
, ỹ =

y

λ
, z̃ =

z

h
, t̃ =

tu∗
h
, ν̃t =

ν̃t
u∗h

, ν̃ =
ν̃

u∗h
,

where h is the flow height, Here in this study λ is the same as the average
width of the strip [5] which is defined as λup+λdn

2 . Substituting the above non-
dimensional quantities in Eq. (2.5) we get the dimensionless governing equation
in the following form such as:

(2.10) D̃∗∇2r̃ = απ3 cos(πỹ)(1− 2z̃) + ν̃t

(
∂4r̃

∂z̃4
− 2

∂4r̃

∂ỹ2∂z̃2
+
∂4r̃

∂ỹ4

)
.
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Under the steady flow condition, Eq. (2.10) can be modified as:

(2.11) (ν̃ + ν̃t)
∂4r̃

∂z̃4
+ 2(ν̃ − ν̃t)

∂4r̃

∂ỹ2∂z̃2
+ (ν̃ + ν̃t)

∂4r̃

∂ỹ4
= −απ3 cos(πỹ)(1− 2z̃).

Equation (2.11) denotes the main governing equation for vertical velocity compo-
nent r̃ of the secondary current. Due to the presence of the fluid viscosity terms,
this model can also be extended for sediment-laden flow replacing the fluid viscos-
ity with the viscosity of the mixing fluid. To get an analytical solution, suitable
boundary conditions are employed from the experimental observations.

The cellular structure of secondary currents appears as counter-rotating vor-
tices which have the size of the full flow depth [4]. But at the channel bottom as
well as the free surface, the vertical velocity component vanishes. This conclusion
is also drawn by Yang et al. [32] and by Wang and Cheng [5] in their experi-
ments. Also, it has been observed that the vertical velocity becomes maximum
almost at the middle of the flow depth at different sections along lateral direc-
tion [5]. Starting with the zero velocity the vertical velocity gradually increases
till the middle of the flow depth and then decreases towards the free surface
level (where the maximum velocity appears at some certain heights, the mod-
ified condition can be considered. This is further discussed in Section 6). The
maximum value of vertical velocity always occurs where there is only up flow
or down flow velocity occurs which generally occurs at the middle length of λup
or λdn. Further, the experimental observations of Nezu and Nakagawa [15],
Nezu and Rodi [2] and Wang and Cheng [5] suggest that near the bed and
free surface, the vertical velocity changes as a linear function of the vertical
coordinate. Considering all these, the physical boundary conditions are taken as
follows:

r̃
∣∣
z̃=0

= 0, r̃
∣∣
z̃=1

= 0,

r̃
∣∣
|ỹ|=1,z̃=1/2

= R̃max, or
∂r̃

∂z̃

∣∣∣∣
z̃=1/2

= 0,(2.12)

∂2r̃

∂z̃2

∣∣∣∣
z̃=0

= 0,
∂2r̃

∂z̃2

∣∣∣∣
z̃=1

= 0,

where R̃max = Rmax/u∗ is the non-dimensional maximum vertical velocity.

3. Complete analytical solution

Wang and Cheng [14] showed that the flow that includes secondary cur-
rents is comprised of a ‘base flow’ and a ‘perturbation part’ which is caused by
different reasons such as a change in bed roughness, change in bed elevation, and
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others. This further implies that the ideal flow velocity part is disturbed by the
bed perturbation. Therefore, introducing the bed perturbation parameter, the
solution of Eq. (2.11) can be written as a linear superposition of two unknown
functions R̃0(ỹ, z̃) and R̃1(ỹ, z̃) as [26]

(3.1) r̃ = R̃0 + λ∗R̃1,

where R̃0 is idealized for the secondary flow and R̃1 for the perturbed flow, λ∗ is
a parameter that signifies the bed perturbation of bed elevation. In our study,
the bed perturbation is periodic in a manner (due to alternate variations of bed
configuration). In such case, Eq. 3.1 can be rewritten in the following way:

(3.2) r̃ = R̃0 + λ∗F (z̃)G(ỹ).

Here F (z̃) represented the amplitude of perturbation and G(ỹ) = cos(πỹ) a pe-
riodic cosine function to characterize the lateral distributions of the stream-wise
velocity and the Reynolds shear stress. The choice of G (ỹ) as a cosine function
was obtained from the experimental data of [14]. Since in the present study,
a similar bed configuration is assumed, we have chosen G(ỹ) as the same cosine
function. To find the analytical solution to the definite problem we decomposed
it into two sub-problems with suitable boundary conditions

(3.3) (I) Σ
∂4R̃1

∂z̃4
+ Ξ

∂4R̃1

∂ỹ2∂z̃2
+ Σ

∂4R̃1

∂ỹ4
= −Φ̃(ỹ, z̃),

where Σ = (ν̃+ ν̃t) and Ξ = 2(ν̃− ν̃t). The suitable boundary conditions for sub-
problem I are in the form of R̃1|z̃=0 = 0, R̃1|z̃=1 = 0, ∂

2R̃1
∂z̃2 |z̃=0 = 0, ∂

2R̃1
∂z̃2 |z̃=1 = 0,

and ∂R̃
∂z̃ |z̃=1/2 = 0 and

(3.4) (II) Σ
∂4R̃0

∂z̃4
+ Ξ

∂4R̃0

∂ỹ2∂z̃2
+ Σ

∂4R̃0

∂ỹ4
= 0.

The suitable boundary conditions for the sub-problem (II) are R̃0|z̃=0 = 0,
R̃0|z̃=1 = 0 and ∂R̃0

∂z̃ |z̃=1/2 = 0.
Solving the subproblem I analytically with suitable boundary conditions,

finally we get the solution as (see Appendix for the detailed solution),

(3.5) R̃1 =
L

π4
cos(πỹ)

[
cos(λ1z̃)−C∗∗

sin(λ1z̃)

sinλ1
+z̃

[
C∗ cos(λ1z̃)+

λ1

2
sin(λ1z̃)

]]
,

where L = α0απ3

Σ and λ1 = π

√
|Ξ|
2Σ (see Appendix for the detailed solution).

C∗∗ and C∗ denoted as:

(3.6) C∗ =

(
2λ1 − λ1 sin2(λ1/2) +

λ2
1

4 sinλ1 − 4 sin(λ1/2)

λ1 cosλ1 − sinλ1 − λ1 sin2(λ1/2)

)
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and

(3.7) C∗∗ = 2 cos2(λ1/2) + λ1/2 sin(λ1/2)− C∗ cos(λ1).

The method of separation of variable is applied for finding the solution of the
sub-problem (II) and finally we get the solution in the form

(3.8) R̃0 = C1 sin(πz̃) cos(πỹ),

where

(3.9) C1 = −R̃max −
λ∗L

π4

[
1

2
C∗

(
1 + 3 cos2(λ1/2)

cosλ1/2

)
− λ1

4
sinλ1/2

]
.

Therefore, the final model of vertical velocity component can be expressed as:

(3.10) r̃ = C1 sin(πz̃) cos(πỹ) + λ∗
L

π4
cos(πỹ)

×
[
cos(λ1z̃)− C∗∗

sin(λ1z̃)

sinλ1
+ z̃

[
C∗ cos(λ1z̃) +

λ1

2
sin(λ1z̃)

]
+ (2z̃ − 1)

]
.

The transverse component q̃(ỹ, z̃) of the secondary flow can be consequently
expressed in the form of the continuity equation as (see Appendix for detailed
solution),

(3.11) q̃ = −C1 cos(πz̃) sin(πỹ)

− λ∗L sin(πỹ)

π5

[
−λ1 sin(λ1z̃)−

λ1 cos(λ1z̃)

sinλ1
C∗∗

+ z̃

[
−λ1 sin(λ1z̃)C∗ +

λ2
1

2
cos(λ1z̃)

]
+

[
C∗ cos(λ1z̃) +

λ1

2
sin(λ1z̃)

]
+ 2

]
.

Equations (3.10) and (3.11) represent the proposed models for secondary flow
velocity components in straight rectangular shaped wide open channels.

4. Models under different bed structures

4.1. Non-elevated alternate rough and smooth bed strips of equal length

Wang and Cheng [5] proposed that the roughness of the beds changes
without bed elevation in the secondary currents being generated. They showed
this phenomenon in their empirical experiment named case S75. The study also
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reported that when the bed strips are equal and smooth then secondary current
cells make symmetrical shapes throughout the channel. They also reported that
the shapes of the secondary current cells are in the counter-rotating cellular
whose center is at z̃ = 0.5. These secondary current cells have vertical dimensions
of the flow depth and transverse dimensions of the mean bed width λ. It also
showed that the streamlines that appeared in the result as a circle-like closed
structure in the cross-sectional plane due to the continuity condition. In this
study the Eq. (3.10) and (3.11) provides the model for the case S75 as follows:

r̃ = C1 sin(πz̃) cos(πỹ)(4.1)

+ λ∗
L

π4
cos(πỹ)

[
cos(λ1z̃)− C∗∗

sin(λ1z̃)

sinλ1

+ z̃

[
C∗ cos(λ1z̃) +

λ1

2
sin(λ1z̃)

]
+ (2z̃ − 1)

]
and

q̃ = − C1 cos(πz̃) sin(πỹ)(4.2)

− λ∗L sin(πỹ)

π5

[
−λ1 sin(λ1z̃)−

λ1 cos(λ1z̃)

sinλ1
C∗∗

+ z̃

[
−λ1 sin(λ1z̃)C∗ +

λ2
1

2
cos(λ1z̃)

]
+

[
C∗ cos(λ1z̃) +

λ1

2
sin(λ1z̃)

]
+ 2

]
.

These equations give more general forms of the secondary flow velocity profile
rather than assuming it empirically [5].

Finally, from the above equation we can find the stream function defined in
the form as:

(4.3) ψ̃ =

∫
r̃ dỹ.

Here r̃ denotes the non-dimensional secondary velocity in the perpendicular di-
rection using Rmax. The stream function which is applicable in the cross-section
for the symmetric secondary flow can be expressed in the following manner,

(4.4) ψ̃ =
`

π
C1 sin(πz̃) sin(πỹ) +

`Lλ∗
π5

sin(πỹ)

[
cos(λ1z̃)− C∗∗

sin(λ1z̃)

sinλ1

+ z̃

[
C∗ cos(λ1z̃) +

λ1

2
sin(λ1z̃)

]
+ (2z̃ − 1)

]
,

where ` = ū∗/Rmax.
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4.2. Non-elevated and alternate rough and smooth bed strips of unequal length

The transverse velocity profile r̃ proposed by [5] is wavelike with distinguished
lengths along the spatial direction which indicates the up-flow and the down-flow
zones. Studerus [33] and Wang and Cheng [5] reported that the maximum
cross-sectional flow occurs over the interface of even and uneven bed strips also
with the center of circulation. As a result, the uneven strip length is bigger than
the even bed strip length and the flow cell becomes laterally skewed. Wang and
Cheng [5] reported that for these cases the simple sine function sinπỹ is not
applicable due to cell skewness. Hence, they propose a modified sine function as
in the following form of PS(ỹ) which is defined by a sinusoidal function that can
count for the sidewise shift of the center of circulation and expressed as [5]:

(4.5) PS(ỹ) =
λup
λ sin

[ (ỹ−2m)λ
λdn

π
]
; 2m− λdn

2λ ≤ ỹ ≤ 2m+ λdn
2λ ,

λup
λ sin

[(
ỹ−2m−λdn

2λ

)
λup

π + π
2

]
; 2m+ λdn

2λ ≤ ỹ ≤ 2m+ λdn
2λ +

λup
2λ .

Hence the modified stream function can be expressed as:

(4.6) ψ̃ =
`

π
C1 sin(πz̃)PS(ỹ) +

`Lλ∗
π5

PS(ỹ)

[
cos(λ1z̃)− C∗∗

sin(λ1z̃)

sinλ1

+ z̃

[
C∗ cos(λ1z̃) +

λ1

2
sin(λ1z̃)

]
+ (2z̃ − 1)

]
,

where m = 0,±1,±2, . . . ; λdn, λup are span of the down-flow and up-flow regions
over a water column, respectively; and λ is the averaged strip width of λup
and λdn. This function can also be used for consistent bed conditions. After
differentiating the stream function, the secondary velocity components can be
obtained as:

(4.7) r̃ = C1 sin(πz̃)PC(ỹ) + λ∗
L

π4
PC(ỹ)

[
cos(λ1z̃)− C∗∗

sin(λ1z̃)

sinλ1

+ z̃

[
C∗ cos(λ1z̃) +

λ1

2
sin(λ1z̃)

]
+ (2z̃ − 1)

]
and

(4.8) q̃ = −C1 cos(πz̃)PS(ỹ)− λ∗LPS(ỹ)

π5

[
−λ1 sin(λ1z̃)−

λ1 cos(λ1z̃)

sinλ1
C∗∗

+ z̃

[
−λ1 sin(λ1z̃)C∗ +

λ2
1

2
cos(λ1z̃)

]
+

[
C∗ cos(λ1z̃) +

λ1

2
sin(λ1z̃)

]
+ 2

]
,
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where PC(ỹ) is the derivative of the PS(ỹ) function. The sidewise shift of the
center of circulation is captured through the functions PS and PC. It is also
noted that the models of Eq. (4.7) and (4.8) are more general than the proposed
model of Wang and Cheng [5] and previous models of [26] and [27].

4.3. Elevated alternate rough and smooth bed-forms

For the above two cases, the cellular secondary current cells are induced
only on the lateral variation in the bed roughness. The experimental results
of [5] for the case WR showed that the cellular form of the secondary current
is generated by the wavy ridges without the transverse roughness variations.
Although different bed configurations are present in the natural resources, the
structures of the secondary cells are very similar. The similarity of the cells has
implied that the bed trough for the case WR could serve similarly to the rough
strips of the beds. The lateral gradient of bed shear stress is caused by the lateral
bed perturbation either in bed roughness or the elevation of the bed. The local
bed shear stress may increase at the location of relatively deeper flow depth or
larger roughness. This is the phenomenon that leads to the down flow occurring
just over the rough strips or troughs and up flow occurs over smooth strips or
ridges. We extend our study further in the way that the previously proposed
stream function to the wavy bed surface by introducing the vertical coordinate
system in the following transformation,

(4.9) z̃ = z̃ − b
(
y

h

)
,

where b (ỹ) is the bed function corresponding to the vertical coordinate. The
following elevated bed functions are considered:

(4.10) b(ỹ) =
A

λ2
ỹ2 (Case WR),

where A is taken as a constant that is related to the bed elevation. For simplicity
of the solution z̃ − b(ỹ)

h = z̃′ is substituted. Therefore, the stream function for
the wavy ridges can be written in the form below:

(4.11) ψ̃(ỹ, z̃′) =

[
`

π
C1 sin(πz̃′) +

`Lλ∗
π5

[
cos(λ1z̃

′)− C∗∗
sin(λ1z̃

′)

sinλ1

+ z̃′
[
C∗ cos(λ1z̃

′) +
λ1

2
sin(λ1z̃

′)

]
+ (2z̃′ − 1)

]]
PS(ỹ).
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Consequently the secondary velocity components are obtained as:

(4.12) r̃ = PC(ỹ)

[
1

π
C1 sin(πz̃′)

+
Lλ∗
π5

{
cos(λ1z̃

′)−C∗∗
sin(λ1z̃

′)

sinλ1
+z̃′
(
C∗ cos(λ1z̃

′)+
λ1

2
sin(λ1z̃

′)

)
+(2z̃′−1)

}]
−PS(ỹ)

∂b(ỹ)

∂ỹ

[
C1 cos(πz̃′)+

Lλ∗
π5

[
−λ1 sin(λ1z̃′)−

C∗∗λ1

sinλ1
cos(λ1z̃′)

+C∗ cos(λ1z̃′)+
λ1

2
sin(λ1z̃′)+z̃′

{
−C∗λ1 sin(λ1z̃′)+

λ2
1

2
cos(λ1z̃′)

}
+2

]]
and

(4.13) q̃ = −C1 cos(πz̃′)PS(ỹ)−λ∗LPS(ỹ)

π5

[
−λ1 sin(λ1z̃′)−

λ1 cos(λ1z̃′)

sinλ1
C∗∗

+z̃′
[
−λ1 sin(λ1z̃′)C∗+

λ2
1

2
cos(λ1z̃′)

]
+

[
C∗ cos(λ1z̃′)+

λ1

2
sin(λ1z̃′)

]
+2

]
.

Figures 7 and 8 represent the velocity profiles of r̃ and q̃ for the case WR. We
have considered the bed functions in the following forms and substituted those
into Eq. (4.11). In Fig. 10 these studies showed the contour profiles of the stream
function with different kinds of bed configurations.

b2(ỹ) =
A

λ3
(2 + ỹ2),(4.14)

b3(ỹ) =
A

λ3
(2− ỹ2),(4.15)

b4(ỹ) =

{
− A
λ3 ỹ if − 1 ≤ ỹ < 0,

A
λ3 ỹ if 0 < ỹ ≤ 1,

(4.16)

b5(ỹ) =

{
A
λ3 (1 + ỹ) if − 1 ≤ ỹ < 0,
A
λ3 (1− ỹ) if 0 < ỹ ≤ 1.

(4.17)

In Fig. 10 the contour profile of the stream function with respect to the different
bed formations is shown by substituting Eqs. (4.14)–(4.17) in to Eq. (4.11).

5. Comparison and validation with experimentally observed data

In this part, the proposed velocity models of secondary flow velocity compo-
nents along the perpendicular and transverse direction and derived stream func-
tions are validated with the experimentally observed data. Wang and Cheng [5]
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performed experiments along a wide open channel with the effects of bed pertur-
bation to generate secondary currents. Since in the present study, the theoretical
assumptions are similar to that and the effects of the sidewall are absent, this
experimental data is employed for validation. Wang and Cheng [5] performed
the experiments in a wide pen channel changing bed-roughness and considering
different bed-forms in a straight rectangular wide open channel which was 14m
long, 0.6m wide. For experiments S75 and S50 two different types of bed strips
were used. In both cases, the bed was developed with alternative smooth and
rough bed strips. The rough bed strips were made of the uniform sediment par-
ticle diameter of the mean diameter of 2.55mm and densely packed such that
no particles were not able to move. leave from the bed surface. Apart from these
two cases, run WR was performed with wavy ridges where a bed height changes
with lateral y-coordinates. The channel slope for test Cases S75 and S50 was
0.0012 and for the test Case WR, 0.001 and the Reynolds number were kept at
44,206 and 38,684 respectively for these test cases. The high Reynolds number
indicates that the secondary current occurs in a turbulent flow and is generated
due to bed effects. The obtained validation results are discussed below.

Figures 2, 4 and 7 show the attestation of the proposed contour profiles of
the secondary velocity components (i.e. Eqs. (4.1), (4.2), (4.7), (4.8), (4.12) and
(4.13)) for various longitudinal bed strips and wavy bed ridges. In Figs. 2 and 4
the contour of both the velocity components along perpendicular and transverse
directions for the equal and unequal rough and smooth bed strips are plotted.
In these figures, the dimensionless velocities r/Rmax and q/Rmax are plotted
against the coordinates ỹ and z̃. The value of Rmax is taken 2% of the mean
velocity Um for the case of S75 and 2.5% for the case of S50 (taken from the
experimental observations of [5]). Here the mean velocity is calculated from the
below equation

(5.1) Um =

1∫
z̃0

[
u∗
κ

ln

(
z̃

z̃0

)
− 2Πu∗

κ
cos2

(
πz̃

2

)
+ Umax

]
dz̃,

where z̃0 = z0/h and z0 denotes the zero primary velocity level. The parameter λ∗
denotes the bed perturbation parameter and is computed from the experimental
data. The values of other parameters (indicated in the figure caption) are taken
from the experimental data. To compare the present result, the empirical model
of [5] is also plotted in these figures. From this figure, it can be seen that similar
results are achieved in all the test Cases of S75, S50, and WR. Further, it can
be seen from Figs. 2 and 4 that zero vertical velocity (i.e. component r) occurs
at y/λ = −0.5 for the case S75; whereas it shifts to the location y/λ = −0.666
for test case S50. This occurs due to the change in the length of bed strips. It
is found from the experimental observation that vertical velocity vanishes at the
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Model of Wang and Cheng [5] for case S75
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Fig. 2. The contour profiles of subsisting model of [5] (case S75) and (a) Eq. (3.10) and
(b) Eq. (3.11) for the symmetrical flow cells are being compared. The velocities r and q are
made dimensionless by 0.02Um and the values on the contour lines indicate the dimensionless

velocities. The values of parameters being taken as α = 0.2, z̃0 = 6× 10−4,
Rmax = 0.0094m/s, h = 0.075m, Jl = 0.0012, u∗ = 0.03m/s, B = 0.6m, λ∗ = −0.01.
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Fig. 3. The velocity profiles of r̃/Rmax with Eq. (3.10) and q̃/Rmax with Eq. (3.11) are
compared and validated with the subsisting model of [5] for symmetrical flow cells (case S75).

The values * of parameters are taken as α = 0.2, z̃0 = 6× 10−4, λ∗ = −0.01,
Rmax = 0.0094m/s, h = 0.075m, Jl = 0.0012, u∗ = 0.03m/s, B = 0.6m. Here the dashed

lines (−−) represent the model of [5], continuous lines (−) represent the proposed model and
cross symbols (×) indicate the experimental data points.

junction of smooth and rough bed strips. The shifting of the location of r̃ = 0,
in these figures suggests that the proposed model correctly captures the flow
field. Similarly, in these figures it can be observed that a symmetrical flow field
is present for the case S75, where λdn/λup ratio is a unit (which corresponds
to equal length bed strips); whereas when the bed strips length are not equal
the flow field becomes horizontally distorted. The change of cellular-shaped cells
occurs due to the bed effects. Since the effects of side walls are restricted to
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Model of Wang and Cheng [5] for case S50
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Fig. 4. The contour profiles of existing model of [5] (case 50) and (a) Eq. (4.7) and
(b) Eq. (4.8) for the laterally skewed flow cells are being compared. The velocities r and q are

made dimensionless by 0.025Um and the values on the contour lines indicate the
dimensionless velocities. The values of parameters being taken as α = 0.2, z̃0 = 8× 10−4,
Rmax = 0.0104m/s, h = 0.075m, Jl = 0.001, u∗ = 0.0271m/s, B = 0.6m, λ∗ = −0.01.
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Fig. 5. The velocity profiles of r̃/Rmax with Eq. (4.7) and q̃/Rmax with Eq. (4.8) being
compared and validated with the existing model of [5] for laterally skewed flow cells

(case S50). The values of parameters being taken as α = 0.2, z̃0 = 8× 10−4, λ∗ = −0.01,
Rmax = 0.0104m/s, h = 0.075m, Jl = 0.001, u∗ = 0.0271m/s, B = 0.6m. Here the dashed
lines (−−) represent the model of [5], continuous lines (−) represents the proposed model

and cross symbols (×) indicate the experimental data points.

a maximum of three times the flow depth near the sidewall region, it can be
considered that flow in the central section is related to the bed strips. In the
case of equal lengths λup = λdn, the center of circulation appears at the junction
of these two lengths, and upflow and downflow zones have the same lengths and
as a consequence cellular patterns are formed. When the length of the smooth
strip or λdn is decreased and the length of the rough strip or λup increases,
the region of upflow is compressed and the region of downflow is elongated.
Thus, the circular shape is distorted and as a result, laterally skewed cells are
formed. Whereas different observation is found in the case WR in Fig. 7. In this
case, flow cells become vertically distorted. This occurs, as the local bed height
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Fig. 6. Change of circulation center with the ratio λdn/λup.

changes along the lateral direction, and the circular shape deforms according
to the bedforms. These results suggest that the flow field or in particular the
secondary current field changes with bed perturbation. This result is consistent
with the experimental findings.

Figure 3 gives the validation result of the proposed model (Eqs. (3.10) and
(3.11)) with experimentally observed data for the case of S75 i.e. equal and
alternative rough and smooth bed strips. In this case, circular symmetric flow
cells are observed. The values of the parameters are indicated in the figures
which are calculated in a similar way as aforementioned. It can be seen from the
picture that the vertical r̃ profile is symmetrical about y/λ = −0.5. In the region,
−1.0 ≤ ỹ ≤ −0.5 vertical velocity is positive which corresponds to the upward
flow and in the region, −0.5 ≤ ỹ ≤ 0, vertical velocity shows negative which
occurs due to the downward flow. Similarly, lateral velocity is zero at y/λ = 0.0
(central section) and −1.0 (midpoint of smooth strips) as observed in Fig. 3.
The reason can be explained as follows. The vertical velocity is downward at the
central section when y/λ = 0 and upward at y/λ = −1. Therefore in these two
sections, only vertical velocity exists and transverse velocity shows a zero value.
In the section y/λ = −0.5, only transverse current exists as a result vertical
velocity appears as zero. The results show that the present study improves the
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Model of Wang and Cheng [5] for case WR
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Fig. 7. The contour profiles of existing model of [5] (case WR) and the (a) Eq. (4.12) and
(b) Eq. (4.13) for the vertically distorted flow cells are compared. The velocities r and q are

made dimensionless by 0.016Um and the values on the contour lines indicate the
dimensionless velocities. The values of parameters are taken as α = 0.2, z̃0 = 3× 10−4,
Rmax = 0.007m/s, h = 0.075m, Jl = 0.008, u∗ = 0.0243m/s, B = 0.6m, λ∗ = 0.002.
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previous prediction. To quantify the improvement result, the root mean squared
error (RMSE) is computed as

(5.2) RMSE =

√√√√ 1

N

N∑
i=1

(vi(cp) − vi(ob))2,

where N denotes the total number of data points, vi(cp) denotes the computed
velocity and vi(ob) is the observed velocity at ith data point. Computed RMSE
errors are presented in Table 2 where RMSEpm and RMSEwc indicate the error
corresponding to the preset model and the model of [13]. It can be found that
in most of the cases, a minimum error corresponds to the present model. This
suggests the improvement in the predicted result. It can be noted that lateral
velocity deviates near the region of y/λ = −0.5. This may be due to the sudden
change in bed roughness which can be removed with some suitable values of the
bed perturbation parameter.

Similarly, the vertical and transverse velocity components are plotted for the
case S50 (i.e. laterally skewed secondary flow cells as can be observed from Fig. 4)
are explained in Fig. 5. Here the velocity is made dimensionless by considering
2.5% of the mean velocity value Um as suggested in [5] and the equations are
plotted against the vertical line z/h at the different sections with y/λ from
−1.3333 to 0.0. The model of [5] is also plotted due to comparison purposes
only. In the figure, continuous lines denote the present model and dash-dotted
lines indicate the model of Wang and Cheng. The conditions of the flow and other
parameters are taken from the experimentally observed data of [5]. In both of
these cases of velocity, the present model suggests better prediction of the data
points. It can be seen that in the region −1.333 ≤ ỹ ≤ −0.667, both the velocity
profile significantly changes due to the increase in length of a rough bed strip
with λdn/λup = 2. The model can also predict this horizontal distortion well.
The experiments of [5] only tell us about the flow field for two values of the
ratio λdn/λup equal to one and two. We have investigated further other possible
values of this ratio. We observed that with the change in the secondary flow field
(horizontal distortion), the center of circulation gradually shifts. The change of
circulation with different values of the ratio λdn/λup is plotted in Fig. 6. It is
observed from the result that the circulation center does not shift linearly with
the ratio whereas it follows a cubic relation. A least square analysis shows that
the center shifts along the curve, it is given as:

(5.3) Location of center L = 0.002

(
λdn
λup

)3

−0.03

(
λdn
λup

)2

+0.21

(
λdn
λup

)
+0.34.

In the figure, the residual norm is also plotted which has the value 0.044829. In
the analysis, it is found that the location L significantly changes from 0.5 to 0.87
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Table 2. Error analysis between proposed models in Eqs. (4.1), (4.2), (4.7), (4.8), (4.12)
and (4.13) and model of [13] using root mean squared error analysis method (here ∗ indicates

minimum error value).

r̃ q̃

y/λ RMSEpm RMSEwc RMSEpm RMSEwc

Case S75 (Symmetrical Flow cells)
−1.0 0.1994 0.1774∗ 0.0284 0.0284
−0.9 0.1919 0.1458∗ 0.0284∗ 0.0771
−0.8 0.1832 0.1274∗ 0.0907∗ 0.1164
−0.7 0.0903 0.0507∗ 0.0974∗ 0.1333
−0.6 0.0885 0.0723∗ 0.1091∗ 0.1496
−0.5 0.0511 0.0511 0.0998∗ 0.1549
−0.4 0.0897∗ 0.0968 0.1103∗ 0.1788
−0.3 0.1276 0.1203∗ 0.1223∗ 0.1880
−0.2 0.0694 0.0634∗ 0.1023∗ 0.1513
−0.1 0.0521∗ 0.1040 0.0462∗ 0.0699
0.0 0.0790∗ 0.0837 0.0103 0.0103

Case S50 (Laterally skewed Flow cells)
−1.3333 0.0182 0.0182 0.0097∗ 0.0350
−1.2000 0.0086∗ 0.0129 0.0225∗ 0.0429
−1.066 0.0284∗ 0.0357 0.0.0097∗ 0.0175
−0.933 0.0059∗ 0.0128 0.0401∗ 0.0479
−0.800 0.0049 0.0004∗ 0.0148∗ 0.0353
−0.667 0.0001 0.0001 0.0108∗ 0.0361
−0.534 0.0026∗ 0.0041 0.0329 0.0088∗

−0.400 0.0017 0.0011∗ 0.0382 0.0178∗

−0.267 0.007 0.0043∗ 0.0327 0.0180∗

−0.133 0.0325 0.0280∗ 0.0227 0.0148∗

0.0 0.0425 0.0377∗ 0.0001 0.0001
Case WR (Vertically distorted Flow cells)

−1.0 0.0176∗ 0.0180 0.0094 0.0094
−0.9 0.0172 0.0167∗ 0.0096∗ 0.0352
−0.8 0.0148 0.0144∗ 0.0369 0.0108∗

−0.7 0.0011∗ 0.0014 0.0145∗ 0.0478
−0.6 0.0188 0.0188 0.0486 0.0187∗

−0.5 0.0157∗ 0.0165 0.0543 0.0197∗

−0.4 0.0216∗ 0.0235 0.0351 0.0230∗

−0.3 0.0137∗ 0.0151 0.0327 0.0147∗

−0.2 0.0238∗ 0.0254 0.0290 0.0047∗

−0.1 0.0158∗ 0.0192 0.0129 0.0045∗

0.0 0.0388∗ 0.0420 0.0046 0.0046
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Fig. 8. The velocity profiles of r̃/Rmax with Eq. (4.12) and q̃/Rmax with Eq. (4.13) being
compared and validated with the existing model of [5] for vertically distorted flow cells

(case WR). The values of parameters being taken as α = 0.2, z̃0 = 3× 10−4,
Rmax = 0.007m/s, h = 0.075m, Jl = 0.008, u∗ = 0.0243m/s, B = 0.6m, λ∗ = 0.002. Here the
dashed lines (−−) represent the model of [5], continuous lines (−) represent the proposed

model and cross symbols (×) indicate the experimental data points.

with
(
λdn
λup

)
up to its value which is eight. Thereafter no change in L is obtained.

This occurs since when the ratio further increases from eight, no change in bed
configuration is present as the dimensionless width of the channel is 8.

Figure 8 shows the validation of proposed vertical and transverse velocity
components for the case of WR i.e. wavy bedforms. In the figure velocity curves
are plotted after making dimensionless by 0.016Um and the equations are plotted
against the vertical line z/h at the different sections with y/λ ranging from −1.0
to 0.0. The model of [5] is also plotted due to comparison purposes only. The flow
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Fig. 9. Contour profile of different structures of secondary flow cells stream function of
(a) Eq. (4.4) for the case S75, (b) Eq. (4.6) for the case S50, (c) Eq. (4.11) for the case WR.

The closed curves are ψ̃ contours computed using the proposed models.
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Fig. 10. Structure of secondary flow cells (from Eq. (4.11)) with various bed forms as shown
in Eqs. (4.14)–(4.17) with various type of bed configuration.
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conditions and other values of parameters are considered from the experimental
data of [5]. In both of these cases of the vertical and transverse velocity profiles
for elevated longitudinal bedforms, the proposed model gives more improved
results than the model of [5].

Further in Figs. 9 and 10 streamlines for secondary flow cells are presented.
Figure 9(a) shows the contour profile of the three Cases S75, S50, and WR
that are considered in their experiments of [5]. It can be seen in this figure
that the symmetric secondary flow cells (top figure; which are obtained from
Eq. (4.4) with the corresponding conditions h = 0.075m, λ = 0.075m and
Rmax = 0.02Um) occur for an equal length of both the smooth and rough bed
strips; horizontally distorted flow cells (middle figure obtained from the Eq. (4.6))
occur due to increase in the length of rough bed strips and vertically distorted
secondary cells (bottom figure obtained from Eq. (4.11)) occur for wavy elevated
bedforms. These secondary flow cells are similar as reported in the experiments
of [5]. In Fig. 10 the secondary flow cells are plotted for four other types of
bedforms: upward concave and convex bed bumps and triangular-shaped bed
forms (with two cases). This figure shows the further extension of the study for
other different types of bedforms. It can be seen that for the bump-type beds,
a laterally distorted profile is observed; whereas circular cells become vertically
distorted for triangular bedforms. The vertically distorted case is obtained since
the local bed height constantly increases/decreases throughout full closed circu-
lar contours. This result is also supported by the experimental results observed
in [5] for the case of wavy ridges. Whereas in the case of bump-type bedforms, the
bed slope does not increase/decrease consistently. In this case, vertical distortion
is not present. Further, when the bump bed structure is convex, flat streamlines
are observed at the maximum local bed height.

6. Discussion

This section discusses some general aspects of the nature of the considered
boundary conditions. From the analysis of experimental data from [23–25] we
have observed that the maximum velocity may not always occur at the middle of
the channel. Therefore, we modify that condition. Also, due to the inadequacy of
secondary velocity data at the free surface, new boundary conditions are being
imposed by freeing the upper boundary conditions. From the above-mentioned
data, since the position of the maximum velocity is different, L∗ (constant)
is taken which indicates the location of the maximum vertical velocity from
the channel bottom. Starting from Eq. (3.4) and imposing the new boundary
conditions as:

(6.1) r̃|z̃=0 = 0, r̃||ỹ|=1, z̃=L∗ = R̃max, or
∂r̃

∂z̃
|z̃=L∗ = 0.
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After considering these boundary condition the possible form of the vertical
velocity component is obtained as:

r̃ = C1 sin

(
πz̃

2L∗

)
cos(1/2− ỹ + π/2)χ1

sin χ1

2

(6.2)

+ λ∗
L

π4
cos(πỹ)

[
cos(λ1z̃)− C∗∗

sin(λ1z̃)

sinλ1

+ z̃

[
C∗ cos(λ1z̃) +

λ1

2
sin(λ1z̃)

]
+ (2z̃ − 1)

]
,
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Fig. 11. Validation of the model Eq. 6.2 with experimental data of [23] and comparison with
the model of [5]. Here continuous lines (‘–’) denote the present study, dashed lines (‘– –’)

denote the model of [5] and symbols (�, ×, +, 4) denote data points.
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where

C1 = −Rmax −
Lλ∗
π4

[
cosλ1L∗ − C∗∗

sinλ1L∗
sinλ1

+ L∗

[
C∗ cosλ1L∗ +

λ1

2
sinλ1L∗

]
+ (2L∗ − 1)

]
(for the detailed solution go through with Appendix). Consequently the trans-
verse velocity component being calculated as:
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Fig. 12. Validation of the model Eq. 6.2 with experimental data of [24] and comparison with
the model of [5]. Here continuous lines (‘–’) denote the present study, dashed lines (‘– –’)

denote the model of [5] and symbols (�, ×, +, 4) denote data points.
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(6.3) q̃ = −C1π

2L∗
cos

(
πz̃

2L∗

)
sin(1/2− ỹ + π/2)χ1

χ1 sin χ1

2

− λ∗L sin(πỹ)

π5

[
−λ1 sin(λ1z̃)−

λ1 cos(λ1z̃)

sinλ1
C∗∗

+ z̃

[
−λ1 sin(λ1z̃)C∗ +

λ2
1

2
cos(λ1z̃)

]
+

[
C∗ cos(λ1z̃) +

λ1

2
sin(λ1z̃)

]
+ 2

]
.

We have also validated these results with the experimental data of the [23–25].
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Fig. 13. Validation of the model Eq. 6.2 with experimental data of [25] and comparison with
the model of [5]. Here continuous lines (‘–’) denote the present study, dashed lines (‘– –’)

denote the model of [5] and symbols (4 and ×) denote data points.

Table 3. Details of the parameters α and L∗ of proposed model in Eq. (6.2).

y/λ L∗ α

Data of [23]
0 0.6846 0.006
0.2 0.5664 0.006
0.8 0.5555 0.006
1.0 0.4345 0.006

Data of [25]
0 0.3 0.0148
0 0.5650 0.0177

Data of [24]
0 0.2666 0.013
0 0.34 0.0143
0 0.37 0.0124
0 0.34 0.0135
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The results are presented in Figs. 11–13 along with the comparison with the
model of [5]. In the above study α is generated from the Reynolds shear stress
distribution for that case throughout the study the value of α = 0.2. Due to
the unavailability of the data of α in this case, we have considered it as a free
parameter. The values of α and L∗ are shown in Table 3. From the figures, it can
easily be observed that the present study gives improved results. Similarly, for
further study, the other cases of bed configurations can be calculated. Interested
readers can further develop models corresponding to the other cases.

7. Conclusions and future scopes

The mathematical models of vertical and transverse secondary flow velocities
in the steady and uniform flow through wide rectangular open channels with ele-
vated periodic bed-forms have been proposed in this study. An absolute analyti-
cal solution of secondary flow velocities and associated stream functions observed
through solving generalized governing equation (RANS equation and continuity
equation) unlike the previously proposed empirical and semi-empirical models.
The findings of this study are more general concerning all previously proposed
models. The following conclusions are drawn from this study:

1. The governing equations are solved by using a mathematical approach
and analytical solutions are obtained for different bedforms. At the very
beginning, the problem is cleaved into two separate sub-problems by using
the concept of linear estimation and highlighting the bed perturbation
effect. The models contain the effect of fluid viscosity and eddy viscosity of
turbulence. This suggests that these models can be applied for flows other
than the water and can also be modified for sediment mixed flows where
the spatial variation of density exists.

2. All models are validated with existing experimental data and compared
to the previously proposed empirical models. The validation of the results
shows that the proposed models are comparable with subsisting models
and in some cases (can be observed from the error table) provide more
accurate results in forecasting the perpendicular and transverse direction
secondary velocity components.

3. From the analysis of the results of case S50, it is found that the circulation
center changes significantly with the ratio of the length of the rough bed to
the smooth bed. A least square model is proposed to calculate the location
of its center of it.

4. Like previous findings, in this study it is also found that for unequal bed
forms, secondary cells are being distorted laterally and for a WR-type bed
structure (as given in [5]), these circular cells are distorted vertically.
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5. Also from three bed configurations (S75, S50 and WR) other types of beds
are considered here with elevated bedforms. It has been found that no
significant vertical distortion is observed for the parabolic-type bedforms
for the chosen specific bed height; whereas secondary cells are vertically
distorted for triangular-type bedforms.

Till now the structure of secondary cells in the elevated wavy bed conditions are
available in the literature. This study gives an idea of the structure of secondary
flow cells in the other kind of elevated bed forms that can be seen in nature.
The present study gives a least square model which shows how the circulation
center shifts. This result can be used when some experiment regarding secondary
current is performed. Furthermore, the models of secondary current can be used
to study the lateral distribution of shear stress. Since the study of [34] shows
that the lateral shear stress distribution depends on the secondary flows.

8. Appendix

8.1. Detailed solutions

8.1.1. Circumstantial solution of sub-problem (I). In this section the circumstan-
tial solution of sub-problem (I) is explained. Considering the equation along with
the boundary conditions such as:

(8.1) Σ
∂4R̃1

∂z̃4
+ Ξ

∂4R̃1

∂ỹ2∂z̃2
+ Σ

∂4R̃1

∂ỹ4
= −Φ̃(ỹ, z̃).

The suitable boundary conditions for the sub-problem (I) are

R̃1(z̃ = 0) = 0, R̃1(z̃ = 1) = 0,
∂2R̃1

∂z̃2
(z̃ = 0) = 0,

∂2R̃1

∂z̃2
(z̃ = 1) = 0,

∂R̃1

∂z̃
(z̃ = 1/2) = 0.

From Eq. (3.2) R̃1 can be written in the form of

(8.2) R̃1 = F (z̃)G(ỹ).

Since the F (z̃)G(ỹ) are related to the period of perturbation where F (z̃) repre-
sented the amplitude of perturbation and G(ỹ) be some periodic function rep-
resented as G(ỹ) = cos(πỹ). Substituting it in Eq. (8.1) we get the fourth order
non-homogeneous ordinary differential equation in the form of:

(8.3) F ′′′′(z̃)− Ξπ2

Σ
F ′′(z̃) + π4F (z̃) = −L(1− 2z̃).
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With the existing boundary conditions F (0) = 0, F (1) = 0, F ′′(0) = 0 and
F ′′(1) = 0.

Now we define the associated homogeneous differential equation of the form:

(8.4) F ′′′′(z̃)− Ξπ2

Σ
F ′′(z̃) + π4F (z̃) = 0,

where L = α0απ3

Σ . We know the general solution of Eq. (8.3) is of the form
F = Fc + Fp, where Fc is the complementary solution and Fp is the particular
solution. We assume that the auxiliary equation is of the form by substituting
the exact solution of the form Fc(z̃) = e(mz̃) in Eq. (8.4) we get the auxiliary
equation of the form:

(8.5) m4 − Ξπ2

Σ
m2 + π4 = 0.

Roots of m ' ±λ1i where λ1 = π

√
|Ξ|
2Σ . Hence the complementary solution is

written in the form of:

(8.6) Fc(z̃) = C1 cos(z̃) + C3 sin(z̃) + z̃[C2 cos(z̃) + C4 sin(z̃)].

To find the particular solution we apply the undetermined coefficient method
which leads the form of the undetermined coefficient set {z̃, 1}, hence

(8.7) Fp(z̃) = A1z̃ +B1.

Substituting Eq. (8.7) in Eq. (8.3) we get the constants A1 and B1 in the form

A1 =
2L

π4
, B1 = − L

π4
.

Hence, the final solution of Eq. (8.3) is expressed as:

(8.8) F = C1 cos(z̃) + C3 sin(z̃) + z̃[C2 cos(z̃) + C4 sin(z̃)] +
L

π4
(2z̃ − 1).

Applying the suitable boundary conditions and determining all the constant
values finally we get the solution in the form of:

(8.9) F =
L

π4

[
cos(λ1z̃)− C∗∗

sin(λ1z̃)

sinλ1
+ z̃

[
C∗ cos(λ1z̃) +

λ1

2
sin(λ1z̃)

]]
,

where

C∗ =

(
2λ1 − λ1 sin2(λ1/2) +

λ2
1

4 sinλ1 − 4 sin(λ1/2)

λ1 cosλ1 − sinλ1 − λ1 sin2(λ1/2)

)
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and
C∗∗ = 2 cos2(λ1/2) + λ1/2 sin(λ1/2)− C∗ cos(λ1).

Again final solution of r̃1 can be obtained as

(8.10) R̃1 = λ∗
L

π4
cos(πỹ)

×
[
cos(λ1z̃)− C∗∗

sin(λ1z̃)

sinλ1
+ z̃

[
C∗ cos(λ1z̃) +

λ1

2
sin(λ1z̃)

]]
.

8.1.2. Circumstantial solution of sub-problem (II). In [26] the detailed solution
of the sub-problem (II) has already been shown. Therefore, the final solution of
the above problem (II) for R̃0(ỹ, z̃) is expressed considering the real part as

(8.11) R̃0 =

∞∑
n=1

Cn sin(nπz̃) cos(nπỹ).

Hence, the vertical velocity component of the secondary flow can be written as

r̃ = C1 sin(πz̃) cos(πỹ)(8.12)

+
Lλ∗
π4

cos(πỹ)

[
cos(λ1z̃)−

sin(λ1z̃)

sinλ1

[
2 cos2

(
λ1

2

)
+
λ1

2
sinλ1

− cosλ1

(
2λ1 − λ1 sin2(λ1/2) +

λ2
1

4 sinλ1 − 4 sin(λ1/2)

λ1 cosλ1 − sinλ1 − λ1 sin2(λ1/2)

)]
+ z̃

[
cos(λ1z̃)

(
2λ1 − λ1 sin2(λ1/2) +

λ2
1

4 sinλ1 − 4 sin(λ1/2)

λ1 cosλ1 − sinλ1 − λ1 sin2(λ1/2)

)
+
λ1

2
sin(λ1z̃)

]
+ (2z̃ − 1)

]
.

On the onset of instability [26, 35] the value of n = 1 is taken. To find the
constant C1, the boundary condition r̃||ỹ|=1, z̃=1/2 = R̃max is substituted into
Eq. (8.12) which gives

(8.13) C1 = −R̃max

− λ∗L

π4

[
1

2

(
1 + 3 cos2(λ1/2)

cosλ1/2

)(
2λ1 − λ1 sin2(λ1/2) +

λ2
1

4 sinλ1 − 4 sin(λ1/2)

λ1 cosλ1 − sinλ1 − λ1 sin2(λ1/2)

)
− λ1

4
sinλ1/2

]
.
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Hence, the final solution for the vertical velocity component can be expressed
as:

r̃ =

[
−R̃max −

λ∗L

π4

[
1

2

(
1 + 3 cos2(λ1/2)

cosλ1/2

)
(8.14)

×
(

2λ1 − λ1 sin2(λ1/2) +
λ2

1
4 sinλ1 − 4 sin(λ1/2)

λ1 cosλ1 − sinλ1 − λ1 sin2(λ1/2)

)
− λ1

4
sinλ1/2

]]
sin(πz̃) cos(πỹ)

+
Lλ∗
π4

cos(πỹ)

[
cos(λ1z̃)−

sin(λ1z̃)

sinλ1

[
2 cos2

(
λ1

2

)
+
λ1

2
sinλ1

− cosλ1

(
2λ1 − λ1 sin2(λ1/2) +

λ2
1

4 sinλ1 − 4 sin(λ1/2)

λ1 cosλ1 − sinλ1 − λ1 sin2(λ1/2)

)]
+ z̃

[
cos(λ1z̃)

(
2λ1 − λ1 sin2(λ1/2) +

λ2
1

4 sinλ1 − 4 sin(λ1/2)

λ1 cosλ1 − sinλ1 − λ1 sin2(λ1/2)

)
+
λ1

2
sin(λ1z̃)

]
+ (2z̃ − 1)

]
.

Similarly the transverse velocity component can be expressed as:

(8.15) q̃ = −
[
−R̃max−

λ∗L

π4

[
1

2

(
1+3 cos2(λ1/2)

cosλ1/2

)
×
(

2λ1−λ1 sin2(λ1/2)+
λ2

1
4 sinλ1−4 sin(λ1/2)

λ1 cosλ1−sinλ1−λ1 sin2(λ1/2)

)
−λ1

4
sinλ1/2

]]
cos(πz̃) sin(πỹ)

−λ∗L sin(πỹ)

π5

[
−λ1 sin(λ1z̃)−

λ1 cos(λ1z̃)

sinλ1

[
2 cos2

(
λ1

2

)
+
λ1

2
sinλ1

−cosλ1

(
2λ1−λ1 sin2(λ1/2)+

λ2
1

4 sinλ1−4 sin(λ1/2)

λ1 cosλ1−sinλ1−λ1 sin2(λ1/2)

)]
+z̃

[
−λ1 sin(λ1z̃)

(
2λ1−λ1 sin2(λ1/2)+

λ2
1

4 sinλ1−4 sin(λ1/2)

λ1 cosλ1−sinλ1−λ1 sin2(λ1/2)

)
+
λ2

1

2
cos(λ1z̃)

]
+

[
cos(λ1z̃)

(
2λ1−λ1 sin2(λ1/2)+

λ2
1

4 sinλ1−4 sin(λ1/2)

λ1 cosλ1−sinλ1−λ1 sin2(λ1/2)

)
+
λ1

2
sin(λ1z̃)

]
+2

]
.
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8.1.3. Calculation of sub-problem (II) following discussion. In [27] already shown
the method of finding the solution for the detailed solution of this type of a prob-
lem. Apart from this by using the new boundary conditions of Eq. (6.1) we get
R̃0 as:

(8.16) R̃0 = C1
sin(0.5− ỹ)χ1

sin(0.5χ1)
sin

(
πz̃

2L∗

)
.

Hence the final solution of vertical velocity component is going to be in the form
of:

r̃ = C1 sin

(
πz̃

2L∗

)
cos(1/2− ỹ + π/2)χ1

sin χ1

2

(8.17)

+ λ∗
L

π4
cos(πỹ)

[
cos(λ1z̃)− C∗∗

sin(λ1z̃)

sinλ1

+ z̃

[
C∗ cos(λ1z̃) +

λ1

2
sin(λ1z̃)

]
+ (2z̃ − 1)

]
.

Now applying the boundary conditions r̃||ỹ|=1, z̃=L∗ = R̃max. The constant term
C1 is in the form of:

(8.18) C1 = −R̃max −
Lλ∗
π4

[
cosλ1L∗ − C∗∗

sinλ1L∗
sinλ1

+ L∗

[
C∗ cosλ1L∗ +

λ1

2
sinλ1L∗

]
+ (2L∗ − 1)

]
.

Finally, from the continuity equation the transverse velocity component has been
calculated as following:

(8.19) q̃ = −
∫
∂r̃

∂z̃
dỹ

and we get

q̃ = − C1π

2L∗
cos

(
πz̃

2L∗

)
sin(1/2− ỹ + π/2)χ1

χ1 sin χ1

2

(8.20)

− λ∗L sin(πỹ)

π5

[
−λ1 sin(λ1z̃)−

λ1 cos(λ1z̃)

sinλ1
C∗∗

+ z̃

[
−λ1 sin(λ1z̃)C∗ +

λ2
1

2
cos(λ1z̃)

]
+

[
C∗ cos(λ1z̃) +

λ1

2
sin(λ1z̃)

]
+ 2

]
.

For further study the interested person can go through with the above calcula-
tions which shows other elevated and non-elevated channel cases.
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