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We analyse the accuracy of a deconvolution (inverse filtering) method in 1D
and 2D periodic domains. The deconvolution is performed by applying the iterative
van Cittert method using explicit and compact filters of the 2nd to 8th order. We
consider cases in which an approximate inverse filter G−1

a formulated to deconvolve
an original function from a filtered one (f = G∗f) is constructed based on: (a) G the
same as used to define f = G∗f ; (b) G different than the one used to define f = G∗f .
In case (a), the convergence rate of the deconvolution process is much better when
compact filters are used. This is attributed to a flatter transfer function of this type
of filter and thus a smaller deterioration of the input function f . Case (b) reflects
a real situation in which the precise definition of a basic filter G used in f = G ∗ f
is unknown. We found that when G−1

a is formulated based on G of a higher order
than the one used to define f the reconstructed function f∗ = G−1

a ∗ f is suppressed
compared to the original function f . On the other hand, the deconvolution process
performed with the use of G−1

a defined based on G of a lower order than the order
of the basic filter significantly amplifies the reconstructed function f∗. As a result,
the function f∗ contains more energy than the function f , especially in the range of
small and high-frequency scales. This effect is particularly strong when explicit filters
of different orders are used. The impact of the filter type in the practical application
of deconvolution is demonstrated based on large eddy simulations (LES) of a 2D de-
caying homogenous turbulent flow. LES combined with an approximate deconvolution
method (ADM) for the computation of sub-filter terms shows better accuracy than
in the case when these terms are modelled using the classical Smagorinsky model or
when they are neglected (no-model approach). This analysis consists of comparisons
of the evolution of total energy, energy spectra, and higher-order moments (variance,
skewness, kurtosis) of the velocity components and vorticity. We found that more
accurate results are obtained when the deconvolution is performed using the explicit
filters even if the deconvolution process based on the compact filters was found to con-
verge faster in 1D and 2D test cases. Most likely this is because in the performed LES
the explicit filters correspond better to an unknown filter induced by discretisation.
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1. Introduction

Filtering is commonly used in data acquisition and digital signal pro-
cessing. It is applied purposely to extract features from a signal distorted during
its processing (measurement noise) and/or is implicitly introduced by a limited
range of operation of measurement tools. The filtering can be applied to both
continuous and discrete signals in both time and spatial domains. From a the-
oretical point of view, defining a general variable t representing time or space,
the filtering in a 1D domain is defined by the convolution operation

(1.1) f(t) = f(t) ∗G(t) =

∞∫
−∞

f(τ)G(t− τ) dτ,

where f(t) is an input signal, G(t) is a filter kernel function, shortly referred
to as filter, and f(t) is an output signal. In the frequency domain ω, this op-
eration is equivalent to the multiplication of Fourier transforms of the signal
f̂(ω) = F [f(t)] and the filter function Ĝ(ω) = F [G(t)]. Thus, one can write

(1.2) F [f(t)] = f̂(ω)Ĝ(ω), f(t) ∗G(t) = F−1[f̂(ω)Ĝ(ω)],

where F [·] and F−1[·] stand for the Fourier transform and its inverse; Ĝ(ω) is
called the transfer function [1] and the knowledge of it allows examining the
impact of the filter in the frequency domain. The process inverse to filtering is
deconvolution, also called inverse filtering. Assuming that the recorded signal
f(t) is the result of the filtering process, deconvolution allows obtaining a ‘clean’
original signal f(t). The deconvolution operation is defined as the reciprocal of
the convolution operation (1.1) and relies on the determination of f(t) based on
G(t) and a given f(t). The accuracy of this process depends on the knowledge
of G(t) and the correctness of computing its inverse G−1(t).

The deconvolution methods have numerous applications in various fields. In
radio astronomy, deconvolution is used to describe solar distributions of bright-
ness temperature, distributions of cosmic noise, or aerial smoothing [2]. In spec-
troscopy, it has been applied to describe the blur of optical spectra [3–5], X-ray
spectra [6–8] and infrared spectra [9, 10]. In scanning electron microscopy (SEM),
deconvolution is used to post-process images to remove blurs caused by the ex-
istence of a finite electron-beam size. Yano et al. [11] applied deconvolution
to reconstruct high spatial frequency information which has been lost due to
the size of the electron beam. They showed that this method can be combined
with all material analysis techniques where the beam size determines the in-
strumental resolution, e.g., scanning transmission electron microscopy (STEM),
auger electron spectroscopy (AES), or secondary ion mass spectroscopy (SIMS).
Deconvolution is also an excellent tool for increasing the resolution of an elec-
tron probe [12] and has been successfully applied to deconvolve real electron



Attenuating and enhancing properties. . . 109

microprobe data in diffusion tests [13]. In digital image processing, the decon-
volution methods are widely used to restore blurred images [14] and can be
combined with machine learning methods [15]. Kawata and Ichioka [16, 17]
proposed an iterative image-restoration method to solve systems of linear equa-
tions occurring in a linear imaging model. Deconvolution finds applications in
reconstructing tomography images from radiographic projections in Computer
Tomography (CT) [18, 19]. CT image reconstruction methods include a filtered-
back-projection (FBP) algorithm, back-project-filter (BPF) and a recovery strat-
egy based on Fourier’s theorem. A high spatial resolution and low-noise image-
domain BPF reconstruction method can be obtained by applying deep learning
techniques [20–22]. The so-called blind deconvolution approach in which neither
the filter operator nor the input signal is known [23] finds applications in im-
age processing [24, 25], tomography [26], ultrasound imaging [27–30], magnetic
resonance imaging [31], remote sensing imaging [32], acoustics, where the sig-
nal is usually distorted by an unknown filter function, acoustic rooms for echos
and reverberation cancellation, speech processing system identification [33], or
restoring old acoustic recordings [34]. The deconvolution of acoustic emission sig-
nals can also be used for damage identification in composites [35], for instance,
in reinforced concrete bridge slab [36]. Moreover, blind seismic deconvolution
is an important tool in seismography based on the recovery of the reflectivity
sequence from the seismic records when the seismic wave is unknown [37–39].
Wu et al. [40] used this technique to describe a stochastic behaviour of seis-
mic reflection coefficients, and more recently, Lary et al. [41] proposed a new
non-stationary blind deconvolution of seismic records. In telecommunications,
Castaldi et al. [42] used blind estimation and deconvolution of communica-
tion channels with unbalanced noise. Recently, Cang et al. [43] have applied
blind deconvolution for underwater acoustic channels using wide-band integrated
dictionaries.

Deconvolution methods are also commonly used in computational fluid dy-
namics to recover small turbulent flow scales [44]. Their accurate representation
in numerical simulations is precluded by a computational mesh on which the
minimum length of resolved flow structures is limited by the Nyquist theorem
and filtering. Regarding filtering, in general, there are two sources. The first one
is an explicit filtering of variables by a known filter during a solution proce-
dure [45–47]. The second is an implicit filtering induced by discretisation of the
flow governing equations (Navier–Stokes equations, species transport equations,
energy transport equation, etc.) by applying finite difference or finite volume
type methods [48, 49]. With filtering, the so-called sub-filter term arises [48],
which affects mainly the smallest flow scales resolved on a given computational
mesh. To model the sub-filter scales in the large eddy simulation (LES), Stolz
and Adams [50] proposed the approximate deconvolution method (ADM) based
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on an iterative van Cittert deconvolution that is also the main deconvolution
tool in this paper. In this approach, the approximate inverse f∗(t) of the filtered
function f(t) is calculated using the series of ν terms defined as

(1.3) f∗(t) =
ν∑

n=0

(I −G(t))nf(t).

ADM quickly gained popularity in LES and has been used in various applica-
tions, e.g., in modelling of near-wall turbulent boundary layers [51–54], com-
pressible flows with shock boundary layer interaction [55–57], decaying isotropic
turbulence [58, 59, 61], large-scale ocean circulation [62, 63], and atmospheric
boundary layer [64–66]. In reactive flows, ADM was used in the reconstruc-
tion of small-scale variations of species and enthalpy to model chemical source
terms [67–69]. ADM has been also applied in the time domain [70], and to formu-
late the boundary conditions [71] and a relaxation term model [53, 72] replacing
classical LES sub-grid models.

The above review shows that deconvolution methods play a very impor-
tant role in data analysis and numerical simulations. In this paper, we focus
on analysing the deconvolution method with implications for the blind deconvo-
lution approach, which in practice seems to have more applications. In reality,
except for the explicitly defined filter functions, the precise form of G(t) is not
known, and, moreover, it can be a conglomerate of different filter sources, as
shown in Fig. 1. The original signal can be biased by external disturbances, the
presence of measurement probes, the noise of experimental apparatus, or errors
caused by a limited sampling frequency. These factors can distort the original
signal in a broadband or narrow frequency range ω, by either amplifying or
damping the signal at a given ω. They can be grouped in the function G(t),
not necessarily meaning the filter function in a general sense. We focus on the
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Fig. 1. Schematic representation of the filtering and deconvolution process.
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accuracy of the deconvolution operation of f(t) by constructing the inverse op-
erators G−1

a (t) to G(t) using the ADM based on the explicit and compact Padé
filtering methods. We analyse the convergence of ADM, i.e., f∗(t)→ f(t), in the
function of ν terms in (1.3) in two cases. At first, we consider G−1

a (t) constructed
on the corresponding G(t) function. Dunca and Lewandowski [73] performed
a theoretical analysis of ADM formulated for Helmholtz and Gaussian filters with
the application to LES in a 3D periodic domain. It was shown that in some cases
the number of terms ν needed to significantly reduce the error ε = f∗(t)−f(t) is
so large that the van Cittert deconvolution seems not suitable for practical appli-
cations. As they concluded, their results were in contradiction with the findings
of Stolz et al. [51], who claimed that only a few terms in (1.3) are sufficient to
quickly decrease ε and thus properly reconstruct sub-filter scales. Next, we inves-
tigate what happens with the deconvolved signal, f∗(t) in Fig. 1, when G−1

a (t)
is formulated based on G(t) different than that used to obtain f(t). Unlike the
theoretical analysis presented in [73], the present investigations are carried out
for explicitly defined test functions of various complexity in 1D and 2D periodic
domains. Finally, we analyse the accuracy of LES-ADM with various filters for
modelling a 2D decaying turbulent field. The simulations are carried out using
a high-order numerical code based on the 6th-order compact difference spatial
discretisation and the 4th-order Runge–Kutta method for time integration. We
compare energy spectra, temporal evolutions of turbulent kinetic energy (TKE),
variance, and higher-order moments (skewness and kurtosis) of the velocity and
vorticity fields. A sensitivity analysis of LES-ADM to the filter type was previ-
ously presented in [59] for 2D and 3D Taylor–Green flow employing a low-order
discretisation method, and also for 1D Burgers equation [60]. The comparisons
were made mainly for the TKE evolutions and revealed a strong dependence
of the simulation accuracy on the choice of the filter type and its parameters.
Although a clear superiority of one filter type over the other was not evidenced,
it was suggested that the compact Padé filters ensure the best solutions.

2. Basic definitions

The deconvolution operation does not have a strict definition, constitutes an
ill-conditioned inverse problem, and in some cases is not unique [74]. Namely, if
f1(t) is a solution to the deconvolution problem, then f2(t) = f1(t) + η(t) is also
the solution, where η(t) satisfies the homogeneous equation [75]

(2.1)
∞∫
−∞

η(τ)G(t− τ) dτ = 0.
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The ill-conditioning of the deconvolution means that small perturbations of the
output signal f(t) or errors in defining the filter lead to large perturbations
in f(t). Therefore, the noisy data or inaccurate determination of the inverse
filter can provide a significantly different solution than the real one. One of
the most powerful tools used in solving inverse problems is the regularisation
method, which consists in finding an approximate solution that fulfils additional
constraints resulting from the physics of the problem [76].

In real applications, the continuous signal is discretised so that the continuous
variable f(t) and the filter function G(t) are known only in discrete points i.
Thus, Eq. (1.1) can be expressed as

(2.2) f i =
∑
j

Gi−jfj ,

which in the matrix form reads as

(2.3) f = Gf ,

where f and f are the column vectors and G is the square matrix whose sin-
gularity or ill-conditioning [77] precludes the accurate calculation of the inverse
filter by the simple inversion of the G matrix. A remedy for this problem is it-
erative methods [9, 10, 78–80] involving relaxation and optimisation techniques.
In this paper, we compute G−1 using an approximate deconvolution method
introduced by van Cittert [3] and Burger and van Cittert [4] based on an
iterative convolution of the filter G and f . The output signal f is taken as the
initial approximation f∗0 of the input signal f , and subsequent approximations
f∗n are obtained by adding the correction term being the difference between f
and its approximation fn−1 = Gf∗n−1 to the previous iteration. Writing these
steps as:

(2.4)

f∗0 = f ,

f∗1 = f∗0 + [f −Gf∗0 ],

f∗n = f∗n−1 + [f −Gf∗n−1],

and continuing for the next ν iterations leads to the general form given as

(2.5) f∗ν =
{
I + [I−G] + [I−G]2 + · · ·+ [I−G]ν

}
f =

ν∑
n=0

[I−G]nf ,

where I is the identity matrix. Thus, the expression

(2.6)
{
I + [I−G] + [I−G]2 + · · ·+ [I−G]ν

}
=

ν∑
n=0

[I−G]n = G−1
a



Attenuating and enhancing properties. . . 113

corresponds to an approximate inverse filter, G−1
a ≈ G−1. For all filters analysed

in this paper the series (2.6) satisfies the convergence criterion |I−G| < 1 [2, 81]
and for ν → ∞ it converges such that G−1

a → G−1. The van Cittert method
is characterised by a noise amplification that increases linearly with the num-
ber of iterations. To overcome this problem, Parruck and Riad [82] developed
an optimisation procedure that minimises the noise content while maintaining
deconvolution accuracy. Bennia and Riad [83] managed to optimise the num-
ber of iterations required to achieve an acceptable solution at minimum noise
influence.

3. Filter definition

We analyse a 1D periodic domain [0, L] consisting of K uniformly distributed
nodes with spacings h = L/K, i.e., xi = h(i − 1) are i = 1, . . . ,K coordinates
of the nodes. The domain [0, L] can be regarded as a time or spatial axis. The
formulas derived for the 1D domain can be directly applied to 2D and 3D cases
along separate lines in particular directions. First, we consider the explicit finite
difference (FD) filtering schemes that are most commonly found in the literature.
A general formula for the FD filter can be written as

(3.1) fi =
1

2

N∑
j=0

bj(fi+j + fi−j),

where fi are the filtered values at nodes, xi and fi are the known discrete func-
tion values and bj , j = 1, . . . , N , are the filter coefficients. The main feature of
explicit filters is that the filtered value is defined only by the unfiltered quanti-
ties fi±j existing in the neighbouring nodes. The implicit filters are additionally
constructed based on the filtered values such as f i±k. Following Lele [84], the
implicit compact difference filters (CD) can be represented by the following gen-
eral formula

(3.2) f i +
M∑
k=1

ak(f i+k + f i−k) =
1

2

N∑
j=0

bj(fi+j + fi−j).

It should be noted that an explicit filter is a special case of a compact filter
when M = 0. The procedure for determining the filter coefficients is presented
in subsection 3.1. Writing (3.2) for all grid points leads to a linear system of
equations, which in the matrix notation has the following form

(3.3) Af =
1

2
Bf → f =

1

2
A−1B︸ ︷︷ ︸
G

f ,
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where f and f are the vectors of dimensions K × 1 containing the values of the
filtered function f i in nodes xi, and the values of the function fi in these nodes,
respectively, A and B are the sparse band matrices of the dimension K × K
composed by the filter coefficients ak and bj . For instance, with M = 2 and
N = 2, the matrices corresponding to Eq. (3.2) have the form:

(3.4)

A =



1 a1 a2 0 . . . . . . 0 a2 a1

a1 1 a1 a2 0 . . . . . . 0 a2

a2 a1 1 a1 a2 0 . . . . . . 0
0 a2 a1 1 a1 a2 0 . . . . . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . . . . .

. . . . . . 0 a2 a1 1 a1 a2 0
0 . . . . . . 0 a2 a1 1 a1 a2

a2 0 . . . . . . 0 a2 a1 1 a1

a1 a2 0 . . . . . . 0 a2 a1 1


, B =



2b0 b1 b2 0 . . . . . . 0 b2 b1
b1 2b0 b1 b2 0 . . . . . . 0 b2
b2 b1 2b0 b1 b2 0 . . . . . . 0
0 b2 b1 2b0 b1 b2 0 . . . . . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . . . . .

. . . . . . 0 b2 b1 2b0 b1 b2 0
0 . . . . . . 0 b2 b1 2b0 b1 b2
b2 0 . . . . . . 0 b2 b1 2b0 b1
b1 b2 0 . . . . . . 0 b2 b1 2b0


.

The filter matrix operator G is then defined as G = 1
2A
−1B. In the case of the

explicit filters, the matrix A = I and in this case Eq. (3.1) would have the form
f = 1

2Bf with G = 1
2B.

3.1. Derivation of the filtering coefficients

FD filters are a special case of the CD filter with M = 0 in (3.2). In periodic
domains, the filter formulas (3.2) are symmetric with respect to the i-node. Each
filter has an associated transfer function Ĝ(ω) representing the filtering in the
Fourier space. It is defined as

(3.5) Ĝ(ω) =

∑N
j=0 bj cos(jω)

1 + 2
∑M

k=1 ak cos(kω)
,

where ω is the scaled wavenumber in the range [0, π] [1, 84]. Its discrete values
are ωn = n2π/K with n = 0, 1, . . . ,K/2. The transfer function Ĝ(ω) is real,
which means that the filter modifies the amplitude of f without affecting its
phase [85]. Expansions of fi±j and f i±k in (3.2) into the Taylor series define
non-zero terms of 2n-th order

M2n(xi) =

N∑
j=0

(jh)2n

(2n)!
bj − 2

M∑
k=1

(kh)2n

(2n)!
ak.

The filter coefficients are derived based on the conditions put on Ĝ(ω)
andM2n(xi). First, we require that the filter does not modify a constant value
function f = const, nor a constant component of its spectrum f̂(ω = 0). Assum-
ing the truncation error of the Taylor series expansion of the order 2N (O(h)2N )
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leads to N − 1 equations forM2n(xi) = 0. The shortest wavelength that can be
represented on a mesh composed of K nodes is determined by the Nyquist fre-
quency corresponding to the mode n = K/2 that translates to ω = π. As in [84]
we assume that the filter excludes f̂(ω) occurring at ω = π that is obtained with
Ĝ(π) = 0. Note that with the definition (3.5) the condition dĜ/dω|ω=π = 0 also
holds automatically. The above conditions lead to a system of linear equations
in the form

(3.6)



Ĝ(0) = 1 →
N∑
j=0

bj − 2

M∑
k=1

ak = 1,

M2n(xi) = 0 →
N∑
j=0

j2nbj − 2
M∑
k=1

k2nak = 0 for n = 1, . . . , N − 1,

Ĝ(π) = 0 →
N∑
j=0

(−1)jbj = 0,

which is a generalisation of the formulas presented in [84]. Note that the condition
Ĝ(0) = 1 is equivalent toM0(xi) = 1 in the physical space. The solution of the
system (3.6) provides a family of 2N order filters with M parameters ak. As
discussed in [84] they can be used to tune the shape of the transfer function at
ω → π, e.g., by a constraint d2Ĝ/dω2 = 0 or at a specific wave number ω by
requiring that Ĝ(ω) equals to an assumed value. Details of various filters can be
found in [84] along with detailed expressions of their truncation errors. In this
paper, we employ the filters up to the 8th order defined through the coefficients
specified in Table 1. The p-values denote the order of the filter O(hp). In the
case of CD filters, we consider a one-parameter family for M = 1 and M = 2
with a varying coefficient a1. Its value changes the shape of the transfer function

Table 1. Coefficients of the explicit finite difference (FD) and compact difference (CD)
filters defined through (3.2).

Filter M N p a2 b0 b1 b2 b3 b4

FD2 0 1 2 − 1
2

1
2

− − −
FD4 0 2 4 − 5

8
1
2

− 1
8

− −
FD6 0 3 6 − 11

16
15
32

− 3
16

1
32

−
FD8 0 4 8 − 93

128
7
16

− 7
32

1
16

− 1
128

CD2 1 1 2 − 1
2

+ a1
1
2

+ a1 − − −
CD4 1 2 4 − 5

8
+ ∗ 3

4
a1

1
2

+ a1 − 1
8

+ 1
4
a1 − −

CD6 1 3 6 − 11
16

+ 5
8
a1

15
32

+ 17
16
a1 − 3

16
+ 3

8
a1

1
32
− 1

16
a1 −

CD8 2 3 8 3
10
− 1

5
a1

1
2

+ 3
4
a1

3
4

+ 7
8
a1

3
10

+ 1
20
a1

1
20
− 3

40
a1 −
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but not the order of the filter. We compare the filtering and deconvolution with
a1 = 0.25, 0.4, 0.475. The transfer functions of 2nd, 4th and 6th order explicit
filters and a 4th order compact filter with different a1 are shown in Fig. 2a. The
straight horizontal line denotes the reference level (‘no-filtering’) corresponding
to f = f in (2.3). It can be seen that the increase of the filter order or a1 causes
the rise of Ĝ(ω) at a higher frequency range. Note that Ĝ(ω) of the 4th order
filter CD4 (M = 1, N = 2) with a1 = 0.25 has a similar shape as the 6th order
explicit filter FD6 (M = 0, N = 3). Figure 2b presents the transfer functions of
CD filters with M = 1 and M = 2 with the coefficient a1 = 0.4 and varying N .
It is worth noticing that for M = 1 the lower the order of the filter the more
intense the filtering effect is in the range ω > π/2. For M = 2 the situation is
not so clear and these filters are characterised by Ĝ(ω) which becomes steeper
when the order of the filter increases (N = 2→ 4). For instance, the filter with
M = 2, N = 2 for ω < 1.7 is more aggressive than the filter based on M = 2,
N = 4, but for ω > 1.7 the situation is opposite.
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Fig. 2. Transfer functions of the selected explicit and compact filters with varying a1 (a)
and of the different compact filters with a1 = 0.4 (b).

4. Results

In this section, we first analyse the convergence of the van Cittert approx-
imate deconvolution method for the explicit and compact filters of various or-
ders for filtered 1D analytical functions. Next, we focus on the deconvolution in
1D and 2D cases for the cases in which the approximate inverse filter is con-
structed based on a filter different than that used to prepare the filtered test
functions.
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4.1. 1D case

The one-dimensional test function has a simple form of K sinusoidal waves

(4.1) f(xi) =
K∑
k=1

sin (k · xi + ϕ) ,

where xi = (i − 1)h, i is the index of N = 64 sampling points (nodes), h =
2π/N is the space between them and ϕ is a random phase. We consider three
test functions, f1 with a moderate range of frequencies (K = N/2 − 16), f2

containing K = N/2 − 1 modes, and the function f3 that extends up to the
Nyquist frequency K = N/2. All modes of the f function given by the formula
(4.1) have the same constant amplitude equal to one. This is a ‘difficult’ situation
created artificially to determine the accuracy of deconvolution. In practice, the
amplitude of particular modes decreases with increasing K, because the high-
frequency components are related to the small-scale low-amplitude phenomena.
The functions f1, f2 and f3 are shown in Fig. 3. It can be seen that the function f1

is smooth compared to the functions f2 and f3 and this has a direct implication
on their filtered counterparts f = G∗f . The right vertical axis in Fig. 3 shows the
absolute values of the local differences between the original and filtered functions
|f−G∗f | calculated using the 4th order explicit filter and the 4th order compact
filter with a1 = 0.4 defined in Table 1. In the case of the smoother function (f1),
these differences are small, whereas in the cases with the functions f2 and f3,
they reach values comparable with the function values. In the next section, we
analyse how the complexity of the function affects the deconvolution process.

4.1.1. Assessment of the accuracy of the deconvolution in the physical and spectral
space. We define the error between the original and deconvolved functions as:

E = f − f∗ = f −G−1
a ∗ (G ∗ f)(4.2)

= (I −G−1
a ∗G)︸ ︷︷ ︸
R

∗f.

From Fig. 2 one may easily infer that G−1
a ∗G at low ω must be close to identity,

hence, the term R acts as a high-pass filter. In the LES-ADM approach formu-
lated in [51], the term R constitutes the main part of the relaxation source term
in the Navier–Stokes equations. It replaces a classical sub-grid model but plays
essentially the same role. It causes energy damping at small scales that stabilises
the solution. The term R and its Fourier transform can be written as:

(4.3) R = I −G−1
a ∗G = (I −G)ν+1; F [R] = R̂(ω) = (I − Ĝ(ω))ν+1.
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Fig. 3. Functions f1 (a), f2 (b) and f3 (c) with their filtered counterparts f = G ∗ f
obtained using the 4th order explicit and compact filter with a1 = 0.4. The right vertical axes

show the modulus of differences between the original and filtered functions |f −G ∗ f |.

The Fourier transform of (4.2) is

(4.4) Ê(ω) = (I − Ĝ(ω))ν+1f̂(ω).

This formula shows that both the filter type and the function shape affect the
deconvolution error. For low-order filters with Ĝ(ω) acting over a wide range of
ω where f̂(ω) are non-zero, the deconvolution process requires a large number of
iterations. This is why in [73] it was concluded that for functions with f̂(ω) large
in the range ω → π, a few iterations will not suffice, as often suggested based
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on test functions containing only low-frequency modes. In particular, Eq. (4.4)
shows that the deconvolution process will never converge for the filters with
Ĝ(π) = 0 when f̂(π) 6= 0. Below we analyse the convergence of G−1

a to G−1 in
the function of ν in the physical space through the L1 norm of the vector of the
nodal error values

(4.5) E = f − f∗ = f −G−1
a (Gf),

where f , f∗ are the vectors of the test function and the function resulting from the
deconvolution. If L1(E)→ 0 this means that G−1

a → G−1 and thus f∗ → f . For
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Fig. 4. Functions f1 (a), f2 (b) and f3 (c) with their deconvolved counterparts
f∗ = G−1[G ∗ f ] obtained by the deconvolution based on the 4th order explicit and compact

filters with a1 = 0.4, for ν = 2 and ν = 100. The solid lines with the symbols show the
absolute values of local errors: |f −G−1[G ∗ f ]|.
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simplicity, the subscript ‘a’ is omitted in the following notation and G−1 should
be always treated as the approximate inverse filter and the subscript denotes
the filter type. For instance, G−1

FD4 and G−1
CD4 stand for the approximate inverse

filters calculated based on the 4th order explicit and compact filters (FD4 and
CD4 defined in Table 1). Figure 4 shows the effect of deconvolution for ν = 2
and ν = 100 applying the 4th order explicit and compact (a1 = 0.4) filters. On
the right vertical axes in Fig. 4, the errors in the particular nodes are shown. It
can be seen that the function f∗1 obtained from the deconvolution coincides well
with the function f1. In this case, the applied approximate inverse filter converges
quite well already for ν = 2. On the contrary, the values of f∗2 and f∗3 for ν = 2
are far from their originals and even for ν = 100, the errors are noticeable.
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Fig. 5. Convergence of the deconvolution process in spectral space for the function f2

applying 2nd (a), 4th (b) and 6th (c) order explicit filter.
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Analysis of the convergence of the series (2.6) in terms of ν is performed in the
spectral space by calculating the Fourier transforms F [f∗] = f̂∗ and comparing
their spectra with F [f ] = f̂ .

Figure 5 shows the convergence process f̂∗ → f̂ for the f2 function. It can
be seen that for small ν, the deconvolution error is large and the amplitudes
of particular modes are largely underestimated, especially in the high-frequency
range. Note that it would be ideal if they all equalled 1 as defined by the test
function. The convergence in terms of ν is asymptotic, which manifests the fact
that for an increasing ν the corresponding lines successively tend to the spec-
trum of the original function. Note that for a smaller value of ν the series (2.6)
converges faster for the higher-order filters. For example, for the 2nd order in-
verse explicit filter (G−1

FD2), an accurate representation of the function f̂∗2 is ob-
tained only if ν is large (ν = 500). For the 4th order and 6th order explicit
filters (G−1

FD4, G
−1
FD6), the error is reduced much faster and f̂∗ approaches to

f̂ well already for ν = 250. Table 2 shows L1(E) for selected ν for all three
test functions. It can be seen that for the smooth function f1 the values of
L1(E) decrease very quickly. For instance, for the filter G−1

FD6 the level of ma-
chine accuracy (O(10−12)) is obtained already for ν = 20. It is worth noticing
that a further increase of ν makes the approximation less accurate and this
is related to the sensitivity of the van Cittert method to the noise at larger
ν values [82, 83]. Figure 6 presents the convergence process f̂∗ → f̂ using the
4th order compact filter (CD4) with the parameter a1 = 0.25, 0.4, 0.475 for
the test function f2. This time a relatively good approximation of the filter
G−1 is observed already for ν = 50. Table 3 shows the values of L1(E) for
the selected ν. For the function f1, we see that f∗1 ≈ f1 already for ν = 10.
When a1 tends to 0.5 the convergence rate increases. A similar behaviour was

Table 2. Detailed values of L1(E) errors calculated based on the deconvolved function
obtained applying the explicit filters.

L1(E1) L1(E2) L1(E3)
ν value

GFD2 GFD6 GFD2 GFD6 GFD2 GFD6

ν = 1 0.14× 102 0.72× 100 0.10× 103 0.77× 102 0.10× 103 0.85× 102

ν = 2 0.65× 101 0.85× 10−1 0.94× 102 0.69× 102 0.98× 102 0.78× 102

ν = 4 0.14× 101 0.13× 10−2 0.81× 102 0.61× 102 0.88× 102 0.69× 102

ν = 10 0.21× 10−1 0.50× 10−8 0.66× 102 0.49× 102 0.75× 102 0.56× 102

ν = 20 0.20× 10−4 0.18× 10−12 0.56× 102 0.39× 102 0.63× 102 0.50× 102

ν = 50 0.32× 10−12 0.30× 10−12 0.42× 102 0.28× 102 0.52× 102 0.44× 102

ν = 100 0.10× 10−11 0.60× 10−12 0.34× 102 0.19× 102 0.47× 102 0.42× 102

ν = 150 0.14× 10−11 0.16× 10−11 0.29× 102 0.13× 102 0.44× 102 0.42× 102

ν = 200 0.16× 10−11 0.18× 10−12 0.25× 102 0.95× 101 0.42× 102 0.42× 102
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Fig. 6. Convergence of the deconvolution process in spectral space for the function f2

applying 4th order compact filter with parameters a1 = 0.25 (a), a1 = 0.4 (b), a1 = 0.475 (c).

observed for the increasing order of the explicit filter (see Table 2). However,
one should notice that the convergence of the deconvolution process is more
dependent on the filter transfer function shape than on the filter order. For in-
stance, comparing the results obtained for the same filter’s order, G−1

FD4 shown
in Fig. 5b and G−1

CD4 in Fig. 6b, the error in the latter case is smaller. In fact,
it is smaller than in the case when the 6th order explicit filter G−1

FD6 is used,
see Fig. 5c. On the other hand, applying the filters of different types and or-
ders G−1

FD6 and G−1
CD4 with a1 = 0.25, but having very similar transfer function

shapes (see Fig. 2) the deconvolution errors are comparable. This is confirmed
in Fig. 5c and Fig. 6a, and also in Tables 2 and 3. The reason for such be-
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Table 3. Detailed values of L1(E) errors calculated based on the deconvolved function
obtained applying the 4th order compact filter with different a1 parameter.

L1(E1) L1(E2) L1(E3)
ν value

a1 = 0.25 a1 = 0.475 a1 = 0.25 a1 = 0.475 a1 = 0.25 a1 = 0.475

ν = 1 0.75× 100 0.73× 10−2 0.73× 102 0.38× 102 0.81× 102 0.50× 102

ν = 2 0.87× 10−1 0.85× 10−4 0.65× 102 0.33× 102 0.74× 102 0.46× 102

ν = 4 0.13× 10−2 0.13× 10−7 0.57× 102 0.26× 102 0.64× 102 0.43× 102

ν = 10 0.50× 10−8 0.78× 10−13 0.45× 102 0.14× 102 0.53× 102 0.42× 102

ν = 20 0.19× 10−12 0.13× 10−12 0.36× 102 0.58× 101 0.48× 102 0.42× 102

ν = 50 0.38× 10−12 0.37× 10−12 0.25× 102 0.36× 100 0.42× 102 0.42× 102

ν = 100 0.91× 10−12 0.85× 10−12 0.15× 102 0.36× 10−2 0.42× 102 0.42× 102

ν = 150 0.15× 10−11 0.13× 10−11 0.95× 101 0.35× 10−4 0.42× 102 0.42× 102

ν = 200 0.20× 10−11 0.19× 10−11 0.58× 101 0.35× 10−6 0.42× 102 0.42× 102

havior is that f obtained by applying the filter with Ĝ(ω) close to one over
a wider range of ω is closer to f . Thus, the initial deconvolution errors are
smaller.

A convergence rate of f̂∗ → f̂ using particular filters is examined in Fig. 7
presenting a log-lin plot of L1(E) normalised by L1 norm of an initial difference
between f and f denoted L1(E0). It can be seen that for f1 and f2 the errors
L1(E)/L1(E0) drop linearly with the slopes dependent on the filter and the
test function. From (4.4) we see that Fourier modes of the error normalized
by their initial values Ê0(ω) = (I − Ĝ(ω))f̂(ω) are Ê(ω)/Ê0(ω) = (I − Ĝ(ω))ν .
Taking log(Ê(ω)/Ê0(ω)) determines the slope of the error drop, which equals to
log (I − Ĝ(ω)) in a log-lin plot. Hence, if (I − Ĝ(ω)) is small that holds for the
filters with a flatter Ĝ(ω) the convergence rate is large. Note that the overall
convergence rate for a given test function results from the summation of the
errors for all non-zero modes f̂(ω). Thus, it is also linear but becomes worse
when the test function contains high-frequency modes, here the function f2.
Figure 7c shows the error drop for the function f3. It can be seen that in this case
L1(E)/L1(E0) stagnates at constant levels. The reason for that is the inability of
the deconvolution process to recover the component of f3 at ω = π, as explained
at the beginning of this section. In terms of ν, the constant error levels are
reached faster and are higher for the filters with a flatter Ĝ(ω). The latter effect
is because in these cases the initial L1(E0) are smaller. The real values of L1(E)
are shown in Tables 2 and 3. It can be seen that regardless of the filter type,
they are the same at the large ν. From the definition of the test function (4.1)
we see that L1(E) =

∑N
i=1 |sin(ϕ)| for ν → ∞. In the next section, we analyse

the deconvolution accuracy in the cases in which the approximate filter G−1 is
computed based on G different than that used to create f .
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Fig. 7. Log-lin plots of the L1(E) error in terms of ν parameter for the functions f1 (a),
f2 (b) using different filters. In subfigure (c) showing L1(E) for the functions f3 the axes are

linear.

4.1.2. Defiltering with a filter different than the basic one. In practice, the filter
(hereinafter referred to as basic) that acts on the input signal is usually unknown.
However, the deconvolution process requires its knowledge. In the previous sec-
tion, it was shown that the van Cittert method quickly converges when the basic
filter characterises Ĝ(ω) ≈ 1 in a possibly the largest range of ω. In this sec-
tion, we analyse the results of the deconvolution when G−1 is computed using
G different than the basic one and thus having different Ĝ(ω) and order. We
compare the cases specified in Table 4 and consider only the function f2 for
which accurate deconvolution requires a substantial number of iterations but is
possible.
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Table 4. Combinations of the basic and inverse filters.

Explicit filters Compact filters with a1 = 0.4

Filtering Deconvolution Filtering Deconvolution

f2 = GFD4f2 f∗2 = G−1
FD2[GFD4f2] f2 = GCD4f2 f∗2 = G−1

CD2[GCD4f2]

f2 = GFD6f2 f∗2 = G−1
FD2[GFD6f2] f2 = GCD6f2 f∗2 = G−1

CD2[GCD6f2]

f2 = GFD8f2 f∗2 = G−1
FD2[GFD8f2] f2 = GCD8f2 f∗2 = G−1

CD2[GCD8f2]

f∗2 = G−1
FD4[GFD2f2] f∗2 = G−1

CD4[GCD2f2]

f2 = GFD2f2 f∗2 = G−1
FD6[GFD2f2] f2 = GCD2f2 f∗2 = G−1

CD6[GCD2f2]

f∗2 = G−1
FD8[GFD2f2] f∗2 = G−1

CD8[GCD2f2]
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Fig. 8. Comparison of the function f2 and its deconvolved counterpart f∗2 obtained using the
explicit and compact filters different than the basic one for ν = 2, 100 (a, b) and ν = 200 (c).
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Fig. 9. L1(E) for the function f2 computed applying various combinations of FD (a) and
CD (b) filters.

Figure 8 shows the results of the deconvolution performed with the filters
GFD2, GFD4 and GCD2, GCD4. It can be clearly seen that the deconvolved
function f∗ differs from f , and surprisingly, in some cases, the discrepancies are
more pronounced when ν is large. Both the explicit and compact filters show
the same tendency, yet, in the latter case, the error of the deconvolution seems
smaller. Its detailed comparisons are presented in Fig. 9 along with the colour
lines showing L1(f − f). Note that these lines are independent of ν and represent
the reference level. The first very important observation is that the deconvolution
does not always lead to f∗ close to f . It turns out that in some cases, the filtered
function f is closer to f than f∗ is. For instance, if explicit filters are used,
deconvolution is beneficial only when the basic filter is of a lower order than
the one used as the inverse filter. It can be seen in Fig. 9 that the grey lines
representing L1(f − f∗) with f∗ deconvolved by G−1

FD4, G
−1
FD6, G

−1
FD8 are at the

lower level than the orange line corresponding to L1(f − f). In all remaining
cases, i.e., when the basic filter is of a higher order than the inverse filter, the
deconvolution causes the departure of f∗ from f . The situation is different when
the compact filters are used as in this case any combination of G−1/G leads to
L1(f − f∗) < L1(f − f). Additional observations concerning the L1(E) are the
following:

1. L1(E) increases when the deconvolution is performed using G−1 based on
G significantly different thanG applied for the filtering, e.g.,G−1

FD2[GFD8f2]
produces much worse results than G−1

FD2[GFD4f2];
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2. L1(E) increases when the deconvolution is performed using G−1 based on
G of the smaller order than G applied for the filtering, e.g., G−1

FD2[GFD8f2]
is evidently less accurate than G−1

FD8[GFD2f ] and this can be seen also
in Fig. 8c; it is worth noticing that this property holds also for the compact
filters, though to a lesser extent.

Besides, taking into account point 2 above, we observe that when the decon-
volution is performed using G−1 based on G of a smaller order than the basic
filter G the error L1(E) first decreases for small ν and then increases. On the
contrary, if G−1 is based on G of a higher order than the basic filter G we see
that L1(E) drops with ν. However, in both cases L1(E) saturates at some value
of ν and its further increase has no influence on the results. This is very well
seen for the compact filters (see Fig. 9b), where in all cases L1(E) stagnates from
approximately ν = 50. Trying to find the reason for the difference we compare
in Fig. 10 and 11 the Fourier transforms of the function F [f ], its deconvolved
counterpart F [f∗] = F [G−1[Gf ]], and the filtered function F [f ] (colour lines).
It can be readily seen that if during the deconvolution the inverse filter is of
a higher order than the basic one (Fig. 10a and 11a), the deconvolution error
decreases with increasing ν, but only to some level, and then it remains con-
stant. Comparing the amplitudes of F [f ] with the ones resulting from F [f∗] it
is seen that the latter are smaller over the entire range of ω. The differences
are particularly large at ω → π, especially for the explicit filters. However, if
one compares the amplitudes of F [f∗] and F [f ], it is evident that the former are
closer to F [f ] that confirms the results presented in Fig. 9. The situation changes
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Fig. 10. Convergence of the deconvolution process in spectral space for the function f2

applying the FD filters different than the basic ones. The colour lines denote the spectra of
the filtered function.
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when the deconvolved filter G−1 is of the lower order, see Figs. 10b and 11b.
In this case, when ν is small, the amplitudes of F [f∗] are larger than F [f ] for
small ω and smaller for ω → π. However, the convergent solution characterises
the amplification of the amplitudes over the entire range of ω. This is why the
L1(E) in Fig. 9b grows for increasing ν values. One should note that when the
explicit filters are used the error is particularly large. In fact, the amplitudes
of the filtered function F [f ] are closer to F [f ] than these resulting from F [f∗].
This means that the deconvolution with large ν makes the function f∗ more
different from f than the filtered function. In conclusion, in the case of explicit
filters, when G−1 is constructed based on G of the lower order than the basic
filter, deconvolution is beneficial only when ν is small. However, its precise value
cannot be determined a priori without knowing the original function. When the
compact filters are employed the amplification of F [f∗] is not so strong, as can
be seen in Fig. 9b, and deconvolution is beneficial for any combination of GCD2,
GCD4, GCD8.
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Fig. 11. Convergence of the deconvolution process in spectral space for the function f2

applying the CD filters different than the basic ones with the parameters a1 = 0.4. The
colour lines denote the spectra of the filtered function.

Referring to practical applications, the scenarios when the order of G−1 is
obtained based on the lower order than the actual G seem worse. In acoustics,
this kind of deconvolution would lead to the amplification of high-frequency tones
usually heard by the human ear as a squeak. In deblurring, it would create the
contours of pictures wavier than the original ones. In the modelling of turbulent
flows, such a deconvolution would be responsible for adding unphysical energy to
the small-scale motion, which in numerical simulations would very likely result in
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instability. In the next section, we analyse how the present findings translate to
a 2D case and concentrate on the energy content of the original and deconvolved
function.

4.2. 2D case

To analyse the deconvolution process in a two-dimensional (2D) domain we
define the following test function

f(xi, yj) = sin(xi + yj) cos(xi + 2)(4.6)
+ cos(xi − yj) sin(xi + 2) + sin(xi + yj) sin(xi + yj)

+
K∑
k=1

[ϕ sin(k · xi) + ψ cos(k · yj)],

where xi = (i − 1)h, yj = (j − 1)h, 1 ≤ i, j ≤ N , are the discrete nodes in
the two-dimensional periodic domain 2π × 2π, h = 2π/N is the space between
the nodes, ϕ,ψ are random amplitudes in the range 0 ≤ ϕ,ψ < 0.05, N = 64.
In 2D, the filtering and deconvolution are performed by applying the filter G
and accompanying it G−1 successively in separate directions. Thus, by analogy
with Eq. (1.1) the filtering operation is defined as

(4.7) f(x, y) = Gy ∗ [Gx ∗ f(x, y)] =

∞∫
−∞

Gy(y − γ)

∞∫
−∞

f(x, y)Gx(x− τ) dτ dγ.

Having the filters defined in the matrix form, one can write

(4.8) f = Gy[Gxf ]
T ,

where f and f are the matrices consisting of the f(xi, yj) and f(xi, yj) in partic-
ular nodes. The nodal values along the x-coordinate are stored in the columns
of f and f . The matrices Gx and Gy are the filters defined in Section 3.1. They
have the same form along the ‘x’ and ‘y’ coordinates. The deconvolution process
is carried out by changing the order of the applied approximate filters so that
the deconvolved function is obtained from

(4.9) f∗ ≈ G−1
x [G−1

y f
T

].

4.2.1. Error measure. In 2D, rather than using L1 error measure, we analyse the
accuracy of the deconvolution using the global measure of the error in terms
of the function fluctuations with respect to the actually computed mean value
f = 1

N2

∑
i,j f(xi, yj). Thus, we define the parameter

(4.10) σ(f) =
∑
i,j

(
f ′(xi, yj)

)2
=
∑
i,j

(
f(xi, yj)− f

)2
,
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which can be interpreted as the energy of the fluctuations of the test function,
and calculate the relative error of the deconvolution as

(4.11) E(f∗) =
σ(f)− σ(f∗)

σ(f)
· 100%.

With such an error definition we are able to show whether the deconvolved 2D
function is ‘smoother’ (E(f∗) > 0) or ‘wavier’ (E(f∗) < 0) with respect to
the original function. For instance, in deblurring applications, if E(f∗) > 0 the
obtained pictures would be more blurred than the original one.

4.2.2. Results of the deconvolution in 2D with the filter different than the basic one.
Figure 12 shows the contours of the function f(x, y) and its filtered counterpart
f(x, y) obtained with the CD filter GCD2 with the parameter a1 = 0.4. The
filtered function is smoother than the original one, yet, the main large-scale
function shapes are very similar. This is because the 2D filtering, similar to that
in the 1D case, acts mainly in the range of high frequencies. Figure 13 shows
the parameter E(f∗) for various combinations of G−1/G for the explicit and
compact filters. It can be seen that when the latter is used, the deconvolution
process converges faster and is more accurate. By applying the explicit filters,
the deconvolution makes sense only if the inverse filter originates from a filter of
a higher order than the basic one. If this is not the case, the filtered function f
better reflects the original f than the deconvolved function. On the other hand,
when compact filters are used, deconvolution always brings the function f∗ closer
to the true one. However, the important aspect is which filter is used as the
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Fig. 12. Function f(x, y) (a) and f(x, y) (b) obtained using GCD2 with a1 = 0.4.



Attenuating and enhancing properties. . . 131

ν

E
(f

*
)

0 20 40 60 80 100

­12

­10

­8

­6

­4

­2

0

2

4

6

G
­1

FD2
[G

FD4
f]

G
­1

FD2
[G

FD6
f]

G
­1

FD2
[G

FD8
f]

G
­1

FD4
[G

FD2
f]

G
­1

FD6
[G

FD2
f]

G
­1

FD8
[G

FD2
f]

G
FD2

f

G
FD4

f

G
FD6

fG
FD6

f

(a)

ν

E
(f

*
)

0 20 40 60 80 100
­1

­0.5

0

0.5

1

1.5

2 G
­1

CD2
[G

CD4
f]

G
­1

CD2
[G

CD6
f]

G
­1

CD2
[G

CD8
f]

G
­1

CD4
[G

CD2
f]

G
­1

CD6
[G

CD2
f]

G
­1

CD8
[G

CD2
f]

G
CD2

f

G
CD6

f

G
CD4

f

G
CD8

f

(b)

Fig. 13. Parameter E(f∗) for various combinations of G−1 and G for the explicit (a) and
compact (b) filters.

inverse one. The negative values of E(f∗) mean that the deconvolution operation
artificially increases the energy of the fluctuations f ′(xi, yj). It is seen in Fig. 13
that this is the case when the inverse filter is of a lower order than the basic one.
Table 5 shows E(f∗) for different combinations of the compact filters. For large
ν for which the deconvolution process is convergent, the E(f∗) values in the
cases CD4/CD2, CD6/CD2 and CD8/CD2 are positive, whereas for CD2/CD4,
CD2/CD6 and CD2/CD8 they are negative. Although the differences between
|E(f∗)| are not large one should emphasise that the sign of E(f∗) reveals the
opposite character of deconvolution. If E(f∗) < 0, the small-scale phenomena
are amplified, whereas for E(f∗) > 0 they are dampened.

Table 5. Deconvolution error E(f∗) at the selected ν values for different combinations of
the compact filters with a1 = 0.4.

ν value CD4/CD2 CD6/CD2 CD8/CD2 CD2/CD4 CD2/CD6 CD2/CD8
ν = 1 8.57× 10−1 9.30× 10−1 9.76× 10−1 3.05× 10−1 1.54× 10−1 4.12× 10−2

ν = 2 7.50× 10−1 8.49× 10−1 9.11× 10−1 1.20× 10−1 −5.86× 10−2 −1.99× 10−1

ν = 4 6.51× 10−1 7.73× 10−1 8.51× 10−1 −4.43× 10−2 −2.52× 10−1 −4.22× 10−1

ν = 10 5.49× 10−1 6.95× 10−1 7.88× 10−1 −2.11× 10−1 −4.52× 10−1 −6.56× 10−1

ν = 20 4.97× 10−1 6.54× 10−1 7.56× 10−1 −2.97× 10−1 −5.56× 10−1 −7.79× 10−1

ν = 50 4.59× 10−1 6.26× 10−1 7.34× 10−1 −3.61× 10−1 −6.33× 10−1 −8.70× 10−1

ν = 100 4.45× 10−1 6.15× 10−1 7.26× 10−1 −3.85× 10−1 −6.62× 10−1 −9.05× 10−1
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4.3. 2D decaying homogenous isotropic turbulence

In the last test case, we focus on a problem typical of fluid mechanics, i.e.,
modelling of decaying homogeneous isotropic turbulence (HIT). We apply the
large eddy simulation (LES) method in which we use the ADM to directly retrieve
a part of the small sub-fliter scales close to the filter cutoff. In LES, turbulent
flow scales are divided into the large scales that are directly solved on a numerical
mesh, and the small scales, called a sub-grid, the effect of which on the resolved
scales is modelled. The separation of scales is achieved by a low-pass spatial
filtering procedure defined as [86, 87]

(4.12) f(x, t) =

∫
Ω

f(x′, t)G(x− x′) dx′,

where Ω is the flow domain, f denotes an arbitrary variable, and G(x) is the filter
function satisfying the condition

∫
ΩG(x− x′) dx′ = 1. As in [88], we consider

a 2D configuration which can only be regarded as a simplified model of a ‘real’
3D turbulent velocity field. However, this is sufficient for verifying different ADM
variants. In 2D cases, the Navier–Stokes equations in the vorticity–stream func-
tion formulation (ω, ψ) in the non-dimensional form are defined as:

∂ω

∂t
+ u

∂ω

∂x
+ v

∂ω

∂y
=

1

Re

(
∂2ω

∂x2
+
∂2ω

∂y2

)
,(4.13)

∂2ψ

∂x2
+
∂2ψ

∂y2
= −ω,(4.14)

where u = ∂ψ
∂y , v = −∂ψ

∂x are the velocity components, and Re is the Reynolds
number. Applying the filter (4.12) to (4.13) and (4.14) gives:

∂ω

∂t
+ u

∂ω

∂x
+ v

∂ω

∂y
=

1

Re

(
∂2ω

∂x2
+
∂2ω

∂y2

)
− τωSGS,(4.15)

∂2ψ

∂x2
+
∂2ψ

∂y2
= −ω.(4.16)

The term τωSGS, represents the contribution of the unresolved small scale [86, 87].
It originates from the filtering of the non-linear convective terms in (4.13). It has
the following form:

(4.17) τωSGS = u
∂ω

∂x
+ v

∂ω

∂y
− u∂ω

∂x
+ v

∂ω

∂y
.

Neither the unfiltered ω nor the velocity vector U = [u, v] are known, and
hence, τωSGS has to be modelled. A typical approach relies on modelling τωSGS
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using the so-called sub-grid viscosity models. There is a number of them, e.g.,
the Smagorinsky, dynamic or Vreman models [86, 87]. Here, we use the ADM
approach to compute τωSGS directly using the deconvolved variables and compare
the results with those obtained using the Smagorinsky model and also with the
solutions where τωSGS was omitted (no-model approach). Additionally, we perform
direct numerical simulations (DNS) on a very dense mesh, which allows us to
univocally assess the solution accuracy of the particular approach. As defined
in (2.5), the deconvolved variables (ω∗ and velocity vector U∗) in ADM are
calculated from:

(4.18) f∗ν =
ν∑

n=0

[I−G]nf , f ≈ f∗ν .

Knowing ω∗ and U∗ we substitute them into (4.17) and filter the first two terms.
Consequently, the last two terms in (4.17) and the convective terms in (4.13)
cancel out. Unlike Stolz et al. [51], we do not add the relaxation term. With
ν = 0, the present approach would correspond to the model formulated by
Layton and Lewandowski [90], which characterises excellent stability. With
ν > 0, the stability of LES-ADM has been proven in [91, 92] on the theoretical
ground and also in computations [59, 61].

The solution procedure of (4.13)–(4.16) can be found in [89] and is not re-
peated here. In short, we apply the 4th order Runge–Kutta method for the time
integration and two spatial discretisation methods, the Fourier pseudo-spectral
(PS) [93] and the 6th order compact difference (CD) [84, 89]. The former is used
to perform direct numerical simulations (DNS) on a dense computational mesh
to have exemplary data for LES, and also to assess the impact of the discreti-
sation method on the solutions. In LES, the exact form of the filter function
G(x) is unknown. The resolved flow scales (RFS) are determined by the mesh,
which implicitly filters out the scales shorter than the mesh size. The RSF are
sometimes subjected to an explicit filtering (f̃ = Ge ∗ f , see [45–47]) but we do
not apply this here. The RSF are filtered by a filter induced by the numerical
discretisation of the convective and diffusive terms (GI,c(x), GI,d(x)) [48, 49]. To
our best knowledge, the formulation of a single induced filter GI(x) that would
reflect the combination of GI,c(x), GI,d(x) has not been proposed so far. Also,
in this work, we do not attempt to precisely define GI(x). Instead, we calculate
the inverse filter based on the explicit and compact filters defined in the previ-
ous sections. We demonstrate how the choice of the filter affects the simulation
results. We compare the solutions obtained by applying the filters GFD2, GCD2

(a1 = 0.4) and GFD4, GCD4 (a1 = 0.4).
The computational domain is a 2D box (2π × 2π) with periodic boundary

conditions on all sides. Following [88] we initialise the flow field based on an
energy spectrum given as
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(4.19) E(k) =
1

2

(2s+ 1)s+1

2ss!

1

kp

(
k

kp

)2s+1

exp

[
−
(
s+

1

2

)(
k

kp

)2]
,

where k = |k| =
√
k2
x + k2

y is a wave number module, kp is the wave number
at which the spectrum has the maximum value, and s is a shape parameter.
Here, we assume kp = 12 and s = 3. The initial vorticity in the spectral space is
defined as ω̂(k) =

√
k/πE(k) expi(ξ(k)+η(k)), where ξ(k), η(k) are independent

random variables, which introduce a phase shift between the particular modes.
Taking a 2D inverse FFT gives the vorticity in the physical space, i.e., ω(x) =
F−1
x [F−1

y [ω̂(k)]], which is then used to compute ψ from (4.16) and the velocity
components.

(a) t = 0 (b) t = 1

(c) t = 5 (d) t = 6

Fig. 14. Contours of the vorticity field obtained on the mesh with 10252 nodes using DNS.
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The computations were performed for two Reynolds numbers (Re = 1000
and Re = 3000) on two meshes consisting of N2 = 10252 nodes for DNS and
N2 = 2572 nodes for LES. Although in [88] it was shown that the mesh with
N2 = 10252 is sufficiently dense to obtain accurate DNS solutions for Re = 1000
and Re = 3000 we verify this by performing test computations on the mesh com-
posed of N2 = 5132 nodes. In all the cases, the initial velocity field was generated
on the densest mesh and then projected on the coarser ones. To avoid the impact
of time integration errors, the simulations were performed with a small time-step
∆t = 1×10−6, which was two orders of magnitude lower than the stability limit
on the densest mesh. The preliminary tests with ∆t = 1× 10−5 showed that the
time-integration errors have practically no effect on the results. The simulation
lasted until t = 10. Figure 14 shows the contours of the vorticity field in selected
time instances obtained in DNS. Note that the minimum and maximum ranges
in the legends change. This is because the vorticity field is quickly dampened
over time, and their contours would be almost invisible if they were plotted in
the same range of values. In addition to the damping of the vorticity magnitude,
one can readily notice that the sizes of the vortices also change. Initial small
structures are simultaneously dissipated and merged into larger ones.

The impact of the filter used in ADM on the solution accuracy is assessed
based on the following quantities:

1. Instantaneous mean energy

(4.20) E(t) =
1

N2

N∑
i=1

N∑
j=1

1

2

∣∣U(xi, yj , t)
∣∣2 .

2. Energy spectrum

(4.21) Ê(k, t) = 2πk

〈
1

2

∣∣∣Û(k, t)
∣∣∣2〉,

where the operator 〈·〉 denotes averaging in a thin shell of wave numbers
(k = k ± 0.5).

3. Spatial variance (µ2) and two higher moments, skewness (µ3) and kurtosis
(µ4) defined as:

µn(φ, t) =
1
N2

∑N
i=1

∑N
j=1

[
φ(xi, yj , t)− µ1(φ, t)

]n
µ2(t)

n
2

,(4.22)

µ2(φ, t) =
1

N2

N∑
i=1

N∑
j=1

[
φ(xi, yj , t)− µ1(φ, t)

]2
,(4.23)
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µ1(φ, t) =
1

N2

N∑
i=1

N∑
j=1

φ(xi, yj , t),(4.24)

where φ(xi, yj , t) represents a general variable at the time moment t in the
node xi, yj .

Additionally, we define the time dependent solution error as

(4.25) Error =
1

Nt

√√√√ Nt∑
i=1

(
F (t)DNSi − F (t)LESi

)2
,

where Nt is the number of time steps from t = 0 and F (t) represents the above-
defined quantities (E(t), µn). Figure 15 shows the comparisons of spectra Ê(k, t)
obtained on the meshes with N2 = 10252 and N2 = 5132 applying the PS and
CD methods. The red line represents the initial spectrum (4.19) at t = 0 and
the rest of the lines and symbols refer to the spectra at t = 2 and t = 10. The
results obtained for Re = 1000 show an excellent agreement both regarding the
comparison of discretisation methods as well as the solutions on different meshes.
In the inertial range, the spectra are not far from k−3 slope to which they should
tend when Re→∞, according to the Kraichnan–Batchelor–Leith theory. They
exhibit better agreement with k−3 for t = 2 than t = 10 and the same behaviour
was observed in [88]. This is because of the energy dissipation of small scales
that causes bending of the spectrum profiles when the time progresses. Small
discrepancies between particular solutions are seen only when the CD method is
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Fig. 15. Energy spectra at the time moments t = 0, 2 and t = 10 obtained in the
computations with the use PS and CD discretisation methods.
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used, and only close to k =
√

2N/2 (the maximum wave number for which the
energy spectrum is computed). Note, that the differences at the level < 10−20 are
caused more by the round-off error than the mesh density and the discretisation
method. For Re = 3000, the PS method diverges because of the aliasing errors
to which the PS method is particularly prone [93]. Most likely, applying the
de-aliasing techniques would stabilise the solution but we did not attempt to
do that. A very good agreement of the solutions obtained with the CD method
on two meshes confirms that the results on the denser mesh can be regarded
as DNS. In the following comparisons, for both Reynolds numbers, we refer to
DNS obtained on the mesh with N2 = 10252 nodes using the CD discretisation
method.

The energy spectra at t = 10 obtained using LES and no-model approach are
compared with the DNS data in Fig. 16. The analysis of this figure allows noticing
significant differences between particular solutions only in the range of larger
wave numbers (1.5 < log(k) < 2.25 → 32 < k < 181). The grid cut-off wave
number kc = N/2 for LES is represented by a vertical dashed line. Surprisingly,
here the solution obtained with the no-model approach shows the best agreement
with DNS. However, as the energy at large wave numbers is small (Ê(k) < 10−10)
the observed differences impact only very little on the total kinetic energy (TKE)
of the flow. Figure 17 shows a temporal TKE decay. It can be seen that TKE
dissipates the fastest when the Smagorinsky model is used. This is, however,
not surprising as this model is known to be over dissipative [86, 87]. The use
of ADM ensures definitively better results, yet, not much better than the no-
model approach. Among the filters applied in ADM, the filter GFD2 leads to the
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Fig. 16. Energy spectra at t = 10 obtained for DNS, no-model simulations and LES.
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Fig. 17. Temporal TKE decay obtained in the computations on the meshes with N2 = 10252

(DNS) and N2 = 2572 nodes using various LES sub-grid models and no-model approach.

largest divergence from DNS, particularly in the initial phase of the simulation.
Figures 18 and 19 show the temporal evolutions of the higher statistical moments
(variance, skewness, and kurtosis) of the u velocity component obtained using
DNS, no-model approach, LES with the Smagorinsky model, and LES with ADM
(ν = 2, 5, 10). For both Reynolds numbers, LES and no-model results follow the
DNS solutions only for some time and then diverge significantly. This is due to
the non-linear character of the interactions between the flow scales. A relatively
small difference at an early simulation time leads to large differences at a later
time.
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Fig. 18. Evolution of the variance, skewness and kurtosis of the u velocity component for
Re = 1000. DNS results, no-model and LES results with the Smagorinsky model and ADM

with various parameter ν and the filters GFD2, GFD4, GCD2 and GCD4.
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Fig. 19. Evolution of the variance, skewness and kurtosis of the u velocity component for
Re = 3000. DNS results, no-model and LES results with the Smagorinsky model and ADM

with various parameter ν and the filters GFD2, GFD4, GCD2 and GCD4.
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For Re = 1000 they appear from around t = 5 and for Re = 3000 from
approximately t = 3 and in this case the discrepancies are much larger. This is
because for Re = 3000, the differences in the solution accuracy of small scales
(see Ê(k, t) in Fig. 15) play a more important role. The solutions obtained with
the Smagorinsky model differ the most from the DNS data already at t = 1.
The results obtained with the no-model approach and ADM are much better.
In this case, for Re = 1000, the variance is correctly predicted almost over the
entire simulation time. The solutions obtained with the explicit filters are more
accurate, especially with GFD4. The sensitivity of ADM to the number of van
Cittert iterations ν seems to be different than expected. One could presume that
increasing ν will improve the results, though, in [51] it was said that taking ν > 5
does not affect the solutions. Here, it turns out not always to be the case. For
the explicit filters, the change ν = 2 → 5 → 10 moves the solution closer to
DNS. However, for the compact filters, only the change ν = 2 → 5 improves
the accuracy, while ν = 5 → 10 makes it even worse than for ν = 2. Tables 6
and 7 show the values of the solution error (4.25) calculated for the velocity
components and vorticity at t = 10 for Re = 1000 and at t = 5 for Re = 3000.
ADM solutions with ν = 5 are taken into account. The numbers corresponding
to the smallest and largest error for a given quantity are underlined by single and
double lines. The no-model solutions presented so far in the figures seemed to be
as good as the ones obtained using ADM. In fact, at some time moments, they
were even better. However, this is not the case if one takes the overall error. The
no-model solutions are more accurate than those obtained with the Smagorinsky
model but ADM performs better. In this case, taking into account the majority
of the results, the use of the filter GFD4 leads to the most accurate solutions for

Table 6. Comparison of the error (4.25) for Re = 1000. Results for no-model approach and
LES with the Smagorinsky model and ADM with ν = 5. The most accurate and the worst

results are underlined by a single and double line.

Moment No-model Smagorinsky GFD2 GFD4 GCD2 GCD4

µ2(u, t = 10) 0.00036 0.00180 0.00043 0.00030 0.00058 0.00062
µ2(v, t = 10) 0.00037 0.00191 0.00045 0.00031 0.00056 0.00060
µ2(ω, t = 10) 0.18896 0.11024 0.07648 0.14921 0.14666 0.17758
µ3(u, t = 10) 0.00235 0.01871 0.00324 0.00123 0.00245 0.00271
µ3(v, t = 10) 0.01479 0.01233 0.00130 0.00088 0.00392 0.00423
µ3(ω, t = 10) 0.00101 0.00404 0.00091 0.00021 0.00058 0.00059
µ4(u, t = 10) 0.00393 0.01434 0.00368 0.00225 0.00750 0.00803
µ4(v, t = 10) 0.00412 0.01607 0.00350 0.00121 0.00908 0.00993
µ4(ω, t = 10) 0.00235 0.02465 0.00225 0.00070 0.00188 0.00207
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Table 7. Comparison of the error (4.25) for Re = 3000. Results for no-model approach and
LES with the Smagorinsky model and ADM with ν = 5. The most accurate and the worst

results are underlined by a single and double line.

Moment No-model Smagorinsky GFD2 GFD4 GCD2 GCD4

µ2(u, t = 5) 0.000947 0.003950 0.001221 0.000297 0.000677 0.000544
µ2(v, t = 5) 0.000950 0.004282 0.001225 0.000305 0.000736 0.000572
µ2(ω, t = 5) 0.278206 0.813487 0.955202 0.262578 0.188827 0.075727
µ3(u, t = 5) 0.005196 0.012857 0.001857 0.001771 0.005291 0.005570
µ3(v, t = 5) 0.004264 0.011412 0.002199 0.005808 0.004527 0.004250
µ3(ω, t = 5) 0.000895 0.003450 0.001621 0.000793 0.001256 0.001538
µ4(u, t = 5) 0.006150 0.010762 0.006827 0.005295 0.005629 0.005667
µ4(v, t = 5) 0.006118 0.025810 0.004519 0.002641 0.004030 0.003956
µ4(ω, t = 5) 0.005150 0.018319 0.022696 0.015865 0.011288 0.009230

both Reynolds numbers. One can presume that this filter approximates the filter
induced by the discretisation in the best way.

5. Conclusions

The paper presented a comprehensive analysis of the approximate deconvolu-
tion method based on the van Cittert series and high-order explicit and compact
filters. It has been shown that the van Cittert deconvolution method converges,
i.e., it leads to the inverse filter that recovers the original function/signal from
the filtered one, significantly faster when the high-order filters characterised by
a flatter transfer function are used. This is attributed to the fact that the fil-
tered function resulting from the filtering is less different from the original one,
and thus, easier to be deconvolved. The analysis of the deconvolution process
in spectral space showed that as long as the full convergence is not reached,
the amplitudes of the spectrum of the deconvolved function are suppressed. The
main focus of the paper was on the accuracy of ADM in the cases in which the
inverse filter G−1 was calculated based on the filter different than the basic one
G used to create the filtered function. This was motivated by the fact that in
practice, the precise form of G is rarely known and needs to be assumed. The
analysis performed for different complexity of the test functions in 1D and 2D
cases showed that inappropriate ‘guess’ of the filter G for ADM can have a sig-
nificant and opposite than expected impact on the result of the deconvolution.
It has been shown that if the test function was filtered using G with the transfer
function, which largely suppressed the spectrum of the filtered function, as in the
case of explicit filters, the deconvolution should be performed using G−1 based
on the filter of the order higher than the basic G. Otherwise, the deconvolved
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function differed more from the original function than the filtered one. In the
case of compact filters, which alter the spectrum of the filtered function only
moderately, the deconvolution process always brought the deconvolved function
closer to the original one. Hence, it can be said that the use of high-order filters in
ADM minimises a risk of an artificial increase of the energy of small scales. Most
often, such a situation should be avoided. However, there are also applications
in which the amplification of tiny function components can be needed. As an
example, one can imagine numerical simulations performed using a highly dis-
sipative upwind discretisation method that significantly suppresses small-scale
phenomena. Having defined an appropriate deconvolution method applied at the
postprocessing step, it would be possible to recover the magnitude of these small
scales, at least partially.

In the last section of the paper, ADM was used to model a 2D turbulent flow
by the LES method. The results were compared with DNS data and also with
the solutions obtained using the Smagorinsky model and the no-model approach.
The role of ADM was to recover sub-filter scales in the resolved part of the flow
scales. The comparisons were performed for various quantities including energy
spectra, TKE evolution, variance, skewness, kurtosis of the velocity components,
and vorticity. In general, it has been shown that ADM provides more accurate
results than the no-model approach and the Smagorinsky model. In view of the
analysis performed for the 1D and 2D linear problems and also contrary to [59],
it was slightly surprising that the use of ADM with the simple 4th order explicit
filter turned out to be more accurate than ADM employing the compact filters.
In [59], however, the 2nd order discretisation schemes were used. Hence, it can be
concluded that the ADM accuracy depends on the applied discretisation meth-
ods and the use of the filter that better approximates the filter induced by the
discretisation scheme leads to more accurate results. The induced filter reflect-
ing simultaneously the discretisation of all terms in the Navier–Stokes equations
cannot be explicitly defined, and hence, the conclusions on which filter should be
used for a particular solution algorithm cannot be univocally formulated. Para-
metric studies employing various discretisation methods and various filters are
planned for future research.
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