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For 2-dimensional problems in peridynamics, the transfer functions of boundary
traction are constructed. The peridynamic motion equation introducing the boundary
traction is improved and used to solve some typical 2-dimensional deformation and
fracture problems, including the uniaxial tension and pure bending of plate, and
fracture of a plate with the small circular hole or central crack. The acquired numerical
solutions are close to the analytical solutions of elasticity and numerical solutions
given by the finite element method. The results show that the improved technique
of exerting traction on a boundary surface is valid for calculating the deformation
and failure of solid. It provides a new method and path for the analysis of traction
boundary value problems in peridynamics.
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1. Introduction

Peridynamics (PD) is a new nonlocal continuum theory of mechan-
ics [1, 2]. Its core consists in that a weighted integral of relative displacement
over a spatial domain is used instead of the spatial derivative of displacement in
governing equations of deformation. Peridynamics does not need the concepts of
strain and stress, because it only involves relative displacement and internal long-
range forces acting between each pair of particles in a horizon Hx [1–4]. There-
fore, peridynamics can be used to conveniently and effectively analyzed deforma-
tion accompanied by evolution of discontinuities. The peridynamics was firstly
advanced by Silling [1]. Since then, it has been applied to investigate various
problems associated with wave, damage, fracture and impact breakage [1, 3, 5].

Traditional stress boundary conditions are not prescribed directly in peri-
dynamics, because it is very difficult to handle the traction and constraint im-
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posed on the boundary surface of a body in peridynamics [6, 7]. In order to
overcome this difficulty, Silling et al. suggested to set a fictitious boundary
layer with thickness δ in which the displacement constraints and boundary trac-
tion are specified [8–11]. Although such a treatment can obtain good results,
some unphysical artifacts often appear in computation owing to the approxi-
mate feature of the fictitious boundary layer [12]. Liu and Hong found that
the boundary effect became more conspicuous as the horizon increased, and the
errors in calculating the equivalent Young’s modulus of the boundary layer also
increased [13].

Nishawala and Ostoja-Starzewski [14] used the inverse and semi-inverse
methods to solve the one- and two-dimensional peristatic problems in which
the traction is exerted in a striped domain closed to the boundary surface.
Parks et al. [15] introduced “ghost” particles to calculate pairwise forces through
boundaries of subdomains. Kilic and Madenci [16] pointed out that the trac-
tion or concentration forces could not be directly applied on the boundary sur-
face since their volume integrations were zero. They need to be converted into
equivalent body forces in the fictitious boundary layer. Oterkus et al. [17]
proposed the boundary conditions could be easily enforced via a finite element
model (FEM) of the subdomain containing boundaries through the merger of
FEM and the peridynamic theories. Wu and Ren [18] and Wu and Hu [19]
put forward an approach based on the localized convex kernel approximation
constructed by the mesh-free methods to impose boundary conditions in the
state-based peridynamic method. Chen et al. [20] completed the peridynamic
analysis to the free and forced vibration of a finite bar with a specified boundary
condition.

Although the fictitious boundary layer with the thickness of horizon placed
outside the natural boundary surface has been commonly used in the boundary
conditions of peridynamics, when using this method to prescribe traction bound-
ary conditions, it is necessary to firstly convert the boundary traction into the
body force in the fictitious boundary layer, and at making surface corrections to
the material parameters in the numerical algorithm [12, 21]. Recently, Huang [6]
has proposed a new PD motion equation in which the boundary traction and
the displacement constraint are introduced as independent terms. The new PD
motion equation has been used to analyze the tension and vibration of rod [6],
but it is not applied in 2- and 3-dimensional problems due to the underdeter-
mined transfer functions of the boundary traction. Therefore, this paper focuses
on the construction of the transfer functions of the boundary traction and solves
typical 2-dimensional problems.

The outline of the paper is as follows. In Section 2, the peridynamic mo-
tion equation with boundary conditions (PDB) is improved through construct-
ing the transfer functions of the boundary traction. In Section 3, based on the
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peridynamic balance equation of energy, the bond-based constitutive model is
determined. The transfer functions of boundary traction are given. The damage-
fracture model and the numerical algorithm are given in Sections 4 and 5, re-
spectively. In Sections 6, 7 and 8, we use the numerical technique to solve four
2-dimensional benchmark problems. Finally, we close this paper with a summary
and the comment.

2. Peridynamic motion equation with boundary traction

The peridynamic motion equation advanced by Silling [1] is inconsistent
with the stress boundary condition. In order to offset this deficiency, a new
peridynamic motion equation is proposed, which reads:

(2.1)
∫
∂Ωp

[G(x,x′)p(x′, t) +D(x,x′)y(x′, t)] da(x′)

+

∫
Hx

(T [x, t]〈ξ〉 − T [x′, t]〈−ξ〉) dv(x′) + f(x, t) = ρ(x)v̇(x, t),

where ξ = x′ − x, ∂Ωp denotes the boundary surface on which the traction
p(x′, t) is prescribed and y(x′, t) is the position of the point on the boundary
surface ∂Ωp; G(x,x′)and D(x,x′) are the transfer function of the boundary
traction and of the boundary position constraint, respectively. They transfer the
effects of the boundary traction and the position constraint into every particle
within material. Huang [6] has proved that Eq. (2.1) is compatible with the
conservation law of momentum, when∫

Ω

G(x,x′) dv(x) = 1,(2.2)

∫
Ω

D(x,x′) dv(x) = 0(2.3)

and Eq. (2.1) is form-invariant under the Galileo transformation, if

(2.4)
∫
∂Ωp

D(x,x′) da(x′) = 0.

Meanwhile, it has been certified that the boundary traction p(x′, t), the position
vectors y(x′, t) and y(x, t) must satisfy the constraints below

(2.5) J(x,x′)[y(x′, t)− y(x, t)] = G(x,x′)p(x′, t) +D(x,x′)y(x′, t)
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so as to make Eq. (2.1) compatible with the conservation law of angular momen-
tum. In fact, Eq. (2.5) can be regarded as a constitutive equation with relevance
to the boundary traction and position. So J(x,x′) is a stiffness coefficient.

When x = x′, Eq. (2.5) reduces to

(2.6) G(x′,x′)p(x′, t) +D(x′,x′)y(x′, t) = 0.

Since y(x′, t) and p(x′, t) are correlated with each other, the constraints of
G(x′,x′) = 0 and D(x′,x′) = 0 cannot be imposed on G(x,x′) and D(x,x′),
which is a different argument from [6].

When the displacement boundary condition y(x′, t) = ȳ(x′, t) = x′+ū(x′, t)
is given on ∂Ω, ∂Ωp = 0. Equation (2.1) returns to the original form of the
peridynamic motion equation advanced by Silling [1], i.e.,

(2.7)
∫
Hx

(T [x, t]〈ξ〉 − T [x′, t]〈−ξ〉) dv(x′) + f(x, t) = ρ(x)v̇(x, t),

which is the peridynamic motion equation with the displacement boundary con-
dition.

If the stress boundary condition p(x′, t) = p̄(x′, t) is given on ∂Ωp, then we
can solve Eq. (2.5) to acquire y(x′, t), that is

(2.8) y(x′, t) =
G(x,x′)

J(x,x′)−D(x,x′)
p̄(x′, t) +

J(x,x′)

J(x,x′)−D(x,x′)
y(x, t).

By inserting Eq. (2.8) in Eq. (2.1), the peridynamic motion equation with the
stress boundary condition is given as follows:

(2.9)
∫
∂Ωp

[α(x,x′)p̄(x′, t) + β(x,x′)y(x, t)] da(x′)

+

∫
Hx

(T [x, t]〈ξ〉 − T [x′, t]〈−ξ〉) dν(x′) + f(x, t) = ρ(x)ν̇(x, t),

where

(2.10)
α(x,x′) =

J(x,x′)G(x,x′)

J(x,x′)−D(x,x′)
,

β(x,x′) =
J(x,x′)D(x,x′)

J(x,x′)−D(x,x′)
,

which is the peridynamic motion equation with the stress boundary condition.
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Let ∂Ω = ∂Ωu ∪ ∂Ωp and ∂Ωu ∩ ∂Ωp = ∅, where ∂Ωu denotes the boun-
dary surface subjected to the displacement constraint, while ∂Ωp is the boundary
surface prescribed by traction.

Combining Eq. (2.7) with Eq. (2.9), we have:

(2.11)
∫
∂Ωp

[α(x,x′)p̄(x′, t) + β(x,x′)y(x, t)] da(x′)

+

∫
Hx

(T [x, t]〈ξ〉 − T [x′, t]〈−ξ〉) dν(x′) + f(x, t) = ρ(x)ν̇(x, t).

As a result, we acquire the peridynamic motion equation with the mixed bound-
ary condition.

For simplicity, we further assume that

(2.12)
J(x,x′)

J(x,x′)−D(x,x′)
= χ ⇔ J(x,x′) =

χ

χ− 1
D(x,x′),

where χ = (V−VB)/V, and VB and V are the volume of a boundary layer and
the volume of the body, respectively.

As a result, Eq. (2.9) and Eq. (2.11) lead to

χ

∫
∂Ω

[G(x,x′)p̄(x′, t)] da(x′)(2.13)

+

∫
Hx

(T [x, t]〈ξ〉 − T [x′, t]〈−ξ〉) dv(x′) + f(x, t) = ρ(x)v̇(x, t),

χ

∫
∂Ωp

[G(x,x′)p̄(x′, t)] da(x′)(2.14)

+

∫
Hx

(T [x, t]〈ξ〉 − T [x′, t]〈−ξ〉) dv(x′) + f(x, t) = ρ(x)v̇(x, t).

From Eq. (2.13) and Eq. (2.14), we see that the peridynamic motion equation
with the traction boundary condition has the same form as that with the mixed
boundary condition.

3. Peridynamic constitutive model of elastic deformation

3.1. Balance equation of energy

Let v = v(x) be the velocity field within material. Only elastic deformation
is concerned, in peridynamics, total energy conservation can be represented as
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(3.1)
D

Dt

∫
Ω

1

2
ρv2 dv +

D

Dt

∫
Ω

ρedv

=

∫
Ω

v ·
∫
∂Ω

[G(x,x′)p(x′, t) +D(x,x′)y(x, t)] da(x′) dv(x) +

∫
Ω

f · v dv.

By Raynold’s transport theorem [22], Eq. (3.1) can be rewritten as

(3.2)
∫
Ω

ρv · a dv +

∫
Ω

ρė dv

=

∫
Ω

v ·
∫
∂Ω

[G(x,x′)p(x′, t) +D(x,x′)y(x, t)] da(x′) dv(x) +

∫
Ω

f · v dv.

In terms of Eq. (2.1), Eq. (3.2) reduces to

(3.3)
∫
Ω

ρėdv =

∫
Ω

v ·
∫
Hx

(T [x′, t]〈−ξ〉 − T [x, t]〈ξ〉) dv(x′) dv(x).

Since Hx ⊂ Ω is a compact supported set of T [x′, t]〈−ξ〉 and T [x, t]〈ξ〉,
Eq. (2.13) can be written as

(3.4)
∫
Ω

ρė dv =

∫
Ω

v ·
∫
Ω

(T [x′, t]〈−ξ〉 − T [x, t]〈ξ〉) dv(x′) dv(x).

Interchanging x′ and x, and then using definition of the compact supported set,
we have

(3.5)
∫
Ω

ρė dv =

∫
Ω

v ·
∫
Hx

T [x, t]〈ξ〉[v(x′)− v(x)] dv(x′) dv(x).

By the localized hypothesis, the balance equation of energy is given as follows

(3.6) ρė =

∫
Hx

T [x, t]〈ξ〉[v(x′)− v(x)] dv(x′),

which has the same form as that in peridynamics without boundary conditions,
and it is a base to determine the peridynamic constitutive models of hypere-
lastic material. Therefore, hyperelastic constitutive models in the peridynamics
without boundary conditions can be inherited without modification by the peri-
dynamics with boundary conditions.
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3.2. Bond-based constitutive equation

The bond-based constitutive models have been established by Silling
(BPD) [1]. Among them, prototype microelastic model constitutive equations
for elastic deformation of isotropic materials are written as [12]:

(3.7) T [x, t]〈ξ〉 − T [x′, t]〈−ξ〉 =
f(d)

|y(x′, t)− y(x, t)|
[y(x′, t)− y(x, t)],

where

(3.8) f(d) =

{
C(|ξ|)d, |ξ| ≤ δ,
0, otherwise,

d = |y(x′, t)− y(x, t)| − |ξ|.

Here, C is the so-called micromodulus, and δ is the radius of Hx. According to
the dimension of spatial configuration of a body, C takes different value, namely.

The prototype microelastic model differs from the microelastic model in the
form of C. The former is written as [12]

(3.9)

C(|ξ|) =


12E/πδ4|ξ|, 3-dimension,
12K̄/πhδ3|ξ|, 2-dimension,
3E/aδ2|ξ|, 1-dimension,

K̄ =

{
3E/4, plane stress,
9E/8, plane strain,

In Eq. (3.9), E is Young’s modulus, h is the thickness of a plate and a the
cross section area of a rod. In the peridynamics without the boundary traction,
Eq. (3.9) needs to be corrected in the numerical algorithm when the material
points are closed to the boundary surface due to the incompleteness of the hori-
zon [21]. However, such a correction is no longer needed in the peridynamics
with the boundary traction, because the influence of the incompleteness of the
horizon can be compensated by the transfer function of the boundary function.

3.3. Transfer functions of boundary constraints

The transfer functions of boundary constraints contain the transfer function
of the boundary displacement constraint D(x,x′) and the transfer function of
the boundary traction G(x,x′) [6]. They can be constructed through many ways.
For example, we can choose an integrable function q(|x−x′|) of variable to form
G(x,x′)as follows

(3.10) G(x,x′) =
q(|x− x′|)∫

Ω q(|x− x′|) dv(x)
.
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Clearly, G(x,x′) given by Eq. (3.10) satisfy the constraints of Eqs. (2.2)–(2.4).
In order to introduce as few undetermined functions as possible to represent
G(x,x′), for a rectangular plate, we set:

(3.11) q(|x− x′|) =


(

1− (|x− x′|)
nδ

)
, if (|x− x′| ≤ δ),

0, otherwise,
n =

[
1

8

LW

Sδ

]
,

where L and W are the length and width of the plate, respectively. S is the
total length of the boundary prescribed by non-zone traction, δ is the horizon
for the material. The sign [•] in Eq. (3.11) represents the integer function, so n is
a positive integer. Physically, the effects caused by the prescribed displacement
or traction at x′ on the boundary surface can be always transmitted to a point x
in the interior of a body through a path, even though there is a crack or a void
between the link between x′ and x. For simplicity, we assume that the intensity
transmitted from x′ to x depends only on the distance between x′ and x, and
attenuates with the increase of the distance.

4. Peridynamic damage-fracture model

Peridynamics describes the deformation and movement through the interac-
tion between material points. Material points are connected to each other by
bonds. The bond failure between material points is introduced to describe the
damage of body.

The bond stretch s is defined by [8]

(4.1) s =
|y′ − y| − |x′ − x|

|x′ − x|
.

Nevertheless, when the deformation stretch exceeds the critical stretch s0, the
bond between the two material points breaks irreversibly and permanently.
A scalar-valued function µ is thus introduced to describe the pairwise force of
a prototype microelastic brittle (PMB) material [8, 12, 21].

A scalar-valued function µ is defined as follows:

(4.2) µ(t, ξ) =

{
1, if s(t, ξ) < s0,

0, otherwise.

Leading the scalar-valued function µ into Eq. (3.9), we have

(4.3) f(d) =

{
µ(t, ξ)C(|ξ|)d, |ξ| ≤ δ,
0, otherwise,

d = |y(x′, t)− y(x, t)| − |ξ|.
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Consequently, the local damage ϕ at a material point is introduced to illustrate
the level of bond failure and is written as [8, 12, 21]:

(4.4) ϕ(x, t) = 1−
∫
Hx

µ(x, t, ξ) dVξ∫
Hx

dVξ
.

Note that the local damage ranges from 0 to 1. When ϕ = 1, all the interactions
initially associated with the point have been eliminated, while ϕ = 0, means that
all interactions are intact. The value of local damage represents the possibility
of internal crack formation within a body [8, 12, 21].

5. Numerical solution method

The peridynamic motion equation is an integral-differential equation, the
analytical solution of which is very difficult to find [23]. Consequently, the nu-
merical techniques are usually used to solve the peridynamic motion equation
[21, 23]. Firstly, a body is uniformly discretized into nodes with a certain vol-
ume in a reference configuration [8]. Unlike the finite element, all nodes form
a freely deformable mesh. After discretion, the peridynamic motion equations
(2.13) with the traction boundary condition can be approximately repre-
sented as

(5.1) χ

Nb∑
m=1

q(|xm − xi|)∑N
n=1 q(|xm − xi|)Vn

p̄mAm

+
∑
j,Ni

C
|xj + uj − xi − ui| − |xj − xi|

|xj − xi|
· xj + uj − xi − ui
|xj + uj − xi − ui|

Vj + f(xi, t) = 0i,

where n is the time step number, the subscripts denote the node numbers, Vj is
the volume of the node j. If the boundary condition contains the displacement
constraint, it is handled in the same way as the methods proposed by Silling
[1, 2, 5, 21]. The adaptive dynamic relaxation method [21] is adopted to solve
Eq. (5.1) in the following.

6. Confirmatory examples

6.1. Square plate under uniaxial tension

Consider a square plate with the side length of 50mm, as show in Fig. 1. The
mass density of material is 8000 kg/m3, Poisson’s ratio v = 1/3 and Young’s
modulus E = 192GPa. The plate is subjected to symmetrical loads of 200MPa
at the two ends in a vertical direction. The constitutive equation is given by the
prototype microelastic brittle material model.



450 Z. Zhou, M. Yu, X. Wang, Z. Huang

Fig. 1. Schematics of square plate under uniaxial tension and its discretization.

The square plate is discreated into a set of particles equally spaced from
each other. In order to investigate the character of δ-convergence [21, 24, 25]
of the improved peridynamics, four numerical examples with particle spacings
of 0.02, 0.01, 0.005 and 0.0025mm are used to demonstrate the mesh conver-
gence. Figure 2 illustrates the computational results of the displacement at

Fig. 2. Convergence of calculated results with the change of meshes and time steps.
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(−0.1225,−0.1225) increasing with time steps. It is easy to see that the com-
putational results of four meshes tend to converge as the time steps reach 3000.
Therefore, the time steps of 4000 are adopted in the following calculation.

In the elasticity, the displacements of the plate in Fig. 2 are analytically
represented as:

(6.1) u∗x = −υp0

E
x, u∗y =

p0

E
y,

where u∗x and u∗y are two displacement components. Using Eq. (5.1) and Eq. (6.1),
we calculate the displacements in the plate. Figure 3 shows the change of dis-
placements at (−0.01225,−0.01225) with loading. From it, we see that the results
calculated by Eq. (5.1), Eq. (6.1) and BPD are very close to each other.

Fig. 3. Displacement components ux and uy at the collocation point (−0.01225,−0.01225)
increasing with loading.

In order to characterize the accuracy of PDB, the relative errors ex and ey
between PDB and the elasticity are defined as

(6.2)
ex =

(
ux − u∗x
u∗x

)
,

ey =

(
uy − u∗y
u∗y

)
,

where ux and uy denote the displacement components calculated by PDB.
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The distribution of the relative errors given by Eq. (6.2) is illustrated in
Fig. 4, which shows that the maximum relative errors occur at the corners, and
other than that, the error is no more than 5% in the rest of region. Peridynamics
is a nonlocal theory, different from the elasticity. Nonlocality inevitably leads to
the emergence of boundary effects. Therefore, the difference between PDB and
the elasticity on the boundary surface is rational in physics.

Fig. 4. Relative errors on horizontal and vertical displacement.

6.2. Bending of square plate

As a benchmark example, the uniaxial tension is the simplest case. In this
section, we further examine the validity of PD under a complex loading condition
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through calculating the bending of a plate. The constitutive parameters and
geometrical size of the plate are the same as those in Section 6.1. The loading
case and discretization scheme are illustrated in Fig. 9.

For the bending in Fig. 5, the analytical solutions (ANS) of the displacements
are in the elasticity written as

(6.3) u∗x = −υ p0

EL
x2 − p0

EL
y2, u∗y =

2p0

EL
xy.

Fig. 5. Schematics of square plate under bending and its discretization.

Fig. 6. The displacements on the cross-sectional surface x = −0.02475 given by PD and
elasticity.
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The displacement components on the four cross-sectional surfaces

x = −0.02475, x = 0.01275, y = −0.01275, y = 0.02475

of the plate are shown in Figs. 6–9. We see that PDB and BPD agree well with
the elasticity in the calculation of the displacements, with an error of not greater
than 5%.

Fig. 7. The displacements on the cross-sectional surface x = 0.01275 given by PD and
elasticity.

Fig. 8. The displacements on the cross-sectional surface y = −0.01275 given by PD and
elasticity.
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Fig. 9. The displacements on the cross-sectional surface y =0.02475 given by PD and
elasticity.

7. Fracture of square plate with small circular hole
under uniaxial tension

In this section, the fracture of a square plate with small circular hole under
quasi-static stretching is simulated by PD. As shown in Fig. 10, The side length
of the square plate is 50mm. The circular hole with the radius of r = 5mm is
located at the center of the square plate. The properties of the plate are charac-
terized by the prototype microelastic brittle model. The constitutive parameters
and the discretion scheme refer to Section 6.1. The critical stretch s0 of bond
failure is taken as 0.003.

Fig. 10. Geometry of square plate with circular hole under uniaxial tension.
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The tension p0 is specified on the upper and lower side of the plate. When p0

increases from zero to 173MPa, the change of the relative displacement ∆u be-
tween two midpoints of the upper and lower side with p0 is illustrated in Fig. 11,
which shows that before cracking, the relative displacement ∆u increases lin-
early with the tension p0. The prediction by PD is consistent with the result
by FEM. This conclusion has been verified by many researchers [2, 17]. More-
over, the simulation from PD exhibits that the tension remains unchanged while
the displacement increases sharply. This is precisely the characteristic of brittle
fracture of materials under the loading control.

Fig. 11. Relative displacement ∆u between two midpoints of the upper and lower side under
uniaxial of two numerical simulation methods.

Figure 12 is the Moire graph to show the evolution of crack. When the time
steps reach 950, two cracks initiate firstly at the stress concentration sites, and
then grow symmetrically to both sides with the increase of the load. We see
that, although there is no pre-existing crack in the plate, the cracks can still
occur at the stress concentration sites. This is clearly an exceptional feature
of the PD theory, unlike the other existing techniques that require pre-existing
cracks.

At 1000 time steps, the local damage value ϕ caused by the cracks ex-
ceeds 0.70. Subsequently, the cracks extend rapidly in the self-similar form.
Finally, when 1550 loading steps are applied, the cracks penetrate the square
plate.
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Fig. 12. Damage plots for the plate with a circular cutout at the end of (a) 950 time steps,
(b) 1000 time steps, (c) 1300 time steps, and (d) 1.550 time steps.

8. Fracture of square plate with a horizonal central crack
under uniaxial tension

As illustrated in Fig. 13, a square plate with the side length of 50mm contains
a central horizontal crack with the length of 10mm. The properties of the plate
are characterized by the prototype microelastic brittle model. The constitutive
parameters and the discretion scheme refer to Section 6.1. The critical stretch
s0 of a bond failure is taken as 0.003, which corresponds to the critical energy
release rate of 1865.7 J/m2.

The load for crack initiation is 145.1MPa, while the load given by fracture
mechanics [29] is 141.1MPa, with an error not greater than 3%. After initiation,
the crack extends simultaneously from two crack tips to two sides of the plate until
the plate breaks. The process of the crack propagation is shown in Fig. 14a–c,
which is consistent with the phenomenon observed in an experiment.
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Fig. 13. Geometry of square plate with a horizontal central crack under tension.

Fig. 14. Damage plots of the plate with a horizontal central crack: (a) initiation,
(b) propagation, and (c) failure.
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9. Conclusions

For the 2-dimensional boundary value problem of peridynamics, we construct
the transfer functions of the boundary traction. Moreover, the peridynamic mo-
tion equation introducing the boundary traction is improved and is used to solve
the uniaxial tension and pure bending of a square plate, the breakage of a plate
with a small hole and the fracture of a plate with a horizonal central crack. The
computational results are consistent with the solutions of the classical elasticity
and the observed experimental phenomenon. This fact shows that the improved
peridynamic motion equation is valid for calculating the deformation and failure
of solid, and it provides a new method and a path for the analysis of traction
boundary value problems in peridynamics.
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