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1. Introduction

The Moore–Gibson–Thompson equation has deserved much attention in
the last ten years (see, for instance, [1–7]) among the mathematical community.
It proposes a third-order in time equation of the form:

c(τ
...
u + ü) = κ∗Au+ κAu̇,

where c, τ, κ, κ∗ and κ = κ − τκ∗ are positive constants, and A is a positive
definite operator. The motivation for this equation came from the mechanics of
fluids and, in this situation, the parameters a, τ , κ and κ∗ are determined by
the properties of the material. Recently, this equation has also been obtained
from the heat conduction theory. In fact, as the type III Green–Naghdi heat
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conduction involves an equation where the thermal waves propagate instanta-
neously (therefore, the causality principle is violated), it is natural to introduce
a relaxation parameter (as it was proposed by Maxwell and Cattaneo for the
Fourier law) that transforms it into the so-called MGT equation. Hence, a new
thermoelastic theory was proposed [8]. This theory has received much attention
in the last two years (see [9–22] among others). Some other recent theories for
the heat conduction have been proposed [23, 24]; however, in certain situations
they result in ill-posed problems in the sense of Hadamard [25]. In order to
avoid this drawback, it was suggested to combine the theories with delay with
the two-temperatures theory [26–29] as it was done in [30, 31]. In this case, the
constitutive equation for the heat flux takes the form:

qi(x, t+ τ1) = −κ∗β,i(x, t+ τ3)− κT,i(x, t+ τ2),

where α = β − a2∆β, θ = T − a2∆T , being α the thermal displacement,
θ the temperature, β the inductive thermal displacement and T the inductive
temperature. When we juxtapose this equation with the classical energy equa-
tion one obtains a well posed problem. It is worth noting that this theory has
not been deeply studied, since it seems very complex. However, some atten-
tion has been devoted to the problems we can obtain by taking finite Taylor
developments. For instance, when τ2 = τ3 < τ1 and considering the approxi-
mations:

qi(x, t+ τ) ≈ qi(x, t) + τ q̇(x, t), τ = τ1 − τ2,

one obtains the MGT-type equation:

c(τ
...
α + α̈) = κ∗∆β + κ∆T.

It is worth saying that, in this context, c is the thermal capacity, τ is the relax-
ation parameter, κ is related with the thermal conductivity and κ∗ with the rate
thermal conductivity.

Therefore, we can consider the thermoelastic theory associated to this equa-
tion [32].

In this paper, we study the one-dimensional version of the above problem.
We recall that the general case can be defined by the constitutive equations:

(1.1)
tji = 2µeij + λerrδij + β∗θδij , η = −β∗eii + cθ,

τ q̇i + qi = −(κ∗β,i + κT,i),

where eij = 1
2(ui,j + uj,i), and the evolution equations:

(1.2) ρüi = tji,j , T ∗0 η̇ = −qi,i.
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In Eqs. (1.1) and (1.2), tij is the stress tensor, eij is the strain tensor, η is the
entropy, λ and µ are the Lamé constants, β∗ is the coupling term, c is the thermal
capacity and ui is the displacement vector, ρ is the mass density and T ∗0 is the
reference temperature.

Let us consider the new variable f̂ = f + τ ḟ . If we substitute evolution
equations (1.2) into constitutive equations (1.1), we obtain the system:

(1.3)

ρ¨̂u = µûxx + (λ+ µ)ûj,ji + β∗ij(α̇,j + τα̈,j),

cα̈+ τ
...
α = β∗ij

˙̂ui,j + κβ̇,jj + κ∗β,jj ,

α = β − a∆β,

where we have assumed T ∗0 = 1 to reduce the calculations. From now on, we
omit the hat in the system of equations to simplify the notation.

It is worth noting that the Moore–Gibson–Thompson thermoelasticity has re-
ceived much attention in the last two years; however, the system we study in this
paper corresponds to the Moore–Gibson–Thompson with two temperatures and,
as far as we know, there are not contributions concerning this system (neither
mathematical or mechanical).

As the proposed theory by this system of equations is very new (it was
formulated two years ago), it is needed to clarify its applicability. We believe that
mathematical and physical studies are necessary in this sense. Hence, this paper
is addressed in this direction. We want to see if the proposed mathematical model
can be accepted from a thermomechanical point of view. We develop a numerical
study, including an estimation of the a priori numerical error, and we obtain the
approximate discrete solutions for the problem. As far as our results seem to
agree with the empirical ones, we show an aspect from which this new theory
can be considered.

The paper is divided into four sections. In the next section, we describe the
model with the required assumptions for its study. We also recall an existence and
uniqueness result [32]. Then, in Section 3, the numerical approximation of this
problem is introduced, by using the finite element method and the implicit Euler
scheme to approximate the spatial variable and to discretize the time derivatives,
respectively. A main a priori error estimates result is proved. Finally, some nu-
merical simulations are described in Section 4 to demonstrate the accuracy of
the approximations and the behavior of the discrete energy.

2. Thermomechanical model

Let u, α and β be the displacement field, the thermal displacement and the
inductive thermal displacement, respectively. Moreover, let us denote by θ and
T the temperature and the inductive temperature obtained as θ = α̇ and T = β̇.
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From the new system of equations (1.3) the thermomechanical problem of
a one-dimensional thermal rod with two temperatures is written as follows
(see [32]).

Problem P. Find the displacement field u : [0, `]× [0, Tf ]→ R, the thermal
displacement α : [0, `] × [0, Tf ] → R and the inductive thermal displacement
β : [0, `]× [0, Tf ]→ R such that

ρü = µuxx + β∗(α̇x + τα̈x),

cα̈+ cτ
...
α = β∗u̇x + κTxx + κ∗βxx,

α = β − aβxx,

 in (0, `)× (0, Tf ),(2.1)

u(x, 0) = u0(x), u̇(x, 0) = v0(x),

β(x, 0) = β0(x), β̇(x, 0) = T0(x),

β̈(x, 0) = ϑ0(x),

 for a.e. x ∈ (0, `),(2.2)

u(0, t) = β(0, t) = 0,

u(`, t) = β(`, t) = 0,

}
for a.e. t ∈ (0, Tf ).(2.3)

We note that, in Problem P, u0, v0, β0, T0 and ϑ0 are initial conditions for
the variables. From the above equations, we may define some “artificial initial
conditions” for variable α as

α(x, 0) = α0(x) = β0(x)− aβ0xx(x),

α̇(x, 0) = θ0(x) = T0(x)− aT0xx(x),

α̈(x, 0) = ξ0(x) = ϑ0(x)− aϑ0xx(x)

for a.e. x ∈ (0, `). We note that functions α0, θ0 and ξ0 are not really initial
conditions because they are obtained from the real ones β0, T0 and ϑ0.

According to [32] we make the following assumptions on the constitutive
coefficients:

(2.4) ρ > 0, c > 0, µ > 0, τ > 0, κ∗ > 0, κ > τκ∗, a > 0.

In order to obtain the variational formulation of the above thermomechanical
problem, let us denote Y = L2(0, `), V = H1

0 (0, `) and E = H2
0 (0, `). Moreover,

let (·, ·) and ‖·‖ be the inner product and the norm defined onL2(0, `), respectively.
Integrating by parts equations (2.1) and using initial conditions (2.2) and

boundary conditions (2.3), we obtain the following weak formulation written
using the velocity v = u̇, the temperature θ = α̇, the temperature speed ξ = α̈
and the inductive temperature T = β̇.

Problem VP. Find the mechanical velocity v : [0, Tf ]→ V , the temperature
speed ξ : [0, Tf ] → Y and the inductive temperature T : [0, Tf ] → E such that
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v(0) = v0, ξ(0) = ξ0, T (0) = T0 and, for a.e. t ∈ (0, Tf ) and for all w ∈ V and
r, l ∈ Y ,

ρ(v̇(t), w) + µ(ux(t), wx) = −β∗(θ(t) + τξ(t), wx),(2.5)

c(ξ(t) + τ ξ̇(t), r) = β∗(vx(t), r) + κ(Txx(t), r) + κ∗(βxx(t), r),(2.6)
(θ(t), l) = (T (t)− aTxx(t), l),(2.7)

where the displacements, the temperature, the thermal displacements and the
inductive thermal displacements are then recovered from the relations:

(2.8)

u(t) =

t∫
0

v(s) ds+ u0, β(t) =

t∫
0

T (s) ds+ β0,

θ(t) =

t∫
0

ξ(s) ds+ θ0, α(t) =

t∫
0

θ(s) ds+ α0.

The following result has been recently proved in [32], which states the exis-
tence of a unique solution to Problem VP and an energy decay property.

Theorem 1. Assume that the coefficients satisfy conditions (2.4). If we de-
note by (u, v, α, θ, ξ, β, T ) the solution to Problem VP and we suppose that the
initial conditions have the following regularity:
u0 ∈ H1(0, `), v0 ∈ L2(0, `), α0, θ0, ξ0 ∈ L2(0, `), β0, T0, ϑ0 ∈ H2(0, `),

then Problem VP admits a unique solution such that:
u ∈ C1([0, Tf ];H1(0, `)), α ∈ C2([0, Tf ];L2(0, `)), β ∈ C1([0, Tf ];H2(0, `)).

Moreover, this solution is polynomially stable of order −1/2.

3. Numerical analysis: fully discrete approximations
and a priori error estimates

In this section, we study a fully discrete approximation of Problem VP.
Firstly, we assume that the interval [0, `] is divided intoM subintervals a0 = 0 <
a1 < . . . < aM = ` of length h = ai+1 − ai = `/M and so, to approximate the
variational spaces E, V and Y , we define the finite dimensional spaces V h ⊂ V ,
Eh ⊂ E and W h ⊂ Y given by:

V h = {wh ∈ C([0, `]); wh[ai,ai+1] ∈ P1([ai, ai+1]), i = 0, . . . ,M − 1,(3.1)

wh(0) = wh(`) = 0},
Eh = {rh ∈ C1([0, `]) ∩H2(0, `); rh[ai,ai+1] ∈ P3([ai, ai+1]),(3.2)

i = 0, . . . ,M − 1, rhx(0) = rhx(`) = rh(0) = rh(`) = 0},
W h = {lh ∈ L2([0, `]); lh[ai,ai+1] ∈ P1([ai, ai+1]), i = 0, . . . ,M − 1},(3.3)
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where Pr([ai, ai+1]) represents the space of polynomials of degree less or equal
to r in the subinterval [ai, ai+1]; i.e. the finite element space V h is made of
continuous and piecewise affine functions, Eh is made of C1 and piecewise cubic
functions, and W h is composed of L2 and piecewise affine functions. Here, h > 0
denotes the spatial discretization parameter. Furthermore, let the discrete initial
conditions uh0 , vh0 , βh0 , T h0 and ϑh0 :

(3.4) uh0 = Ph1 u0, vh0 = Ph1 v0, βh0 = Ph2 β0, T h0 = Ph2 T0, ϑh0 = Ph2 ϑ0,

where Ph1 and Ph2 are the classical finite element interpolation operators over
V h and Eh, respectively (see [33]). Moreover, we also consider artificial discrete
initial conditions for function α, denoted by αh0 , θh0 and ξh0 , given by:

(3.5) αh0 = Ph3α0, θh0 = Ph3 θ0, ξh0 = Ph3 ξ0,

where P h3 represents the projection operator over the finite element space W h.
Secondly, we consider a uniform partition of the time interval [0, T ], denoted

by 0 = t0 < t1 < . . . < tN = T , with step size k = T/N and nodes tn = nk
for n = 0, 1, . . . , N . For a continuous function z(t) let zn = z(tn) and, given
a sequence {zn}Nn=0, we denote by δzn = (zn − zn−1)/k its divided differences.

Therefore, using the implicit Euler scheme, the fully discrete approximations
of Problem VP are the following.

Problem VPhk. Find the discrete mechanical velocity vhk = {vhkn }Nn=0 ⊂ V h,
the discrete temperature speed ξhk = {ξhkn }Nn=0 ⊂ W h and the discrete inductive
temperature T hk = {T hkn }Nn=0 ⊂ Eh such that vhk0 = vh0 , ξ

hk
0 = ξh0 , T

hk
0 = T h0

and, for all wh ∈ V h and rh, lh ∈W h, and n = 1, . . . , N ,

ρ(δvhkn , wh) + µ((uhkn )x, w
h
x) = −β∗(θhkn + τξhkn , whx),(3.6)

c(ξhkn + τδξhkn , rh) = β∗((vhkn )x, r
h) + κ((T hkn )xx, r

h) + κ∗((βhkn )xx, r
h),(3.7)

(θhkn , lh) = (T hkn − a(T hkn )xx, l
h),(3.8)

where the discrete mechanical displacements uhkn , the discrete temperature θhkn ,
the discrete thermal displacements αhkn and the discrete inductive thermal dis-
placements βhkn are now recovered from the relations:

(3.9)

uhkn = k

n∑
j=1

vhkj + uh0 , θhkn = k
n∑
j=1

ξhkj + θh0 ,

αhkn = k

n∑
j=1

θhkj + αh0 , βhkn = k

n∑
j=1

T hkj + βh0 .

It is straightforward to show that Problem VPhk admits a unique solution
applying the well-known Lax Milgram lemma and using assumptions (2.4).
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The aim of this section is to obtain a priori error estimates on the numerical
errors. In order to simplify the calculations, we assume that τ = 1 in this section.

First, we derive the error estimates for the velocity field. Therefore, we sub-
tract variational equation (2.5) at time t= tn for a test function w=wh∈V h⊂V
and discrete variational equation (3.6) to obtain, for all wh ∈ V h,

ρ(v̇n − δvhkn , wh) + µ((un − uhkn )x, w
h
x) = −β∗(θn − θhkn + ξn − ξhkn , whx),

and so, we have, for all wh ∈ V h,

ρ(v̇n − δvhkn , vn − vhkn ) + µ((un − uhkn )x, (vn − vhkn )x)

+ β∗(θn − θhkn + ξn − ξhkn , (vn − vhkn )x)

= ρ(v̇n − δvhkn , vn − wh) + µ((un − uhkn )x, (vn − wh)x)

+ β∗(θn − θhkn + ξn − ξhkn , (vn − wh)x).

Taking into account that

(v̇n − δvhkn , vn − vhkn ) = (v̇n − δvn, vn − vhkn ) + (δvn − δvhkn , vn − vhkn ),

(δvn − δvhkn , vn − vhkn ) ≥ 1

2k

{
‖vn − vhkn ‖2 − ‖vn−1 − vhkn−1‖2

}
,

((un − uhkn )x, (vn − vhkn )x) ≥ ((un − uhkn )x, (u̇n − δun)x)

+
1

2k

{
‖(un − uhkn )x‖2 − ‖(un−1 − uhkn−1)x‖2

}
,

where δvn = (vn − vn−1)/k, δun = (un − un−1)/k, using several times Cauchy’s
inequality

(3.10) ab ≤ εa2 +
1

4ε
b2, a, b, ε ∈ R, ε > 0,

it follows that, for all wh ∈ V h,

(3.11)
ρ

2k

{
‖vn−vhkn ‖2−‖vn−1−vhkn−1‖2

}
+β∗(θn−θhkn +ξn−ξhkn , (vn−vhkn )x)

+
µ

2k

{
‖(un−uhkn )x‖2−‖(un−1−uhkn−1)x‖2

}
≤ C

(
‖v̇n−δvn‖2+‖(u̇n−δun)x‖2+‖vn−wh‖2H1(0,`)+‖(un−uhkn )x‖2

+‖ξn−ξhkn ‖2+‖vn−vhkn ‖2+‖θn−θhkn ‖2+(δvn−δvhkn , vn−wh)
)
,

where, from now on, C is a positive constant assumed to be independent of the
discretization parameters h and k, and whose value may change from line to
line.
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Now, we obtain the error estimates on the temperature speed. Thus, sub-
tracting variational equation (2.6) at time t = tn for a test function w = wh ∈
W h ⊂W and discrete variational equation (3.7), we have, for all rh ∈W h,

c(ξn − ξhkn + ξ̇n − δξhkn , ξn − ξhkn )− β∗((vn − vhkn )x, ξn − ξhkn )

− κ((Tn − T hkn )xx, ξn − ξhkn )− κ∗((βn − βhkn )xx, ξn − ξhkn )

= c(ξn − ξhkn + ξ̇n − δξhkn , ξn − rh)− β∗((vn − vhkn )x, ξn − rh)

− κ((Tn − T hkn )xx, ξn − rh)− κ∗((βn − βhkn )xx, ξn − rh).

Keeping in mind that

(ξ̇n − δξhkn , ξn − ξhkn ) = (ξ̇n − δξn, ξn − ξhkn ) + (δξn − δξhkn , ξn − ξhkn ),

(δξn − δξhkn , ξn − ξhkn ) ≥ 1

2k

{
‖ξn − ξhkn ‖2 − ‖ξn−1 − ξhkn−1‖2

}
,

using Cauchy’s inequality (3.10) we find that, for all rh ∈W h,

(3.12)
c

2k

{
‖ξn − ξhkn ‖2 − ‖ξn−1 − ξhkn−1‖2

}
− β∗((vn − vhkn )x, ξn − ξhkn )

≤ C
(
‖ξ̇n − δξn‖2 + ‖ξn − rh‖2 + ‖(Tn − T hkn )xx‖2 + ‖(βn − βhkn )xx‖2

+ ((δun − δuhkn )x, ξn − rh) + ‖ξn − ξhkn ‖2 + ‖(u̇n − δun)x‖2

+ (δξn − δξhkn , ξn − rh)
)
,

where δξn = (ξn − ξn−1)/k and we have used conditions (2.4).
Combining estimates (3.11) and (3.12), it follows that

ρ

2k

{
‖vn − vhkn ‖2 − ‖vn−1 − vhkn−1‖2

}
+

µ

2k

{
‖(un − uhkn )x‖2 − ‖(un−1 − uhkn−1)x‖2

}
+

c

2k

{
‖ξn − ξhkn ‖2 − ‖ξn−1 − ξhkn−1‖2

}
+ β∗(θn − θhkn , (δun − δuhkn )x)

≤ C
(
‖v̇n − δvn‖2 + ‖u̇n − δun‖2H1(0,`) + ‖vn − wh‖2H1(0,`) + ‖(un − uhkn )x‖2

+ ‖ξn − ξhkn ‖2 + ‖vn − vhkn ‖2 + (δvn − δvhkn , vn − wh) + ‖ξ̇n − δξn‖2

+ ‖ξn − rh‖2 + ‖(Tn − T hkn )xx‖2 + (δξn − δξhkn , ξn − rh)

+ ((δun − δuhkn )x, ξn − rh) + ‖θn − θhkn ‖2 + ‖(βn − βhkn )xx‖2
)
.

Multiplying the above estimates by k and summing up to n, we have

(3.13) ‖vn − vhkn ‖2 + ‖(un − uhkn )x‖2 + ‖ξn − ξhkn ‖2

+ Ck
n∑
j=1

(θj − θhkj , (δuj − δuhkj )x)
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≤ Ck
n∑
j=1

(
‖v̇j − δvj‖2 + ‖u̇j − δuj‖2V + ((δuj − δuhkj )x, ξj − rhj )

+ ‖vj − whj ‖2V + ‖(uj − uhkj )x‖2 + ‖ξj − ξhkj ‖2 + ‖vj − vhkj ‖2 + ‖ξ̇j − δξj‖2

+ (δvj − δvhkj , vj − whj ) + ‖ξj − rhj ‖2 + ‖(Tj − T hkj )xx‖2

+ (δξj − δξhkj , ξj − rhj ) + ‖θj − θhkj ‖2 + ‖(βj − βhkj )xx‖2
)

+ C(‖v0 − vh0‖2 + ‖(u0 − uh0)x‖2 + ‖ξ0 − ξh0 ‖2).

Finally, we get the error estimates on the inductive temperature. Therefore,
subtracting variational equation (2.7) at time t = tn for a test function l = lh ∈
W h ⊂ Y and discrete variational equation (3.8) we obtain

(θn − θhkn , lh) = (Tn − T hkn − a(Tn − T hkn )xx, l
h), ∀lh ∈W h,

and so, we have, for all mh ∈ Eh (because mh
xx ∈W h),

(θn − θhkn , (Tn − T hkn )xx)− (Tn − T hkn − a(Tn − T hkn )xx, (Tn − T hkn )xx)

= (θn − θhkn , (Tn −mh)xx)− (Tn − T hkn − a(Tn − T hkn )xx, (Tn −mh)xx).

Taking into account that:

−(Tn − T hkn , (Tn − T hkn )xx) = ((Tn − T hkn )x, (Tn − T hkn )x),

−(Tn − T hkn , (Tn −mh)xx) = ((Tn − T hkn )x, (Tn −mh)x),

using several times Cauchy’s inequality (3.10) we obtain, for all mh ∈ Eh,

(3.14) ‖(Tn − T hkn )x‖2 + ‖(Tn − T hkn )xx‖2

≤ C
(
‖(Tn −mh)xx‖2 + ‖θn − θhkn ‖2 + ‖(Tn −mh)x‖2

)
.

Now, from estimates (3.13) and (3.14) we find that

‖vn − vhkn ‖2 + ‖(un − uhkn )x‖2 + ‖ξn − ξhkn ‖2 + ‖(Tn − T hkn )x‖2

+ ‖(Tn − T hkn )xx‖2 + Ck
n∑
j=1

(θj − θhkj , (δuj − δuhkj )x)

≤ Ck
n∑
j=1

(
‖v̇j − δvj‖2 + ‖u̇j − δuj‖2V + ‖vj − whj ‖2V + ‖(uj − uhkj )x‖2

+ ‖ξj − ξhkj ‖2 + ‖vj − vhkj ‖2 + ‖ξ̇j − δξj‖2 + ‖ξj − rhj ‖2

+ ((δuj − δuhkj )x, ξj − rhj ) + (δvj − δvhkj , vj − whj )

+ ‖(Tj − T hkj )xx‖2 + (δξj − δξhkj , ξj − rhj )

+ ‖θj − θhkj ‖2 + ‖(βj − βhkj )xx‖2
)

+ C
(
‖Tn −mh‖2H2(0,`) + ‖θn − θhkn ‖2

)
+ C

(
‖v0 − vh0‖2 + ‖(u0 − uh0)x‖2 + ‖ξ0 − ξh0 ‖2

)
.



400 J. Baldonedo, J. R. Fernández, R. Quintanilla

Keeping in mind that:
n∑
j=1

(vj − vhkj − (vj−1 − vhkj−1), vj − whj )

= (vn−vhkn , vn−whn)+(vh0−v0, v1−wh1 )+
n−1∑
j=1

(vj−vhkj , vj−whj−(vj+1−whj+1)),

n∑
j=1

(ξj − ξhkj − (ξj−1 − ξhkj−1), ξj − rhj )

= (ξn−ξhkn , ξn−rhn)+(ξh0 −ξ0, ξ1−rh1 )+
n−1∑
j=1

(ξj−ξhkj , ξj−rhj −(ξj+1−rhj+1)),

n∑
j=1

((uj − uhkj − (uj−1 − uhkj−1))x, ξj − rhj ) = ((un − uhkn )x, ξn − rhn)

+ ((uh0 − u0)x, ξ1 − rh1 ) +
n−1∑
j=1

((uj − uhkj )x, ξj − rhj − (ξj+1 − rhj+1)),

n∑
j=1

(θj − θhkj , (uj − uhkj − (uj−1 − uhkj−1))x) = (θn − θhkn , (un − uhkn )x)

− (θ0 − θh0 , (u0 − uh0)x)− k
n∑
j=1

(δθj − δθhkj , (uj − uhkj )x),

‖αn − αhkn ‖2 ≤ C
(
‖α0 − αh0‖2 + I1

n + k
n∑
j=1

‖θn − θhkn ‖2
)
,

‖θn − θhkn ‖2 ≤ C
(
‖θ0 − θh0‖2 + I2

n + k
n∑
j=1

‖ξn − ξhkn ‖2
)
,

‖(βn − βhkn )xx‖2 ≤ C
(
‖(β0 − βh0 )xx‖2 + I3

n + k

n∑
j=1

‖(Tn − T hkn )xx‖2
)
,

where I1
n, I2

n and I3
n are the integration errors defined as:

I1
n =

∥∥∥∥
tn∫

0

θ(s) ds− k
n∑
j=1

θj

∥∥∥∥2

,

I2
n =

∥∥∥∥
tn∫

0

ξ(s) ds− k
n∑
j=1

ξj

∥∥∥∥2

,

I3
n =

∥∥∥∥
tn∫

0

Txx(s) ds− k
n∑
j=1

(Txx)j

∥∥∥∥2

,
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and applying a discrete version of Gronwall’s inequality (see, again, [34]) it leads
to the following a priori error estimates result.

Theorem 2. Let the assumptions of Theorem 1 still hold. If we denote by
(u, v, α, θ, ξ, β, T ) the solution to problem (2.5)–(2.8) and by (uhk, vhk, αhk, θhk,
ξhk, βhk, T hk) the solution to problem (3.6)–(3.9), then we have the following
a priori error estimates, for all wh = {whj }Nj=0 ⊂ V h, and rh = {rhj }Nj=0 ⊂ W h,
mh = {mh

j }Nj=0 ⊂ Eh,

max
0≤n≤N

{
‖vn − vhkn ‖2 + ‖un − uhkn ‖2H1(0,`) + ‖ξn − ξhkn ‖2 + ‖θn − θhkn ‖2

+ ‖αn − αhkn ‖2 + ‖Tn − T hkn ‖2H2(0,`) + ‖βn − βhkn ‖2H2(0,`)

}
≤ Ck

N∑
j=1

(
‖v̇j − δvj‖2 + ‖u̇j − δuj‖2H1(0,`) + ‖vj − whj ‖2H1(0,`) + ‖ξ̇j − δξj‖2

+ ‖ξj − rhj ‖2 + I1
j + I2

j + I3
j + ‖θ̇j − δθj‖2

)
+ C max

0≤n≤N
‖vn − whn‖2 + C max

0≤n≤N
‖ξn − rhn‖2 + C max

0≤n≤N
‖Tn −mh

n‖2H2(0,`)

+
C

k

N−1∑
j=1

(
‖vj − whj − (vj+1 − whj+1)‖2 + ‖ξj − rhj − (ξj+1 − rhj+1)‖2

)
+ C

(
‖v0 − vh0‖2 + ‖u0 − uh0‖2H1(0,`) + ‖ξ0 − ξh0 ‖2 + ‖θ0 − θh0‖2 + ‖α0 − αh0‖2

+ ‖β0 − βh0 ‖2H2(0,`) + ‖T0 − T h0 ‖2H2(0,`)

)
,

where C is a positive constant which does not depend on parameters h and k and
we have used the notation ‖ · ‖X to represent the norm of the Hilbert space X.

Remark 1. From the above estimates we can obtain the convergence order
of the approximations provided by the discrete problem (3.6)–(3.9). So, if we
assume the following additional regularity:

(3.15)

u ∈ H3(0, T ;Y ) ∩H2(0, T ;V ) ∩ C1([0, T ];H2(0, `)),

α ∈ H4(0, T ;Y ) ∩ C2([0, T ];H1(0, `)) ∩H3(0, T ;V ),

β ∈ H2(0, T ;Y ) ∩ C1([0, T ];H3(0, `)),

applying some results on the approximation by finite elements (see [33]) and the
estimates (see [34]):

C

k

N−1∑
j=1

(
‖vj − whj − (vj+1 − whj+1)‖2 + ‖ξj − rhj − (ξj+1 − rhj+1)‖2

)
≤ C(h2 + k2)(‖u‖2H2(0,T ;V ) + ‖α‖2H3(0,T ;V )),
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we obtain the linear convergence of the algorithm. That is, it follows that there
exists a positive constant C > 0, independent of the discretization parameters h
and k, such that

max
0≤n≤N

{
‖vn − vhkn ‖+ ‖un − uhkn ‖H1(0,`) + ‖ξn − ξhkn ‖+ ‖θn − θhkn ‖

+ ‖αn − αhkn ‖+ ‖Tn − T hkn ‖H2(0,`) + ‖βn − βhkn ‖H2(0,`)

}
≤ C(h+ k).

4. Numerical results

In this final section, we show some numerical results solving the discrete
problem analyzed in the previous section, including the numerical convergence
and the discrete energy decay.

We note that the numerical scheme was implemented on a 1.8GHz PC using
MATLAB, and a typical run (h = k = 0.001 for a final time Tf = 1 and length
of the beam ` = 1) took about 3 seconds of CPU time.

As an academical example, in order to show the accuracy of the approxima-
tion we consider problem (2.1)–(2.3) with the data:

` = 1, Tf = 0.5, ρ = 2, µ = 10, β∗ = 2,

c = 2, τ = 0.5, κ = 2, κ∗ = 1, a = 2.

By using the following initial conditions, for all x ∈ (0, 1),

u0(x) = v0(x) = x3(x− 1)3, β0(x) = T0(x) = ϑ0(x) = 7x3(x− 1)3,

and considering the (artificial) supply terms, for all (x, t) ∈ (0, 1)× (0, 1),

F1(x, t) = −et(2x6 − 132x5 + 21x4 + 5386x3 − 7857x2 + 3084x− 252),

F2(x, t) = 0,

F3(x, t) = −3xet(−7x5 + 25x4 + 599x3 − 1245x2 + 754x− 126),

the exact solution to the above problem can be easily calculated and it has the
form, for (x, t) ∈ [0, 1]× [0, 1]:

u(x, t) = etx3(x− 1)3, β(x, t) = 7etx3(x− 1)3,

α(x, t) = θ(x, t) = −7xet(−x5 + 3x4 + 27x3 − 59x2 + 36x− 6).

We note that functions F1, F2 and F3 are used to obtain an easy exact solution.
The analysis of this slightly modified problem is done as in the previous sections
with some straightforward changes.

Thus, the approximation errors estimated by

max
0≤n≤N

{
‖vn − vhkn ‖+ ‖un − uhkn ‖H1(0,`) + ‖ξn − ξhkn ‖+ ‖θn − θhkn ‖

+ ‖αn − αhkn ‖+ ‖Tn − T hkn ‖H2(0,`) + ‖βn − βhkn ‖H2(0,`)

}
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are presented in Table 1 for several values of the discretization parameters h
and k. Moreover, by using the diagonal of this table the evolution of the error
depending on the parameter h+k is plotted in Fig. 1. We notice that the conver-
gence of the algorithm is clearly observed, although the linear convergence, stated
in Remark 1, is not achieved. This fact has also been observed in the analysis
of other two-temperatures problems and maybe it is due to a superconvergence
property which arises in this kind of problems.

Table 1. Numerical errors for some h and k.

h ↓ k → 0.1 0.05 0.01 0.005 0.001 0.0005 0.0001

0.1 1.455431 1.546087 1.753793 1.809254 1.866552 1.875182 1.882523
0.05 0.388811 0.341761 0.427286 0.449906 0.471635 0.474768 0.477426
0.01 0.402299 0.196183 0.034794 0.018994 0.017558 0.018637 0.019638
0.005 0.408483 0.202239 0.038642 0.018471 0.004642 0.004409 0.005047
0.001 0.410633 0.204409 0.040826 0.020442 0.003975 0.001969 0.000767

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.5

1

1.5
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um
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ic
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 e

rr
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Fig. 1. Asymptotic error.

Now, we consider the evolution of the discrete energy for different values of
the diffusion coefficient κ. We assume that there are not supply terms, and we
use the final time Tf = 100, the data:

` = 1, ρ = 2, µ = 1, β∗ = 0.5, c = 2, τ = 0.1, κ∗ = 10, a = 2,

and the initial conditions, for all x ∈ (0, 1),

u0(x) = v0(x) = x3(x− 1)3, β0(x) = T0(x) = ϑ0(x) = x3(x− 1)3.
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Taking the discretization parameters h = 0.002 and k = 0.001, the evolution
in time of the discrete energy given by

Ehk =
1

2

`∫
0

(
ρ(vhkn )2 + µ(uhknx)2 + c(θhkn + τξhkn )2 + κ∗(βhknx + τT hknx )2

+ τκ(T hknx )2 + aκ∗(βhknxx + τT hknxx)2 + τaκ(T hknxx)2
)

dx,

where we recall that κ = κ − τκ∗, is plotted in Fig. 2 for some values of the
diffusion coefficient κ (in both natural and semi-log scales). As we can see, the
exponential decay seems to be achieved for every value of parameter κ although
the energy decreases in a slower way, when it increases. A possible justification
could be that the beam becomes more rigid, in its elastic part, and it is more
difficult to stabilize the system.
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Fig. 2. Evolution in time of the discrete energy depending on the diffusion parameter κ
(natural and semi-log scales).

5. Conclusions

In this work, we analyzed, from the numerical point of view, a dynamic
thermoelastic problem with two temperatures (the classical and the inductive
temperatures). The so-called Moore–Gibson–Thompson equation was used in
the modeling of the thermal part. An existence and uniqueness result proved
in [32] was recalled. Then, by using the classical finite element method and
the implicit Euler scheme we introduced a fully discrete approximation of the
resulting variational problem. An a priori error estimates were obtained, after
some tedious algebraic manipulations, by using a discrete version of Gronwall’s
inequality. Finally, some numerical results were performed to demonstrate the
behavior of the algorithm (the convergence was shown in the first example),



On the fully discrete approximations. . . 405

the exponential decay of the discrete energy and the dependence on a diffusion
parameter.

The obtained behavior for the solutions is similar to the one found from the
empirical point of view. Therefore, the study described previously gives a first
positive reason to consider the proposed thermoelastic system from a realistic
(mechanical) point of view.
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