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The paper presents numerical simulations of single- and multi-step shear stress
relaxations of isotropic magnetorheological elastomer (MRE) using fractional deriva-
tive Maxwell and Kelvin–Voigt viscoelastic models. The isotropic MRE has been
fabricated by filling micro-sized carbonyl iron particles in silicone rubber. Fractional
derivative Maxwell and Kelvin–Voigt viscoelastic models were used to fit the experi-
mental data of the isotropic MRE measured by single- and multi-step relaxation tests
at different constant strains and external magnetic fields. The fractional Maxwell vis-
coelastic model showed a relatively large difference between the measured and calcu-
lated results. The fractional Kelvin–Voigt model was fitted well with the experimental
data of the isotropic MRE at various constant strain levels under different magnetic
fields in both single- and multi-step shear stress relaxations. The calculated shear
stress with the long-term prediction is in excellent agreement with the measured one.
Therefore, the fractional derivative Kelvin–Voigt viscoelastic model is applicable to
predict the long-term stress relaxation of the isotropic MRE.
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1. Introduction

Magnetorheological elastomers (MREs), described by Rigbi and Jil-
ken in 1983 [1], are an emerging class of intelligent materials because they are ca-
pable of changing their shape, mechanical characteristic, and damping properties
in the presence of a magnetic field [2]. MREs have been prepared by filling magne-
tizable particles in non-magnetic polymer matrices. They exhibit changes in their
shape, rheological, viscoelastic, and damping properties under an external mag-
netic field [3]. MREs have been potential applications in vibration absorbers and
isolators [4–7], sensors and actuators [8, 9], engine mounts for automobiles [10],
peristaltic pumps [11], metamaterials [12, 13], shape-morphing structures [14],
and soft robotics [15]. Therefore, the research on the time-dependent viscoelastic
properties of MREs is essential for real engineering applications.
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Among the time-dependent mechanical properties of viscoelastic polymeric
materials, stress relaxation has been extensively studied by experimental and nu-
merical methods. The simple shear and compression stress relaxations of filled
natural rubbers were presented by Amin et al. [16]. Besides, the simple compres-
sive stress relaxation behavior of filled rubber composites in tensile and compres-
sion regimes was studied by Wang and Han [17]. The shear stress relaxation
response of MRE based on the polyurethane/epoxy interpenetrating polymer
networks matrix was examined [18]. Recently, the shear band formation in MRE
under stress relaxation has been reported by Johari et al. [19]. The correlation
between the microstructural deformation and durability performance of MREs
under stress relaxation was presented [20]. Most recently, the stress relaxations
of isotropic and anisotropic MREs in the shear mode using single- and multi-step
relaxation tests have been investigated by Nam et al. [21, 22].

The stress relaxation of viscoelastic polymeric materials can be examined nu-
merically using fractional derivative viscoelastic models [21–23]. Fractional vis-
coelastic models (Maxwell, Kelvin–Voigt, Poynting–Thomson, Zener, etc.) have
been constructed by the series and/or parallel combinations of elastic spring
and fractional-order dashpot [24–26]. In fractional derivative viscoelastic models,
the elastic spring is utilized to represent the time-independent elastic behavior,
while the fractional-order dashpot is used to describe the time-dependent vis-
cous response. Several fractional derivatives have been applied for viscoelastic
models, such as the Riemann–Liouville derivative, the Caputo derivative, the
Hadamard derivative, and fractional derivatives with the exponential function
or the Mittag–Leffler function. The Mittag–Leffler function was considered to be
a general empirical law for both creep and relaxation functions [27, 28]. Besides,
Guo et al. [23] showed that the Mittag–Leffler function is applicable for fitting
the measured data of stress relaxation of polyurethane foams.

In our previous studies [21, 22], four-parameter fractional Zener and Poynt-
ing–Thomson viscoelastic models were applied to describe the stress relaxation
behavior of MREs. The stress relaxation response of the isotropic MRE was ex-
amined by single- and multi-step relaxation tests in a shear mode using double-
lap shear specimens. For this study, numerical simulations of single- and multi-
step shear stress relaxations of the isotropic MRE were investigated using the
simplest fractional derivative viscoelastic models with only three parameters,
namely fractional Maxwell model (FMM) and fractional Kelvin–Voigt model
(FKM). The model parameters were determined by fitting the short-term ex-
perimental data and were used to predict the long-term stress relaxation of the
isotropic MRE. The maximal difference between model fitted and measured data
was presented to indicate the most suitable model for depicting the stress relax-
ation of the isotropic MRE.
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2. Materials and methods

2.1. Materials

The isotropic MRE is fabricated from micro-sized CIPs, silicone rubber ZA13,
and its catalyst. The silicone rubber ZA13 and its catalyst are produced by Zher-
mack S.P.A (Italy) and are supplied by Havel Composites Ltd. (Czech Republic).
The micro-sized CIPs (type: 44890) provided by Sigma-Aldrich (USA) have a pu-
rity of 99.5% and a density of 7.86 g/cm3. The grain size of the CIPs is between
5 and 9 µm. The microstructural morphology of the CIPs and their diameter
as a function of the volume fraction in overall distribution can be found in our
earlier article [29].

The fabrication of the isotropic MRE is described as follows. At first, the
silicone rubber ZA13 was mixed with its catalyst in a mass ratio of 1:1. Sub-
sequently, the micro-sized CIPs with a volume fraction of 27% were added to
the mixture. Next, the mixture was well stirred in a glass cup and then placed
in a vacuum chamber for about 15 min to remove air bubbles trapped inside
the material during the mixing process. Afterward, the mixture was filled into a
plastic mold and was put in the vacuum chamber for about 10 min to eliminate
thoroughly the air bubbles trapped inside the mixture. Finally, the mixture in
the mold was cured overnight at room temperature (RT) in the chamber while
the vacuum pump was turned off to obtain the isotropic MRE. Microstructural
morphologies of the isotropic MRE can be found in our earlier report [29].

2.2. Stress relaxation measurements

The shear stress relaxation of the isotropic MRE was studied using single-
and multi-step relaxation tests. The stress relaxation tests were conducted for
double-lap shear MRE samples at various constant strains (5, 10, 15, and 20%)
with the magnetic flux density (MFD) changing from zero to 0.58 T using an
Instron Electropuls testing system. The shear test, MRE double-lap sample, and
electromagnet system were depicted in our earlier papers [21, 22, 29]. In the
single- and multi-step relaxation tests, a strain rate of 1.0/s was applied in load-
ing and unloading paths. The stress relaxation was recorded for 1000 s in the
single-step relaxation test and 600 s for each step of the multi-step relaxation
test. Shear strain-time curves of the isotropic MRE in the single- and multi-step
relaxation tests are presented in Fig. 1. In the single-step relaxation test, a con-
stant shear strain ε0 is applied, and the stress σ(t) is measured. The relaxation
modulus is estimated using the formulation G(t) = σ(t)/ε0. The measured re-
sults of the stress relaxation for the isotropic MRE are presented along with the
numerical simulation results.
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Fig. 1. Applied constant shear strains in (a) single- and (b) multi-step relaxation tests.

3. Fractional derivative viscoelastic models

The simplest fractional derivative viscoelastic models FMM and FKM were
used to deal with the stress relaxation behavior of the isotropic MRE. These
models were built by the series and/or parallel combinations of elastic spring and
fractional-order dashpot. Figure 2 shows the single-element FMM and FKM.

Fig. 2. Fractional derivative viscoelastic models: (a) FMM, (b) FKM.

The constitutive equations for the FMM and FKM in the time domain, re-
spectively, are written as follows [25]:
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dtα
+
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where E0 is the elastic moduli of the springs, τ is the relaxation time of the
fractional dashpot, and α is the fractional order with values varying between 0
and 1 [25].

The Riemann–Liouville (RL) fractional derivative was applied to the FMM
and FKM to determine the stress relaxation functions. The RL fractional deriva-
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tive is defined as [24]:

(3.3) RLDαf(t) =
dαf(t)

dtα
=

1

Γ(1− α)

d

dt

t∫
0

f(s)

(t− s)α
ds,

where Γ is the Eulerian Gamma function.
The Laplace transform of the fractional derivative of the order α is given by

the following equation if the function f(t) vanishes at t = 0 [27]:

(3.4) L{Dαf(t); s} = sαf̃(s),

where f̃(s) is the transform function of f(t).
Applying the Laplace transform to Eq. (3.1) yields the following relationship:

(3.5) σ̃(s) =
E0s

α

sα + 1
τα
ε̃(s).

The Laplace transform of the relaxation modulus of the FMM can be derived
as [28, 30]:

(3.6) G̃(s) =
σ̃(s)

sε̃(s)
= E0

sα−1

sα + 1
τα
.

Setting ε = ε0 and taking the inverse Laplace transform to Eq. (3.6), the
relaxation modulus of the FMM with Mittag–Leffler function kernel is obtained
as [28]:

(3.7) GFMM (t) = E0Mα

(
−
(
t

τ

)α)
,

where Mα(x) is the single parameter Mittag–Leffler function and is defined as
[31]:

(3.8) Mα(x) =
∞∑
n=0

xn

Γ(1 + αn)
.

Using the same procedure of FMM leads to the relaxation modulus of FKM as
follows [28]:

(3.9) GFKM (t) = E0(1 +
(t/τ)−α

Γ(1− α)
).
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4. Numerical simulation results and comparison with measured data

4.1. Single-step stress relaxation results

The FMM and FKM were applied to study the single- and multi-step stress
relaxations of the isotropic MRE. Equations (3.7) and (3.9) were used to fit the
relaxation modulus measured by the single- and multi-step relaxation tests. The
fitting was done using the nonlinear least-squares method in Matlab. The values
of the Mittag-Leffler function were computed according to an optimal parabolic
contour (OPC) algorithm described by Garrappa [32]. The OPC method al-
lowed the efficient calculation of the Mittag-Leffler function with high accuracy
based on the numerical inversion of its Laplace transform. The parameters of the
models FMM and FKM fitted with the experimental data of the single-step stress
relaxation for the isotropic MRE at various constant strains are given in Table 1.
The fitted and experimental relaxation moduli at different constant strains are
presented in Fig. 3. A comparison of calculated and experimental shear stress at
various constant strains for the isotropic MRE is depicted in Fig. 4.

Table 1. Fitting parameters of FMM and FKM to single-step stress relaxation
data for the isotropic MRE.

Constant strain
FMM FKM

E0 [MPa] α τ [s] E0 [MPa] α τ [s]
0.05 1.92 0.052 4.61E-09 0.359 0.224 3.96E-02
0.10 1.79 0.051 6.73E-09 0.357 0.230 3.35E-02
0.15 1.79 0.051 4.95E-09 0.353 0.240 3.94E-02
0.20 1.73 0.050 6.01E-09 0.353 0.257 4.85E-02

It is clear from Table 1 that with the increase of the constant strain in the
FMM, the parameter E0 decreases slightly, while the fractional order α is nearly
unchanged. For the FKM, although the fractional order increases with increas-
ing the constant strain, the parameter E0 changes slightly. Compared to the
FKM, the FMM shows a much higher parameter E0 and significantly lower frac-
tional order α and the relaxation time τ as well. The parameter τ of the models
describes the time at which the transition is centered for the relaxation modu-
lus [21]. The fractional order α represents the distribution of stress relaxation
processes [22]. Hence, it has a significant physical interpretation. A smaller α
shows that materials have a broad distribution of stress relaxation processes.
The results in Table 1 indicated that the FMM exhibits a more pronounced
elastic property and less viscous characteristic than the FKM.

Besides, the maximal differences between the measured and fitted relaxation
moduli of the FMM and FKM are 5.23% and 0.69%, respectively. Therefore,
fitting the relaxation modulus of the FMM to measured data is less accurate
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(a) (b)

Fig. 3. Relaxation modulus (experimental and model fitted curves) of the isotropic MRE at
different constant strains in the single-step stress relaxation. The insets are the zooms of the

relaxation modulus.

(a) (b)

Fig. 4. Shear stress (experimental and calculated curves) of the isotropic MRE at different
constant strains in the single-step stress relaxation.

than that of the FKM (see Fig. 3). The less accuracy of the fitting relaxation
modulus of the FMM is attributable to a much smaller fractional order and the
extremely short relaxation time of the FMM. The comparison between measured
and estimated shear stresses in Fig. 4 also indicates a better agreement of the
FKM than the FMM. The maximal differences between measured and calculated
stresses of the FMM and FKM are 4.39% and 1.23%, respectively.

Moreover, the single-step stress relaxation of the isotropic MRE under differ-
ent MFDs was numerically investigated using the FMM and FKM. The param-
eters of the FMM and FKM fitted to the experimental data of the single-step
stress relaxation at various constant strains under different MFDs are given in
Tables 2 and 3. The fittings of the relaxation modulus to the measured data at
the constant strain of 20% under various MFDs for the isotropic MRE in the
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single-step stress relaxation are presented in Fig. 5. The comparison between
measured shear stresses of the isotropic MRE in the single-step relaxation and
calculated stresses with long-term predictions over time using the investigated
models is described in Fig. 6.

As Tables 2 and 3 show, although the fractional parameter α has an uneven
change with raising the MFD, the parameter E0 enhances with increasing the
MFD to about 0.5 T and then changes slightly above 0.5 T. The variation of

Table 2. Fitting parameters of the FMM to the measured data of the single-step
relaxation test for the isotropic MRE.

Strain Parameter
MFD [T]

0.201 0.373 0.478 0.538 0.58

0.05
E0 [MPa] 1.975 2.072 2.199 2.210 2.231

α 0.052 0.051 0.052 0.051 0.052
τ [s] 4.81E-09 4.45E-09 6.03E-09 4.75E-09 7.69E-09

0.10
E0 [MPa] 1.836 1.961 1.995 2.085 2.093

α 0.049 0.050 0.050 0.051 0.051
τ [s] 4.51E-09 4.34E-09 7.38E-09 4.25E-09 4.78E-09

0.15
E0 [MPa] 1.867 1.917 1.988 2.020 2.002

α 0.051 0.050 0.051 0.051 0.051
τ [s] 4.55E-09 6.75E-09 6.69E-09 4.64E-09 7.49E-09

0.20
E0 [MPa] 1.729 1.745 1.787 1.856 1.846

α 0.047 0.045 0.046 0.047 0.047
τ [s] 6.65E-09 4.54E-09 5.51E-09 3.45E-09 4.87E-09

Table 3. Fitting parameters of the FKM to the measured data of the single-step
relaxation test for the isotropic MRE.

Strain Parameter
MFD [T]

0.201 0.373 0.478 0.538 0.58

0.05
E0 [MPa] 0.376 0.407 0.427 0.430 0.426

α 0.237 0.249 0.253 0.245 0.228
τ [s] 4.37E-02 4.94E-02 4.73E-02 4.79E-02 4.79E-02

0.10
E0 [MPa] 0.376 0.400 0.405 0.409 0.416

α 0.250 0.268 0.252 0.247 0.239
τ [s] 3.58E-02 3.89E-02 3.93E-02 4.02E-02 3.70E-02

0.15
E0 [MPa] 0.364 0.382 0.393 0.398 0.400

α 0.242 0.243 0.247 0.248 0.242
τ [s] 3.95E-02 3.30E-02 4.33E-02 4.12E-02 3.97E-02

0.20
E0 [MPa] 0.371 0.395 0.401 0.403 0.405

α 0.259 0.298 0.286 0.283 0.283
τ [s] 3.94E-02 4.66E-02 4.60E-02 4.33E-02 4.27E-02
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the parameter E0 with the rise in the MFD is similar to the change of the
relaxation modulus and shear stress of the isotropic MRE (see Figs. 5 and 6). This
change can be explained by the fact that the CIPs in the isotropic MRE under
magnetic fields tend to move closer, leading to increasing the interaction between
them, thereby enhancing the strength and stiffness of the isotropic MRE [21].
Besides, the rise in the relaxation modulus with raising the MFD is ascribable
to increasing the MR effect of the isotropic MRE [29]. However, the relaxation
modulus and shear stress grow slightly with the rise of the MFD above 0.5 T.
This result indicates that the gain in the relaxation modulus and shear stress is
limited even though the MFD is increased because the solid-like behavior of the
isotropic MRE restricted the movement of CIPs under high MFDs.

As described above, the FMM shows a much greater parameter E0 and lower
fractional order α than the FKM. The MREs with smaller α values need a broad

(a) (b)

Fig. 5. Relaxation modulus (experimental and model fitted curves) of the isotropic MRE at
the constant strain of 20% under different MFDs in the single-step stress relaxation.

(a) (b)

Fig. 6. Shear stress (experimental and model fitted curves) of the isotropic MRE at the
constant strain of 20% under different MFDs in the single-step stress relaxation. The insert is

a zoom of the first 1000 s.
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distribution of relaxation time [21, 22]. Besides, fitting the relaxation modulus of
the FKM to the experimental data is more accurate than that of the FMM (see
Fig. 5). Moreover, the comparison between experimental and calculated stresses
with long-term predictions in Fig. 6 also shows a better agreement of the FKM
than the FMM. The maximal differences between the measured and estimated
curves of the relaxation modulus and shear stress of the FMM and FKM are
6.32% and 5.37%, and 1.07% and 1.29%, respectively. Generally, the FKM with
only three parameters was fitted well with the measured data of the single-step
relaxation test for the isotropic MRE. This model can be used to predict the
long-term single-step relaxation of the isotropic MRE.

4.2. Multi-step stress relaxation results

The multi-step stress relaxation behavior of the isotropic MRE was described
using the FMM and FKM. The fittings of the FMM and FKM to the measured
results in the multi-step relaxation test were done using the nonlinear least-
squares method in Matlab. The parameters of studied models obtained from
the fittings of the multi-step relaxation modulus to the experimental data are
given in Tables 4 and 5. The models fitted relaxation modulus compared to the
measured data of the isotropic MRE sample under various MFDs in the multi-

Table 4. Fitting parameters of the FMM to the measured data of the multi-step
relaxation test for the isotropic MRE.

MFD [T] Parameters
Steps

1 2 3 4 5 6 7 8 9

0
E0 [MPa] 1.712 1.202 1.045 0.986 0.969 1.457 1.559 1.705 2.193

α 0.047 0.030 0.023 0.021 0.023 0.009 0.013 0.018 0.031
τ [s] 5.90E-09 1.18E-08 3.81E-08 2.68E-07 3.48E-06 2.86E-08 2.53E-08 2.32E-08 9.56E-09

0.201
E0 [MPa] 1.752 1.257 1.097 1.019 0.997 1.461 1.565 1.752 2.328

α 0.047 0.031 0.024 0.021 0.022 0.010 0.013 0.019 0.034
τ [s] 1.04E-08 1.31E-08 2.22E-08 8.06E-08 9.79E-07 2.71E-08 1.01E-08 2.04E-08 1.01E-08

0.373
E0 [MPa] 1.976 1.381 1.177 1.093 1.074 1.460 1.599 1.798 2.437

α 0.050 0.033 0.026 0.022 0.022 0.011 0.015 0.020 0.034
τ [s] 4.62E-09 1.09E-08 1.87E-08 2.16E-08 5.20E-08 2.23E-08 1.97E-08 1.73E-08 1.06E-08

0.478
E0 [MPa] 2.129 1.448 1.231 1.131 1.100 1.465 1.612 1.845 2.552

α 0.053 0.035 0.027 0.023 0.022 0.012 0.016 0.022 0.035
τ [s] 6.53E-09 1.14E-08 1.25E-08 1.94E-08 3.41E-08 1.98E-08 2.61E-08 1.57E-08 1.11E-08

0.538
E0 [MPa] 2.139 1.462 1.228 1.121 1.084 1.465 1.612 1.865 2.625

α 0.052 0.036 0.027 0.022 0.021 0.012 0.016 0.022 0.036
τ [s] 5.66E-09 1.96E-08 2.02E-08 2.56E-08 1.10E-07 1.88E-08 2.43E-08 1.70E-08 1.01E-08

0.580
E0 [MPa] 2.105 1.487 1.249 1.128 1.078 1.455 1.594 1.864 2.616

α 0.052 0.036 0.027 0.022 0.021 0.012 0.015 0.022 0.035
τ [s] 8.57E-09 1.25E-08 2.08E-08 3.82E-08 1.85E-07 1.97E-08 1.23E-08 1.24E-08 1.01E-08
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Table 5. Fitting parameters of the FKM to the measured data of the multi-step
relaxation test for the isotropic MRE.

MFD [T] Parameters
Steps

1 2 3 4 5 6 7 8 9

0
E0 [MPa] 0.359 0.362 0.363 0.350 0.328 0.359 0.353 0.351 0.364

α 0.226 0.196 0.186 0.127 0.084 0.282 0.216 0.199 0.192
τ [s] 5.11E-02 1.37E-03 1.62E-04 3.36E-06 2.91E-07 5.73E-04 2.93E-04 1.16E-03 3.27E-02

0.201
E0 [MPa] 0.374 0.375 0.374 0.370 0.359 0.365 0.355 0.346 0.348

α 0.230 0.211 0.208 0.175 0.132 0.311 0.244 0.220 0.202
τ [s] 5.50E-02 2.74E-03 5.32E-04 5.14E-05 5.61E-06 1.76E-03 1.11E-03 3.70E-03 8.44E-02

0.373
E0 [MPa] 0.385 0.379 0.381 0.374 0.359 0.374 0.359 0.346 0.319

α 0.220 0.168 0.165 0.139 0.102 0.288 0.221 0.205 0.195
τ [s] 7.54E-02 1.53E-03 1.59E-04 1.17E-05 9.50E-07 1.05E-03 6.81E-04 3.46E-03 1.48E-01

0.478
E0 [MPa] 0.380 0.375 0.381 0.388 0.374 0.382 0.365 0.348 0.315

α 0.199 0.166 0.147 0.146 0.117 0.271 0.210 0.195 0.186
τ [s] 1.05E-01 1.45E-03 1.10E-04 6.25E-05 2.34E-06 8.00E-04 6.29E-04 3.86E-03 2.35E-01

0.538
E0 [MPa] 0.383 0.392 0.382 0.391 0.383 0.385 0.366 0.339 0.297

α 0.197 0.185 0.154 0.140 0.121 0.268 0.219 0.223 0.210
τ [s] 9.69E-02 4.03E-03 8.11E-05 2.33E-05 1.95E-06 7.47E-04 8.70E-04 1.04E-02 4.30E-01

0.580
E0 [MPa] 0.394 0.380 0.376 0.387 0.386 0.386 0.366 0.341 0.298

α 0.208 0.145 0.140 0.123 0.125 0.283 0.227 0.206 0.184
τ [s] 9.04E-02 1.64E-03 4.78E-05 1.34E-05 2.17E-06 1.12E-03 1.12E-03 5.73E-03 3.41E-01

step stress relaxation test is presented in Fig. 7. Besides, the shear stress of the
isotropic MRE as a function of time under different MFDs was calculated using
the investigated models with the fitted parameters. The predicted shear stresses
of the studied models compared to the measured data of the MRE samples under
various MFDs are shown in Fig. 8.

As observed in Table 4, although the parameters E0 and α of the FMM
enhance moderately with increasing the MFD, they decrease considerably with
time in the loading path and increase in the unloading path. Besides, results
in Table 4 show extremely short relaxation time τ of the FMM. For the FKM,
with the rise of the MFD, the parameter E0 tends to a slight increase while
the fractional order α varies irregularly (Table 5). However, the parameter E0

changes slightly with the MFDs above 0.5 T, as presented above. Moreover, the
parameter E0 of the FKM varies lightly with time, whereas the fractional order α
decreases over time in both loading and unloading paths.

The shear stress and modulus of the isotropic MRE reduce during the re-
laxation periods in the loading path, while they enhance during the relaxation
segments in the unloading path (Figs. 7 and 8). Besides, results in Figs. 7 and 8
revealed that the stress relaxation behavior of the MRE depends on the ap-
plied magnetic field in the multi-step relaxation test. The relaxation modulus
and shear stress in the loading path of the multi-step relaxation increase sig-
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nificantly with increasing the MFD to about 0.5 T and enhance slightly above
0.5 T, as described in the single-step relaxation part. Moreover, with the rise
in the MFD, the shear stress and relaxation modulus at steps 6 and 7 in the
unloading path behave similarly to those in the loading path. Nevertheless, the
relaxation modulus and shear stress at steps 8 and 9 change in reverse with
increasing the MFD. This change can be explained that the MRE sample tem-
perature is enhanced by raising the magnetic field intensity of the electromagnet
[21, 22].

Moreover, results in Fig. 7 indicated that the fitting of the relaxation mod-
ulus of the FMM to the experimental data of multi-step relaxation test under
different MFDs is less precise than that of the FKM. Therefore, the agreement
between measured and estimated shear stresses with long-term predictions of
the FKM is better than that of the FMM (see Fig. 8). The fitting of the FKM is
accurate for all strain steps under the MFDs in the loading and unloading paths
of the multi-step stress relaxation test for the isotropic MRE. The maximal dif-
ferences between the measured and predicted curves of the FMM and FKM for
the isotropic MRE under various MFDs are 6.7% and 0.88%, respectively. In

Fig. 7. Relaxation modulus (experimental and model fitted curves) of the isotropic MRE
under different MFDs in the multi-step relaxation test.
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Fig. 8. Shear stress (experimental and model fitted curves) of the isotropic MRE under
different MFDs in the multi-step relaxation test.

general, the numerically calculated results showed that the FKM is better than
the FMM and can be applied to predict the multi-step stress relaxation of the
isotropic MRE.

5. Conclusions

The numerical studies on the shear stress relaxation of isotropic MRE made
of silicone rubber and micro-sized CIPs using the simplest fractional derivative
viscoelastic models have been conducted in this paper. The fractional Maxwell
and Kelvin–Voigt viscoelastic models were used to fit the experimental data
of the isotropic MRE measured by single- and multi-step relaxation tests at
different constant strains and external magnetic fields. The fractional Maxwell
viscoelastic model indicated a relatively large difference between the measured
and calculated data. The fractional Kelvin–Voigt model was fitted well to the
experimental data of the isotropic MRE at various constant strains under differ-
ent MFDs in both single- and multi-step stress relaxations. A great agreement
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between experimental and fitted relaxation modulus of fractional Kelvin–Voigt
viscoelastic model under different strain levels and MFDs was obtained. The
estimated shear stress with long-term predictions using the fractional Kelvin–
Voigt viscoelastic model for the isotropic MRE is in very good agreement with
the measured one. In short, the fractional derivative Kelvin–Voigt viscoelastic
model with only three parameters can be used to predict the long-term stress
relaxation of the isotropic MRE.
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