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Using the Stroh quartic formalism, we prove that the internal electroelastic
field is unconditionally uniform inside a three-phase anisotropic piezoelectric ellipti-
cal inhomogeneity with two confocal elliptical interfaces when the surrounding matrix
is subjected to uniform remote anti-plane mechanical and in-plane electrical load-
ing. The inhomogeneity and the matrix comprise monoclinic piezoelectric materials
with symmetry plane at x3 = 0 and with poling in the x3-direction; the intermedi-
ate interphase layer is a transversely isotropic piezoelectric material with poling in
the x3-direction. Moreover, we obtain the internal uniform electroelastic field inside
the elliptical inhomogeneity and the non-uniform electroelastic field in the interphase
layer in real-form in terms of the fundamental piezoelectricity matrices for both the
inhomogeneity and the matrix and the generalized Barnett–Lothe tensors for both
the interphase layer and the matrix.
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1. Introduction

Eshelby’s uniformity property regarding stresses and strains inside
a three-dimensional ellipsoidal or a two-dimensional elliptical elastic inhomo-
geneity when the matrix is subjected to a uniform loading at infinity is well estab-
lished [1–3]. When an intermediate coating of finite thickness is inserted between
the internal circular elastic inhomogeneity and the surrounding unbounded ma-
trix, however, the field inside the inhomogeneity is intrinsically non-uniform [4].
The uniformity property inside the inhomogeneity continues to remain valid
when confocal elliptical interfaces are used in the fibrous composite [5–8].
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In this paper, we study the electroelastic field of a three-phase anisotropic
piezoelectric composite with two confocal elliptical interfaces subjected to uni-
form remote anti-plane mechanical and in-plane electrical loading. The three-
phase piezoelectric composite is composed of an inner piezoelectric elliptical
inhomogeneity, an intermediate piezoelectric interphase layer and an outer in-
finite piezoelectric matrix. Both the inhomogeneity and the matrix comprise
monoclinic piezoelectric materials with symmetry plane at x3 = 0 and with pol-
ing in the x3-direction, while the interphase layer is composed of a transversely
isotropic piezoelectric material with poling in the x3-direction. The complexity
of the problem lies in the fact that as many as 23 electroelastic constants are
involved in the analysis (10 for the inhomogeneity, 3 for the interphase layer and
10 for the matrix). Intuitively, we would expect that the ensuing analysis and
resulting solution structure would be considerably complicated. On the contrary,
the problem is solved quite elegantly using the Stroh quartic formalism. In this
respect, we prove that the internal electroelastic field of stresses, strains, electric
displacements and electric fields inside the elliptical inhomogeneity continues to
remain uniform. The uniformity of the internal electroelastic field is attributed
to the confocal character of the two elliptical interfaces and the transversely
isotropic property of the intermediate piezoelectric interphase layer. The internal
uniform electroelastic field inside the elliptical inhomogeneity is unconditional
since there is no other restriction on the remote loading except the required
constitutive relationship. Using the identities developed in the Stroh quartic
formalism, the internal uniform electroelastic field inside the elliptical inhomo-
geneity and the non-uniform electroelastic field within the interphase layer are
obtained in real-form in terms of the fundamental piezoelectricity matrices for
the inhomogeneity and the matrix and the generalized Barnett–Lothe tensors for
the interphase layer and the matrix. It is expected that the present solution can
be applied in the generalized self-consistent method [4, 9] to predict the effective
properties of piezoelectric composites.

2. Stroh quartic formalism

For the anti-plane shear deformations of monoclinic piezoelectric materials
with symmetry plane at x3 = 0 and with poling in the x3-direction, the consti-
tutive equations and balance laws are given by

(2.1)

[
σ31

D1

]
=

[
C55 e15

e15 −∈11

] [
2ε31

−E1

]
+

[
C45 e25

e14 −∈12

] [
2ε32

−E2

]
,[

σ32

D2

]
=

[
C45 e14

e25 −∈12

] [
2ε31

−E1

]
+

[
C44 e24

e24 −∈22

] [
2ε32

−E2

]
,

2ε31 = w,1, 2ε32 = w,2, E1 = −φ,1, E2 = −φ,2,
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(2.2)
[
C55 e15

e15 −∈11

] [
w,11

φ,11

]
+

[
2C45 e14 + e25

e14 + e25 −2∈12

] [
w,12

φ,12

]
+

[
C44 e24

e24 −∈22

] [
w,22

φ,22

]
=

[
0
0

]
,

where σ31 and σ32 are anti-plane shear stresses, D1 and D2 are in-plane electric
displacements, ε31 and ε32 are anti-plane strains, E1 and E2 are in-plane electric
fields, w is the anti-plane displacement, φ is the electric potential, C44, C45, C55

are three elastic constants, e15, e25, e14, e24 are four piezoelectric constants and
∈11, ∈12, ∈22 are three dielectric constants.

Within the framework of the Stroh formalism [10], the general solution can
be expressed in the form

(2.3)
u =

[
w φ

]T
= Af(z) + Āf(z),

ϕ =
[
ϕ1 ϕ2

]T
= Bf(z) + B̄f(z),

where

(2.4)

A =
[
a1 a2

]
, B =

[
b1 b2

]
,

f(z) =
[
f1(z1) f2(z2)

]T
,

zk = x1 + pkx2, Im{pk} > 0 (k = 1, 2),

with

N

[
ak
bk

]
= pk

[
ak
bk

]
(k = 1, 2),(2.5)

N =

[
N1 N2

N3 NT
1

]
,(2.6)

N1 = −T−1RT , N2 = T−1, N3 = RT−1RT −Q,(2.7)

and

(2.8) Q =

[
C55 e15

e15 −∈11

]
, R =

[
C45 e25

e14 −∈12

]
, T =

[
C44 e24

e24 −∈22

]
.

In view of the fact that both the generalized displacement vector u and the
generalized stress function vector ϕ are two-dimensional, the foregoing general
solution is referred to as the Stroh quartic formalism. Furthermore, the explicit
expressions of the three 2 × 2 real matrices N1, N2, N3 comprising the 4 × 4
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fundamental piezoelectricity matrix N are given by

(2.9)

N1 = −


C45∈22 + e24e25

C̃44∈22

∈22e14 − ∈12e24

C̃44 ∈22

C45e24 − C44e25

C̃44∈22

C44∈12 + e14e24

C̃44∈22

 ,

N2 = NT
2 =


1

C̃44

e24

C̃44 ∈22
e24

C̃44∈22

− C44

C̃44∈22

 ,
(N3)11 =

∈22(C2
45 − C55C̃44) + 2C45e24e25 − C44e

2
25

C̃44∈22

< 0,

(N3)12 = (N3)21

=
e14(C45 ∈22 +e24e25) + ∈12(C44e25 − C45e24)− C̃44∈22e15

C̃44∈22

,

(N3)22 =
∈22(e2

14 + C̃44 ∈11)− 2∈12e14e24 − C44∈2
12

C̃44 ∈22

> 0,

where

(2.10) C̃44 = C44 +
e2

24

∈22
.

The generalized stress function vector ϕ is defined, in terms of the anti-plane
stresses and in-plane electric displacements, as follows

(2.11)
σ31 = −ϕ1,2, σ32 = ϕ1,1,

D1 = −ϕ2,2, D2 = ϕ2,1.

The two matrices A and B satisfy the following orthogonality relations [10]

(2.12)
BTA + ATB = I = B̄T Ā + ĀT B̄,

BT Ā + AT B̄ = 0 = B̄TA + ĀTB,

so that we can introduce the following three real generalized Barnett–Lothe
tensors S, H and L [10],

(2.13) S = i(2ABT − I), H = 2iAAT , L = −2iBBT .

The generalized Barnett–Lothe tensors S, H and L are related by

(2.14) HL− SS = I.
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In addition, the two matrices H and L are symmetric and but not positive defi-
nite. More preciselyH and L are matrices of type T [10]. The explicit expressions
of the three generalized Barnett–Lothe tensors S, H and L for the anti-plane
shear deformations of a monoclinic piezoelectric material have recently been ob-
tained by Wang and Schiavone [11]. For a transversely isotropic piezoelectric
material with poling in the x3-direction, we have:

(2.15) S = 0, L = H−1 =

[
C44 e15

e15 −∈11

]
.

The following identities can be proved following the idea by Ting [10]:

(2.16)

[
A 〈zn∗ 〉BT A 〈zn∗ 〉AT

B 〈zn∗ 〉BT B 〈zn∗ 〉AT

]
=

1

2
(x1I + x2N)n(I− iÑ),

where n is a non-negative integer, 〈zn∗ 〉 = diag
[
zn1 zn2

]
and

(2.17) Ñ =

[
S H
−L ST

]
, Ñ2 = −I.

3. Three-phase anisotropic piezoelectric elliptical inhomogeneity

As shown in Fig. 1, we consider a three-phase anisotropic piezoelectric ellipti-
cal inhomogeneity with two confocal elliptical interfaces. Let Ω, Θ and Ψ denote
the piezoelectric elliptical inhomogeneity, the piezoelectric interphase layer and

Fig. 1. A three-phase anisotropic piezoelectric elliptical inhomogeneity with two confocal
elliptical interfaces under uniform remote anti-plane mechanical and in-plane electrical

loading.
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the infinite piezoelectric matrix, respectively, all of which are perfectly bonded
through two confocal elliptical interfaces Π: x2

1/a
2
1 + x2

2/b
2
1 = 1 (with a1 and b1

representing, respectively, the semi-major and semi-minor axes of the ellipse Π)
and Γ: x2

1/a
2
2 + x2

2/b
2
2 = 1 (a2 and b2 are, respectively, the semi-major and

semi-minor axes of the ellipse Γ). The following condition ensures the confocal
character of the two elliptical interfaces: a2

1 − b21 = a2
2 − b22. The inhomogene-

ity and the matrix are both monoclinic piezoelectric materials with symmetry
plane at x3 = 0 and with poling in the x3-direction, while the interphase layer
is composed of a transversely isotropic piezoelectric material with poling in the
x3-direction. The matrix is subjected to uniform remote anti-plane mechanical
loading in both stresses and strains: σ∞31, σ∞32, ε∞31, ε∞32 and in-plane electrical load-
ing in electric displacements and electric fields: D∞1 , D∞2 , E∞1 , E∞2 . It is shown in
the subsequent analysis that the remote stresses, strains, electric displacements
and electric fields are not independent and must satisfy a particular relationship.
In what follows, the superscripts Ω and Θ refer to the elliptical inhomogeneity
and the intermediate interphase layer, respectively, while quantities associated
with the matrix have no attached superscript.

We first consider the following conformal mapping function:

(3.1)
z = ω(ξ) = R(ξ +mξ−1), 1 ≤ |ξ| ≤ ρ−1/2,

ξ = ω−1(z) =
z +
√
z2 − 4mR2

2R
,

where z ≡ x1 + ix2, and

(3.2) R =
a1 + b1

2
, m =

a1 − b1
a1 + b1

, ρ =
(a1 + b1)2

(a2 + b2)2
=

(a2 − b2)2

(a1 − b1)2
(0 < ρ < 1).

As shown in Fig. 2, using the mapping function in Eq. (3.1), the interphase layer
in the z-plane is mapped onto the annulus 1 ≤ |ξ| ≤ ρ−1/2 in the ξ-plane, the
inner elliptical interface Π is mapped onto the unit circle in the ξ-plane and
the outer confocal elliptical interface Γ is mapped onto the circle |ξ| = ρ−1/2 in
the ξ-plane.

We then consider the following mapping functions:

(3.3)

zk = ωk(ξk) =
a2 − ipkb2

2
ξk +

a2 + ipkb2
2

ξ−1
k , |ξk| ≥ 1,

ξk = ω−1
k (zk) =

zk +
√
z2
k − (a2

2 + p2
kb

2
2)

a2 − ipkb2
, k = 1, 2.

Using the mapping functions in Eq. (3.3), the outer elliptical interface Γ is
mapped onto the unit circle in the ξk-plane, and the region outside the ellip-
tical interface Γ is mapped onto the exterior of the unit circle in the ξk-plane.



X. Wang, P. Schiavone 149

Fig. 2. The image ξ-plane.

Solutions in the three phases of the elliptical inhomogeneity, the interphase
layer and the matrix can be constructed as follows:[

uΩ

ϕΩ

]
= x1

[
εΩ

1

tΩ
2

]
+ x2

[
εΩ

2

−tΩ
1

]
, z ∈ Ω,(3.4) [

uΘ

ϕΘ

]
= Re{ξ−1(I− iÑΘ)}

[
h1

g1

]
+ Re{ξ(I− iÑΘ)}

[
h2

g2

]
, z ∈ Θ,(3.5) [

u
ϕ

]
= x1

[
ε∞1
t∞2

]
+ x2

[
ε∞2
−t∞1

]
(3.6)

+ 2Re

[
A〈ξ−1

∗ 〉BT A〈ξ−1
∗ 〉AT

B〈ξ−1
∗ 〉BT B〈ξ−1

∗ 〉AT

] [
h3

g3

]
, z ∈ Ψ,

where εΩ
1 , εΩ

2 , tΩ
1 , tΩ

2 , h1, g1, h2, g2, h3, g3 are ten unknown two-dimensional
real constant vectors to be determined, and

(3.7) ε∞1 =

[
2ε∞31

−E∞1

]
, ε∞2 =

[
2ε∞32

−E∞2

]
, t∞1 =

[
σ∞31

D∞1

]
, t∞2 =

[
σ∞32

D∞2

]
.

It can be proved quite easily by using the identity in Eq. (2.16) with n = 1 that

(3.8)
[

εΩ
2

−tΩ
1

]
= NΩ

[
εΩ

1

tΩ
2

]
,

[
ε∞2
−t∞1

]
= N

[
ε∞1
t∞2

]
,
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which provide a relationship among the uniform stresses, strains, electric dis-
placements and electric fields within the piezoelectric inhomogeneity and also
provide a relationship among the uniform remote stresses, strains, electric dis-
placements and electric fields applied in the matrix. The relationships in Eq. (3.8)
are equivalent to the constitutive equations in Eq. (2.1) for the inhomogeneity
and the matrix.

In writing Eq. (3.5) for the interphase layer, we have utilized the identity
in Eq. (2.16) with n = 0. In addition, the 4 × 4 matrix ÑΘ for the interphase
layer composed of a transversely isotropic piezoelectric material has the following
explicit expression

(3.9) ÑΘ =

[
0 (LΘ)−1

−LΘ 0

]
, LΘ = (HΘ)−1 =

[
CΘ

44 eΘ
15

eΘ
15 −∈Θ

11

]
.

At the elliptical boundaries Π and Γ, we have:

x1 = a1 cosψ, x2 = b1 sinψ, ξ = eiψ, ξ−1 = e−iψ, z ∈ Π;(3.10)

ξ = ρ−1/2eiψ, ξ−1 = ρ1/2e−iψ, z ∈ Γ;(3.11)

x1 = a2 cosψ, x2 = b2 sinψ, ξ−1
1 = ξ−1

2 = e−iψ, z ∈ Γ.(3.12)

Making use of the identity in Eq. (16) with n=0, Eqs. (3.4)–(3.6) on the two
confocal elliptical interfaces Π and Γ have the following expressions:[

uΩ
Π

ϕΩ
Π

]
= a1 cosψ

[
εΩ

1

tΩ
2

]
+b1 sinψ

[
εΩ

2

−tΩ
1

]
,(3.13) [

uΘ
Π

ϕΘ
Π

]
= cosψ

[
h1

g1

]
−sinψÑΘ

[
h1

g1

]
+cosψ

[
h2

g2

]
+sinψÑΘ

[
h2

g2

]
,(3.14) [

uΘ
Γ

ϕΘ
Γ

]
= ρ1/2 cosψ

[
h1

g1

]
−ρ1/2 sinψÑΘ

[
h1

g1

]
(3.15)

+ρ−1/2 cosψ

[
h2

g2

]
+ρ−1/2 sinψÑΘ

[
h2

g2

]
,[

uΓ

ϕΓ

]
= a2 cosψ

[
ε∞1
t∞2

]
+b2 sinψ

[
ε∞2
−t∞1

]
+cosψ

[
h3

g3

]
−sinψÑ

[
h3

g3

]
.(3.16)

The continuity conditions of traction, displacement, normal electric displacement
and electric potential across the two confocal elliptical interfaces Π and Γ require
that [

uΘ
Π

ϕΘ
Π

]
=

[
uΩ

Π

ϕΩ
Π

]
,(3.17)
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uΓ

ϕΓ

]
=

[
uΘ

Γ

ϕΘ
Γ

]
.(3.18)

By substituting Eqs. (3.13) and (3.14) into Eq. (3.17) and equating coefficients
of cosψ and sinψ, substituting Eqs. (3.15) and (3.16) into Eq. (3.18) and again
equating coefficients of cosψ and sinψ, we arrive at the following relationships

(3.19)

[
h1

g1

]
+

[
h2

g2

]
= a1

[
εΩ

1

tΩ
2

]
,

ÑΘ

[
h2

g2

]
− ÑΘ

[
h1

g1

]
= b1

[
εΩ

2

−tΩ
1

]
,

and

(3.20)
ρ1/2

[
h1

g1

]
+ ρ−1/2

[
h2

g2

]
= a2

[
ε∞1
t∞2

]
+

[
h3

g3

]
,

ρ−1/2ÑΘ

[
h2

g2

]
− ρ1/2ÑΘ

[
h1

g1

]
= b2

[
ε∞2
−t∞1

]
− Ñ

[
h3

g3

]
.

All the ten real constant vectors εΩ
1 , εΩ

2 , tΩ
1 , tΩ

2 , h1, g1, h2, g2, h3, g3 can be
uniquely determined from Eqs. (3.19) and (3.20) together with the relationships
in Eq. (3.8) as follows:

[
εΩ

1

tΩ
2

]
=
a2

a1
ρ1/2

[
I−ρ(Ñ+ÑΘ)−1(Ñ−ÑΘ)

]
(3.21)

×
[
ÑΘ+

b1
a1

NΩ+ρ

(
ÑΘ− b1

a1
NΩ

)
(Ñ+ÑΘ)−1(Ñ−ÑΘ)

]−1

×
(

ÑΘ− b1
a1

NΩ

)
(Ñ+ÑΘ)−1

(
Ñ+

b2
a2

N

)[
ε∞1
t∞2

]
+
a2

a1
ρ1/2(Ñ+ÑΘ)−1

(
Ñ+

b2
a2

N

)[
ε∞1
t∞2

]
,[

εΩ
2

−tΩ
1

]
= NΩ

[
εΩ

1

tΩ
2

]
,[

h1

g1

]
= a2ρ

1/2

[
ÑΘ+

b1
a1

NΩ+ρ

(
ÑΘ− b1

a1
NΩ

)
(Ñ+ÑΘ)−1(Ñ−ÑΘ)

]−1

(3.22)

×
(

ÑΘ− b1
a1

NΩ

)
(Ñ+ÑΘ)−1

(
Ñ+

b2
a2

N

)[
ε∞1
t∞2

]
,
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h2

g2

]
= a2ρ

1/2(Ñ+ÑΘ)−1

(
Ñ+

b2
a2

N

)[
ε∞1
t∞2

]
−a2ρ

3
2 (Ñ+ÑΘ)−1(Ñ−ÑΘ)

×
[
ÑΘ+

b1
a1

NΩ+ρ

(
ÑΘ− b1

a1
NΩ

)
(Ñ+ÑΘ)−1(Ñ−ÑΘ)

]−1

×
(

ÑΘ− b1
a1

NΩ

)
(Ñ+ÑΘ)−1

(
Ñ+

b2
a2

N

)[
ε∞1
t∞2

]
,[

h3

g3

]
= 2a2ρ(Ñ+ÑΘ)−1ÑΘ(3.23)

×
[
ÑΘ+

b1
a1

NΩ+ρ

(
ÑΘ− b1

a1
NΩ

)
(Ñ+ÑΘ)−1(Ñ−ÑΘ)

]−1

×
(

ÑΘ− b1
a1

NΩ

)
(Ñ+ÑΘ)−1

(
Ñ+

b2
a2

N

)[
ε∞1
t∞2

]
+a2(Ñ+ÑΘ)−1

(
b2
a2

N−ÑΘ

)[
ε∞1
t∞2

]
.

We can see that all ten real constant vectors εΩ
1 , εΩ

2 , tΩ
1 , tΩ

2 , h1, g1, h2, g2,
h3, g3 have been determined in real-form in terms of the four 4×4 real matrices
NΩ for the elliptical inhomogeneity, ÑΘ for the interphase layer and N, Ñ for
the matrix. The explicit expressions of the fundamental piezoelectricity matrices
NΩ and N can be readily obtained from Eq. (2.9), the explicit expression of ÑΘ

is given by Eq. (3.9), and the explicit expression of Ñ can be found in Wang
and Schiavone [11]. For example, if the piezoelectric matrix is orthotropic, we
have [11]

(3.24) Ñ =

[
0 H

−H−1 0

]
, H = L−1 =

[
λ11 λ12

λ12 −λ22

]
,

where

(3.25)

λ11 =
∈11 + δ∈22√

2δ(s+ 1)(C44∈22 + e2
24)(C55∈11 + e2

15)
> 0,

λ12 =
e15 + δe24√

2δ(s+ 1)(C44∈22 + e2
24)(C55∈11 + e2

15)
,

λ22 =
C55 + δC44√

2δ(s+ 1)(C44∈22 + e2
24)(C55∈11 + e2

15)
> 0,

with

(3.26) δ =

√
C55∈11 + e2

15

C44∈22 + e2
24

, s =
C44∈11 + C55∈22 + 2e15e24

2
√

(C55∈11 + e2
15)(C44∈22 + e2

24)
> −1.
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It is further seen from the above analysis the internal electroelastic field of
stresses, strains, electric displacements and electric fields characterized by the
four real vectors εΩ

1 , εΩ
2 , tΩ

1 , tΩ
2 in Eq. (3.4) is uniform inside the elliptical inho-

mogeneity. The internal uniform electroelastic field inside the elliptical inhomo-
geneity is unconditional since there is no other restriction on the remote loading
except the required constitutive relationship in Eq. (3.8)2. The unconditional
uniformity, which stems from the fact that the transversely isotropic piezoelec-
tric material occupying the interphase layer is mathematically non-degenerate
[12], is different from the conditional uniformity of the internal stresses in plane
isotropic elasticity [5] and in generalized plane strain deformations for anisotropic
elastic materials [8]. In addition, the internal uniform electroelastic field inside
the elliptical inhomogeneity and the non-uniform electroelastic field everywhere
in the interphase layer characterized by the four real vectors h1, g1, h2, g2 in
Eq. (3.5) are obtained in real-form in terms of the four real matrices NΩ, ÑΘ,
N and Ñ. More specifically, the internal uniform electroelastic field inside the
elliptical inhomogeneity is given explicitly by

(3.27)
[

2ε31

−E1

]
= εΩ

1 ,

[
2ε32

−E2

]
= εΩ

2 ,

[
σ31

D1

]
= tΩ

1 ,

[
σ32

D2

]
= tΩ

2 , z ∈ Ω,

and the non-uniform electroelastic field in the interphase layer is explicitly de-
termined by

(3.28)


2(ε31 − iε32)
−E1 + iE2

σ32 + iσ31

D2 + iD1

 =
1

R(ξ2 −m)
(I− iÑΘ)

(
ξ2

[
h2

g2

]
−
[

h1

g1

])
, z ∈ Θ.

In particular, it is deduced from Eq. (3.28) with the aid of Eqs. (3.9) and (3.19)
that [

2(ε31 − iε32)
−E1 + iE2

]
= (LΘ)−1tΩ

1 − iεΩ
2 ,[

σ32 + iσ31

D2 + iD1

]
= LΘεΩ

2 + itΩ
1 at z = ±a1 and z ∈ Θ;

(3.29a)

[
2(ε31 − iε32)
−E1 + iE2

]
= εΩ

1 − i(LΘ)−1tΩ
2 ,[

σ32 + iσ31

D2 + iD1

]
= tΩ

2 + iLΘεΩ
1 at z = ±ib1 and z ∈ Θ.

(3.29b)

It is clearly seen from Eqs. (3.29a) and (3.29b) that the continuity conditions
of traction, displacement, normal electric displacement and electric potential
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have indeed been satisfied when crossing the interface Π at the four points:
z = ±a1, ± ib1.

When both the inhomogeneity and the matrix are orthotropic, it is deduced
from Eq. (3.21) that

(3.30) εΩ
1 = Y1ε

∞
1 , ε

Ω
2 = NΩ

2 Y2t
∞
2 , tΩ

1 = −NΩ
3 Y1ε

∞
1 , tΩ

2 = Y2t
∞
2 ,

where the two 2× 2 real matrices Y1 and Y2 are defined by

Y1 =
a2

a1
ρ1/2[I+ρ(H−1 +LΘ)−1(LΘ−H−1)]

×
[
−LΘ +

b1
a1

NΩ
3 +ρ

(
LΘ +

b1
a1

NΩ
3

)
(H−1 +LΘ)−1(LΘ−H−1)

]−1

×
(

LΘ +
b1
a1

NΩ
3

)
(H−1 +LΘ)−1

(
b2
a2

N3−H−1

)
+
a2

a1
ρ1/2(H−1 +LΘ)−1

(
H−1− b2

a2
N3

)
,

(3.31)
Y2 =

a2

a1
ρ1/2

[
I+ρ[H+(LΘ)−1]−1[(LΘ)−1−H]

]
×
[
(LΘ)−1 +

b1
a1

NΩ
2 +ρ

[
(LΘ)−1− b1

a1
NΩ

2

] [
H+(LΘ)−1

]−1
[H−(LΘ)−1]

]−1

×
[
(LΘ)−1− b1

a1
NΩ

2

] [
H+(LΘ)−1

]−1
(

H+
b2
a2

N2

)
+
a2

a1
ρ1/2

[
H+(LΘ)−1

]−1
(

H+
b2
a2

N2

)
,

and

(3.32) NΩ
2 =


1

C̃Ω
44

eΩ
24

C̃Ω
44∈Ω

22

eΩ
24

C̃Ω
44∈Ω

22

− CΩ
44

C̃Ω
44∈Ω

22

, NΩ
3 = −

[
CΩ

55 eΩ
15

eΩ
15 −∈Ω

11

]
.

When the matrix is transversely isotropic and has the same electroelastic
constants as the interphase layer, it is deduced from Eq. (3.21) that

(3.33)

[
εΩ

1

tΩ
2

]
=

[
Ñ +

b1
a1

NΩ

]−1(
Ñ +

b1
a1

N

)[
ε∞1
t∞2

]
=

(
1 +

b1
a1

)[
N +

b1
a1

NΩ

]−1

N

[
ε∞1
t∞2

]
,[

εΩ
2

−tΩ
1

]
= NΩ

[
εΩ

1

tΩ
2

]
,
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where NΩ is determined by Eq. (2.9) with the electroelastic constants pertaining
to the inhomogeneity, and

(3.34) Ñ = N = ÑΘ = NΘ =

[
0 L−1

−L 0

]
, L = H−1 =

[
C44 e15

e15 −∈11

]
.

Within the framework of the Stroh formalism, Eq. (3.33)1 is found to be consis-
tent with Eqs. (10.7-8) and (10.7-9) in Ting [10].

4. Conclusions

We have proved the uniformity of the electroelastic field inside a monoclinic
piezoelectric elliptical inhomogeneity bonded to a monoclinic piezoelectric matrix
through a transversely isotropic piezoelectric interphase layer with two confocal
elliptical boundaries subjected to uniform remote anti-plane and in-plane elec-
trical loading. Using the identities in the Stroh formalism, the internal uniform
electroelastic field in the elliptical inhomogeneity and the non-uniform electroe-
lastic field in the interphase layer are obtained in real-form in terms of the four
real matrices NΩ, ÑΘ, N and Ñ. The uniformity property continues to hold when
an arbitrary number of transversely isotropic piezoelectric interphase layers with
confocal elliptical interfaces are inserted between the elliptical inhomogeneity
and the matrix, both of which remain monoclinic piezoelectric materials.
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