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In this study, the partial slip contact problem for a monoclinic coated half
plane indented by a rigid cylindrical punch is considered. The main objective of cur-
rent study is to illustrate the effects of material anisotropy on the surface stresses, the
contact width and the stick/slip region of the partial slip contact. Using the Fourier
integral transform and boundary conditions of the problem, the singular integral
equation of the system is obtained. Numerical results of the problem are provided
for typical fibrous composites applying the Gauss-Chebyshev discretization method.
Sensitivity analysis of the surface stresses is performed for both the material and
geometric parameters. The results indicate that the coating fiber angle can signif-
icantly alter the distribution of contact tractions. As the fiber angle ranges from
θ = 0◦ to θ = 90◦, the contact half-length increases up to 20% whereas the stick zone
half-length varies significantly.

Key words: partial slip, monoclinic materials, fiber angle, stick/slip transition.

Copyright c© 2022 by IPPT PAN, Warszawa

1. Introduction

One of the failure mechanisms that appears due to the small amount
of relative displacement in the contacting components due to the repeated re-
versal of the tangential force in the slip region is the fretting wear. It is usu-
ally seen in aviation and automotive industry components such as the dove
tail region of blade and disc arrangements in gas turbines (Ciavarella and
Demelio [1], Rajasekaran and Nowell [2]), bolted joints (Juoksukangas
et al. [3], Jiménez-Peña et al. [4]), connecting rods (Chao [5]), bearings in wind
turbine rotor shafts (Rauert et al. [6]), spline couplings (Ding [7], Hough-
ton [8]), suspension components (Buciumeanu [9]) etc.Mohrbacher et al. [10]
defined three different modes of fretting, namely: mode I due to tangential load-
ing, mode II due to normal loading and mode III due to torsional loading. Ac-
cording to Zhou and Vincent [11], there are three regimes in a fretting contact
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depending on the sliding conditions such as the partial slip regime, the mixed
regime and the gross slip regime. It is also reported that partial slip regime is
responsible for crack nucleation and crack formation whereas gross slip regime
is responsible for wear (Vincent et al. [12]). Therefore, understanding the par-
tial slip contact mechanism is important since it may lead to fretting fatigue
failure.

There is a wide range of study conducted in the fretting fatigue related stud-
ies. However, we limit our concentration to the studies related to the partial
slip contact. In this sense, crack initiation and propagation caused by a partial
slip regime was analyzed experimentally by Kuno et al. [13]. The fretting wear
problem for an elastic medium under gross slip and partial slip conditions was
studied by Gallego and Neilias [14]. Goryacheva [15] studied wear due to
partial slip and concluded that crack nucleation can occur at the edge of the
contact for a small number of cycles whereas it takes a large number of cycles
to nucleate a crack at the stick/slip boundary. Andresen et al. [16] presented
a method to solve a partial slip contact problem for a half-plane where there exist
a bulk tension parallel to the interface and another one where there is asymmetry
of the contact through introduction of a moment (Andresen et al. [17]). The
method can determine the coordinates of the stick zone wherever it may be in
the contact zone.

Herein, we give a short review of the contact mechanics studies related to
anisotropic materials. There have been several methods utilized to solve the
contact problems involving anisotropic materais such as complex variable for-
mulation (Galin [18]), the conjugate gradient method (Bagault et al. [19]),
Eshelby–Stroh formalism (Fan and Keer, [20]), Green–Lindsay thermo-elas-
ticity (Brock and Georgiadis [21]), discrete convolution and the Fourier trans-
form method (Hayashi et al. [22]), the boundary element method (Rodríguez-
Tembleque et al. [23], Rodríguez-Tembleque et al. [24]). However, there are
few studies available in the literature about a partial slip contact of anisotropic
materials. Alinia and Guler [25] solved a fully coupled partial slip contact
problem between an orthotropic medium and flat/ parabolic stamp profiles.
Wang and coworkers [26, 27] solved the partial slip contact problems for a piezo-
electric half-plane indented by a flat punch (Su et al. [26]) and a cylindrical punch
(Su et al. [27]). Later, they extended the problem for the piezoelectric layered
half-plane under a conducting punch (Su et al. [28]). In this study, we extend
the partial slip contact problem solved by Comez et al. [29] for a monoclinic
half plane to the coated half-plane problem for a monoclinic layer. To the best
of authors’ knowledge, this problem has not been solved in the open literature.
The current study emphasizes the effect of several parameters such as the orien-
tation of the material principal directions, the coefficient of friction, the material
property and the substrate stiffness on the stress field.



The partial slip contact problem. . . 15

2. Formulation of the problem

The plane partial slip contact problem of a monoclinic layer bonded to an
isotropic half plane is depicted in Fig 1. The layer is indented by a rigid cylindrical
punch with a radius of R that transmits the normal load P . The contact region
−a ≤ x ≤ a is assumed to consist of two regions, that is, a central stick zone
|x| ≤ b and an outer slip region b ≤ |x| ≤ a with a finite friction coefficient, η.

Fig. 1. Geometry of the contact problem and the definition of the fiber angle orientation.

Using the elasticity theory and the integral transform technique, the displace-
ment and the stress components for the homogeneous monoclinic layer can be
obtained as follows [30]:

u1(x, z) =
1

2π

∞∫
−∞

[ 6∑
j=1

Aj e
nj ξz

]
e−Iξx dξ,(2.1a)

v1(x, z) =
1

2π

∞∫
−∞

[ 6∑
j=1

IkjAj e
njξz

]
e−Iξx dξ,(2.1b)
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w1(x, z) =
1

2π

∞∫
−∞

[ 6∑
j=1

ImjAj e
njξz

]
e−Iξx dξ,(2.1c)

σx1(x, z) =
1

2π

∞∫
−∞

[
−Iξ

6∑
j=1

Aj(C̄11+C̄16mj−C̄13kjnj) e
njξz

]
e−Iξx dξ,(2.1d)

σy1(x, z) =
1

2π

∞∫
−∞

[
−Iξ

6∑
j=1

Aj(C̄12+C̄26mj−C̄23kjnj) e
njξz

]
e−Iξx dξ,(2.1e)

σz1(x, z) =
1

2π

∞∫
−∞

[
−Iξ

6∑
j=1

Aj(C̄13+C̄36mj−C̄33kjnj) e
njξz

]
e−Iξx dξ,(2.1f)

τyz1(x, z) =
1

2π

∞∫
−∞

[
ξ

6∑
j=1

Aj(C̄44mjnj+C̄45(kj+nj))e
njξz

]
e−Iξx dξ,(2.1g)

τxz1(x, z) =
1

2π

∞∫
−∞

[
ξ

6∑
j=1

Aj(C̄45mjnj+C̄55(kj+nj))e
njξz

]
e−Iξx dξ,(2.1h)

τxy1(x, z) =
1

2π

∞∫
−∞

[
−Iξ

6∑
j=1

Aj(C̄16+C̄66mj−C̄36kjnj)e
njξz

]
e−Iξx dξ,(2.1i)

where C̄ij are the transformed stiffness coefficients of the monoclinic layer,
Aj (j = 1, . . . , 6) are the unknowns that will be determined from the bound-
ary conditions of the problem.

The displacement and stress components for the isotropic homogeneous half
plane can be written as follows (Yilmaz et al. [30])

u2(x, z) =
1

2π

∞∫
−∞

[(B1 +B2z)e
|ξ|z]e−iξx dξ,(2.2a)

v2(x, z) =
1

2π

∞∫
−∞

[B3e
|ξ|z]e−iξx dξ,(2.2b)

w2(x, y) =
1

2π
i

∞∫
−∞

[
|ξ|
ξ

[
B1 +

(
−κ2
|ξ|

+ z

)
B2

]
e|ξ|z

]
e−iξx dξ,(2.2c)

σx2(x, y)

2µ2
= − 1

2π
i

∞∫
−∞

2ξ

[
B1e

|ξ|z +

(
z − κ2 − 3

2|ξ|

)
B2e

|ξ|z
]
e−iξx dξ,(2.2d)



The partial slip contact problem. . . 17

σy2(x, y)

2µ2
=

1

2π

∞∫
−∞

|ξ|
ξ

[
B2(−3 + κ2)e

|ξ|z
]
e−iξx dξ,(2.2e)

σz2(x, y)

2µ2
=

1

2π
i

∞∫
−∞

2ξ

[
B1e

|ξ|z +

(
z − κ2 + 1

2|ξ|

)
B2e

|ξ|z
]
e−iξx dξ,(2.2f)

τyz2(x, y)

µ2
=

1

2π

∞∫
−∞

|ξ|B3e
|ξ|ze−iξx dξ,(2.2g)

τxz2(x, y)

µ2
=

1

2π

∞∫
−∞

2|ξ|
[
B1e

|ξ|z +

(
z − κ2 − 1

2|ξ|

)
B2e

|ξ|z
]
e−iξx dξ,(2.2h)

τxy2(x, y)

µ2
= − 1

2π

∞∫
−∞

IξB3e
|ξ|ze−iξx dξ,(2.2i)

where µ2 is the shear modulus of the half plane, κ2 = 3−4ν2 for the plane strain
case and ν2 is Poisson‘s ratio of the half plane. The coefficients B1, B2 and B3

will be determined using the boundary conditions of the problem.

3. The boundary conditions and the singular integral equation

The unknown coefficients Aj (j = 1, . . . , 6) and Bl (l = 1, 2, 3) can be deter-
mined from the following boundary conditions of the problem

σz1(x, 0) =

{
−p(x) −a < x < a,

0 x ≤ a, x ≥ a,
(3.1a)

τxz1(x, 0) =

{
q(x) −a < x < a,

0 x ≤ a, x ≥ a,
(3.1b)

τyz1(x, 0) = 0,(3.1c)
u1(x,−h) = u2(x,−h),(3.1d)
v1(x,−h) = v2(x,−h),(3.1e)
w1(x,−h) = w2(x,−h),(3.1f)
σz1(x,−h) = σz2(x,−h),(3.1g)
τxz1(x,−h) = τxz2(x,−h),(3.1h)
τyz1(x,−h) = τyz2(x,−h),(3.1i)

where p(x) is the contact stress between the rigid punch and the monoclinic layer
on the contact area (−a, a).
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Applying the boundary conditions given in Eq. (3.3), the coefficients Aj
and Bl can be obtained in terms of the unknown contact stress p(x) and shear
stress q(x) as follows

Aj = Apj

a∫
−a

p(t)eIξt dt+Aqj

a∫
−a

q(t)eIξt dt, j = 1, . . . , 6,(3.2a)

Bl = Bp
l

a∫
−a

p(t)eIξt dt+Bq
l

a∫
−a

q(t)eIξt dt, l = 1, 2, 3.(3.2b)

Since the expressions of Apj , A
q
j , B

p
l and Bq

l are too long they are not given here.
To determine the functions p(x) and q(x), the following mixed boundary

value conditions should be considered:

∂w1(x, 0)

∂x
=
x

R
, −a ≤ x ≤ a,(3.3a)

∂u(x, 0)

∂x
= C|x|, −b ≤ x ≤ b,(3.3b)

where C is the slope parameter of the tangential displacement on the stick zone
and is an unknown a priori. It must be noted that Eq. (3.3b) ensures the self-
similarity condition introduced first by Spence [31]. Substituting the unknowns
Aj and Bl into the Eq. (3.3) yields the following second kind Cauchy singular
integral equation system

β12q(x)+
1

π

a∫
−a

p(t)

[
β11
t−x

+k11(x, t)

]
dt+

1

π

a∫
−a

q(t)k12(x, t) dt =
x

R
,(3.4a)

−a ≤ x ≤ a,

β21p(x)+
1

π

a∫
−a

p(t)k21(x, t) dt+
1

π

a∫
−a

q(t)

[
β22
t−x

+k22(x, t)

]
dt = C |x| ,(3.4b)

−b ≤ x ≤ b.

The composite compliance parameters βij , i, j = 1, 2 and the kernel functions
kij(x, t), i, j = 1, 2 are given in the Appendix.

The shear stress in the slip and stick regions can be defined as the following
form (Nowell et al. [32]):

(3.5) q(x) =

η sign(x)p(x), b < |x| < a (slip regions),

ηp(b)
x

b
+ q∗(x), |x| < b (stick region),
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here q∗(x) is a perturbation function introduced to correct the shear traction
within the stick zone and has to be determined by solving Eq. (3.4b).

Considering (3.5), second integral Eq. (3.4b) becomes as follows

(3.6) β21p(x) +
1

π

a∫
−a

p(t)k21(x, t) dt+
η

π

−b∫
−a

p(t)

[
β22
t− x

+ k22(x, t)

]
dt

− η

π

a∫
b

p(t)

[
β22
t− x

+ k22(x, t)

]
dt

+
1

π

b∫
−b

q∗(t)

[
β22
t− x

+ k22(x, t)

]
dt

+
1

π
η
p(b)

b

b∫
−b

[
β22

t

t− x
+ tk22(x, t)

]
dt = C|x|, −b ≤ x ≤ b.

Note that the following relation can be written:

(3.7)
b∫
−b

t

t− x
dt = 2b+ x ln

(
b− x
b+ x

)
.

To solve the singular integral Eqs. (3.4a) and (3.6), the contact stress must satisfy
the following equilibrium condition:

(3.8)
∞∫
−∞

σz(x, 0) dx = −
a∫
−a

p(t) dt = −P.

Introducing the following transformations

(3.9) t = ar, x = as, c = b/a

and considering Eq. (3.7), the integral Eqs. (3.4a) and (3.6) become:

β12 q(s) +
1

π

1∫
−1

p(r)

[
β11
r − s

+ ak11(s, r)

]
dr(3.10a)

+
1

π

1∫
−1

q(r)ak12(s, r) dr =
as

R
, −1 ≤ s ≤ 1,
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β21 p(s) +
1

π

1∫
−1

p(r)ak21(s, r) dr +
η

π

−c∫
−1

p(r)

[
β22
r − s

+ ak22(s, r)

]
dr(3.10b)

− η

π

1∫
c

p(r)

[
β22
t− x

+ ak22(s, r)

]
dr

+
1

π

c∫
−c

q∗(r)

[
β22
r − s

+ ak22(s, r)

]
dr

+
1

π
η
p(b)

c
β22

[
2c+ sln

c− s
c+ s

]

+
1

π
η
p(b)

b

c∫
−c

[ark22(s, r)] dr = C|as|, −c ≤ s ≤ c.

It is suitable to introduce another transformation for Eq. (3.10b) as follows:
(3.11) s = cϕ, r = cλ.

Thus, the second integral Eq. (3.10b) takes its final form as follows:

β21p(ϕ) +
1

π

1/c∫
−1/c

p(λ)ack21(ϕ, λ) dλ(3.12)

+
η

π

−1∫
−1/c

p(λ)

[
β22
λ− ϕ

+ ack22(ϕ, λ)

]
dλ

− η

π

1/c∫
1

p(λ)

[
β22
λ− ϕ

+ ack22(ϕ, λ)

]
dλ

+
1

π

1∫
−1

q∗(λ)

[
β22
λ− ϕ

+ ack22(ϕ, λ)

]
dλ

+
1

π
η
p(b)

c
β22

[
2c+ cϕln

1− ϕ
1 + ϕ

]

+
1

π
η
p(b)

b

1∫
−1

[acλk22(ϕ, λ)] dλ = C|acϕ|, −1 ≤ ϕ ≤ 1.

The unknowns q∗(λ)and p(λ) appearing in the integral equations (3.10a) and
(3.12) are bound to zero at the ends of their respective intervals. Thus, the
solutions can be written as follows:
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(3.13) p(r) = F (r)(1− r2)1/2, q∗(λ) = G(λ)(1− λ2)1/2.

Using Gauss–Chebyshev integration formulas (Erdogan [33]), the integral equa-
tions (3.10a) and (3.12) and equilibrium condition (3.8) become as follows:

N∑
i=1

1

1− r2i
1

ri − sk
F (ri) =

1

R
ask −M1(sk), k = 1, . . . , N + 1,(3.14a)

N∑
l=1

1

1− λ2l
β22

λl − ϕj
G(λl) = C|acϕj | −M2(ϕj), j = 1, . . . , N + 1,(3.14b)

N∑
i=1

1

1− r2i
F (ri) =

1

π
P,(3.14c)

where the collocation points are chosen as the roots of the Chebyshev polyno-
mials of the second kind given below:

ri = cos(
i

N + 1
π), i = 1, . . . , N,(3.15a)

sk = cos(
2k − 1

2(N + 1)
π), k = 1, . . . , N + 1,(3.15b)

λl = cos(
l

N + 1
π), l = 1, . . . , N,(3.15c)

ϕj = cos(
2z − 1

2(N + 1)
π), j = 1, . . . , N + 1,(3.15d)

M1(sk) = β12q(sk) +
1

π

1∫
−1

q(r)ak12(sk, r) dr,(3.15e)

M2(ϕj) = β21p(ϕj) +
1

π

1/c∫
−1/c

p(λ)ack21(ϕj , λ) dλ(3.15f)

+
η

π

−1∫
−1/c

p(λ)

[
β22

λ− ϕj
+ ack22(ϕj , λ)

]
dλ

− η

π

1/c∫
1

p(λ)

[
β22

λ− ϕj
+ ack22(ϕj , λ)

]
dλ

+
1

π
η
p(b)

c
β22

[
2c+ cϕjln

1− ϕj
1 + ϕj

]
+

1

π
η
p(b)

b

1∫
−1

[acλk22(ϕj , λ)] dλ.
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Note that, both in Eqs. (3.14a) and (3.14b) there are one more equation to find
the unknowns F (ri) and G(λl). The reason for this is that the problem at hand
involves only normal loading which makes the problem symmetric, it is presumed
that the left and the right contact boundaries are equal. Hence an equation can
be omitted from the numerical algebraic system of equations. Although any
equation can be omitted from the system of equations, it is recommended to
select “N ” as an even number and the equation corresponding to “k = N

2 + 1”
can be omitted from Eq. (3.14a) [33]. On the other hand, the extra equation in
Eq. (3.14a) must be extracted and used as a control equation with (3.14c) to
find the contact width a and the stick zone c.

The slope parameter of the tangential displacement on the stick zone C is
also unknown and the following extra control equation is essential to solve the
problem:

(3.16) G(+1) = 0 or G(−1) = 0.

This equation ensures the continuity of surface tangential strain as introduced
by Nowell et al. [34]. The reader is referred to Guler et al. [35] for further
explanation. Here G(−1) and G(+1)can be calculated as follows (Krenk [36])

G(+1) =
N∑
l=1

cot

(
l

N + 1

π

2

)
sin

(
N

N + 1
lπ

)
G(λl),(3.17a)

G(−1) =

N∑
l=1

cot

(
l

N + 1

π

2

)
sin

(
N

N + 1
lπ

)
G(λN+1−l).(3.17b)

Due to the unknowns a, c and C the algebraic equation system is nonlinear and
an iterative method must be used.

To determine the unknowns F (ri), G(λl), the contact width a, the stick zone
c and the slope C, the following steps are applied:

1. Make an initial guess for the contact width a. A rapid approximation can
be employed by the classical Hertzian contact solution, i.e. a =

√
2PR(1−ν2)

πµ2
.

2. Neglecting the term M1(sk), i.e. q(sk), in (3.14a) , solve Eq. (3.14a) , find
F (ri) and the control the equilibrium condition (3.14c).

3. If the equilibrium condition (3.14c) is satisfied in the desired accuracy, go
to the next step. If not back to the previous step 1.

4. Fitting a function for F (ri) and obtain p(r) using Eq. (3.13). Thus, the
values of M2(zj) in Eq. (3.14b) can be determined.

5. Extract any one equation from Eq. (3.14b) and use this equation as a con-
trol equation with Eq. (3.16) to determine the parameters c and C.

6. Make an initial guess for the stick zone c and the slope C, solve Eq. (3.14b),
find G(λl). For the stick zone half-length, one may use the approximate relation
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based on the classical partial slip contact problem, i.e. K(
√
1−c2)

K(c) = 1−2ν2
2(1−ν2)η . The

slop parameter, C, can also be predicted by means of the classical partial slip
contact problem, i.e. C = πη

RcK(c) .
7. If the control equations are satisfied in the desired accuracy, go to the next

step. If not back to the previous step 6.
8. Fitting a function for G(λl) and obtain q∗(λ) using Eq. (3.13). Hence,

M1(sk), i.e. q(sk) can be determined with the Eq. (3.5).
9. Back to step 1 and start a new iteration without neglecting the M1(sk) in

(3.14a).

Fig. 2. The flowchart diagram for the numerical solution procedure.
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10. In the step 6, use the determined value of c and C from the first iteration
as an initials.

11. Continue to the iteration until desired convergences are achieved in c
and C between the iterations.

In order to fit the unknown functions F (r) and G(λ), one may expand these
functions in terms of the Chebyshev polynomial of the second kind, i.e. F (r) =∑N−1

i=0 ΨiUi(r) and G(λ) =
∑N−1

i=0 ΩiUi(λ). The coefficients Ψi and Ωi are then
determined as [33]:

(3.18)

Ψi =
2

N + 1

N∑
j=1

(
1− r2j

)
Ui(rj)F (rj) (i = 1, . . . , N − 1),

Ωi =
2

N + 1

N∑
j=1

(1− λ2j )Ui(λj)G(λj) (i = 1, . . . , N − 1).

After determining the normal and tangential tractions on the surface and
the parameters a, c and C, the in-plane stress at the surface of the monoclinic
coated half plane can be determined. The numerical solution procedure is also
given as a flowchart in Fig. 2 for more clarity.

4. Results and discussions

In what follows and unless noted otherwise, the material employed for the
monoclinic layer in the problem considered is Glass/Epoxy as given in Table 1.
Çömez et al. [29] investigated the partial slip contact problem between a rigid
punch and a monoclinic half plane. The solution of the mentioned problem can

Table 1. Material properties of polymer and metal-matrix unidirectional
composites [37].

Material
property (GPa)

GI/Ep
Gr/Ep

(T300/934)
Gr/Ep

(P75/934)
B/Al Gr/Al

E11 42.7 144.8 243.0 227.5 402.6
E22 11.7 10.3 7.2 137.9 24.1
E33 11.7 10.3 7.2 137.9 24.1
ν12 0.27 0.3 0.33 0.24 0.29
ν13 0.27 0.3 0.33 0.24 0.29
ν33 0.55 0.5 0.49 0.4 0.45
G12 8.238 5.515 3.929 55.152 16.75
G13 8.238 5.515 3.929 55.152 16.75
G23 3.778 3.447 2.406 49.2444 8.34



The partial slip contact problem. . . 25

Fig. 3. Validation of the stresses for a monoclinic half plane indented by a cylindrical punch;
comparison with Çömez et al. [29] (η = 0.3, R = 0.1m, P = 100 kN/m, h→∞,

material Gl/Ep).

be recovered as a limiting case of the current study. The results shown in Fig. 3
indicate that the stress components of current study meet very well with those
given by Çömez et al. [29] as the thickness of the monoclinic layer tends to
infinity.

As an important parameter, Fig. 4 demonstrates the effect of orientation of
the material principal directions on the stress field. In fact, the contribution of
material anisotropy can be inferred as the effect of relative stiffness along the
indentation path to the tangential direction. For the case θ = 0◦, the stiffness
of the Glass/Epoxy along the indentation depth is about one-fourth that of the
tangential direction, whereas for the case θ = 90◦, the stiffness is equal in both
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Fig. 4. Effect of fiber angle θ on the surface stresses (η = 0.3, R/h = 10, µ2/(P/h) = 500,
κ = 2).

directions. Thus, one may anticipate that the contact pressure would be much
higher for the case θ = 0◦ compared to other cases. Noting Columb’s friction
law, see Eq. 6, the distribution of the shear stress is mainly proportional to the
contact pressure therefore the highest values corresponding to the case θ = 0◦.
Also, the stick area, b, shrinks as the material becomes more compliant along
the tangential direction. The normal indentation of the system by a rigid punch
can result in compressive strain along the contact surface. Table 2 verifies that
the value of slop parameter, C, is negative for different fiber angle orientations.
This tangential compressive strain produces a compressive in plane stress as
shown in Fig. 4. Note that the shear stress is an odd function of the horizontal
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Table 2. The variation of the contact width a, stick zone c and slop parameter C
with the fiber angle θ and friction coefficient η (η = 0.3, R/h = 10, µ2/(P/h) = 500,

κ = 2).

θ a/h c C

0 0.2191 0.4325 −47.1847
30◦ 0.2302 0.7499 −27.0962
45o 0.2416 0.8882 −20.3141
60◦ 0.2532 0.9333 −17.1913
90◦ 0.2645 0.9452 −15.9009

Fig. 5. Effect of friction coefficient η on the surface stresses (θ = 30◦, R/h = 10,
µ2/(P/h) = 500, κ = 2).
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coordinate since the particles move toward the center of the contact region, i.e.
the particles on the right side of the contact tend to move to the left while the
opposite is true for the particles on the left side of the contact. Since the most
stiff case corresponds to θ = 0◦, the particles are more constraint to move toward
the contact center and results in the maximum shear stress. Also, the increase of
the in-plane stress at the middle part of the contact region might be attributed
to the tangential strain field, of the form εxx = C|x|, −c < x < c, in the stick
region (self- similarity condition, see [31]).

For the special case θ = 30◦, the effect of the friction coefficient on the
surface stresses is given in Fig. 5. The well-known Goodman approximation which

Fig. 6. Effect of material types on the surface stresses (θ = 0, η = 0.3, R/h = 10,
µ2/(P/h) = 500, κ = 2).
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neglects the effect of the shear traction on the contact stress can be adapted to
the current results. As the friction coefficient increases, it can be observed that
the shear traction follows significant changes whereas the contact pressure has
negligible variations. Also, a higher value of the friction coefficient restrains the
relative tangential displacement at the contact surface which in turn increases the
stick zone length. The shear stress within the slip area is directly proportional to
the friction coefficient as shown in Fig. 5. The surface in-plane stress arises due to
surface tractions such that the contact pressure induces a compressive tangential
strain while the anti-symmetric shear stress imposes a tensile tangential strain
at the contact center and a compressive one at the contact edges. Hence, as the
shear stress increases by elevating the friction coefficient, the absolute value of in-
plane stress reduces at the contact center whilst increases near the contact edges.

Fig. 7. Effect of indentation load P on the surface stresses (θ = 30◦, η = 0.3, R/h = 10,
κ = 2).
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Note that there is a dramatic decrease in the stick region for the lower values of
the friction coefficient (for example η = 0.1). This can be explained as the slip
region increases when there is less friction hence the stick region becomes less
and less. If the friction coefficient decreases further to zero (a frictionless case)
then there will be no stick region.

Figure 6 presents the distribution of the surface stresses for different types
of orthotropic materials as given in Table 1. It can be observed that Br/Al gives
the highest contact pressure while the opposite is true for Gr/Ep(P75/934).
This behavior depends on two factors, first the stiffness ratio of penetration
direction to the tangential direction (i.e. Ez/Ex); second the relative stiffness

Fig. 8. Effect of punch radius R on the surface stresses (θ = 30◦, η = 0.3, µ2/(P/h) = 500,
κ = 2).
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of the anisotropic coating to the isotropic substrate (
√
EzEx/µ2). As stated

before, if the material possesses a higher value of Ez/Ex then its penetration
response will be a smaller contact area or equivalently an intensified contact
pressure. A similar argument can be concluded for the effect of

√
EzEx/µ2 on the

contact pressure. In view of this, Br/Al has the maximum value of Ez/Ex = 0.6
and

√
EzEx/µ2 = 3.5 at the same time. For Gr/Ep(P75/934), the mentioned

parameters decrease to Ez/Ex = 0.3 and
√
EzEx/µ2 = 0.8. Other material types

may be sorted by a compromise between the values of Ez/Ex and
√
EzEx/µ2.

Also, the ratio of stick to slip area increases as the material gets stiffer along the
tangential direction. At the same time, the compressive in-plane stress builds up
for a material possessing larger stiffness along the tangential direction.

Fig. 9. Effect of layer thickness h on the surface stresses (η = 0.3, θ = 30◦,
µ2/(P/R) = 5000, κ = 2).
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Dependence of surface stresses to the applied load is given in Fig. 7. From the
classical Hertzian contact problem, the contact half-length and the maximum
contact pressure are proportional to the square root of applied load. In other
words, if the load changes by a factor of n then both the contact half-length
and the maximum contact pressure change by a factor of

√
n. For an anisotropic

system, the results indicate that the proportionality factor of the contact half-
length is slightly smaller than

√
n but the proportionality factor of the maximum

contact pressure is larger than
√
n. Both the shear traction and the surface in-

plane stress significantly increase by elevation of an applied load.
Figures 8 and 9 study the effects of a punch radius and the coating thick-

ness over the surface stresses, respectively. As the radius of a punch increases,
a larger portion of it comes into contact with the coating surface. In turn, the

Fig. 10. Effect of shear modulus of the half plane µ2 on the surface stresses (θ = 30◦,
η = 0.3, R/h = 10, κ = 2).
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load distributes on a wider area and the contact pressure distribution becomes
smoother. Both the shear traction and the surface in-plane stress obey the same
rule as shown in Fig. 8. Regarding Fig. 9, the absolute value of surface stresses
decreases as the thickness of Gl/Ep coating gradually increases. For a very thin
coating, the contact pressure builds up due to the relative rigidity of the coating
to the substrate.

The effect of substrate stiffness on the surface stresses is described in Fig. 10.
For a constant coating stiffness, if the substrate become more rigid then the
surface penetration decreases. Thus, the contact pressure is maximal for a com-
pletely rigid substrate. Since the surface tangential deformation of the coating is
not sensitive to the substrate rigidity, the surface shear traction slightly changes
within the slip area. For a rigid substrate, higher contact pressure results in more
compressive in-plane stress at the contact center and lower in-plane stress near
the contact edges.

Fig. 11. Variations of the contact area a and stick zone c = b/a for various values of fiber
angle θ and the friction coefficient η, (R/h = 10, µ2/(P/h) = 500, κ = 2).

Variations of contact and the stick zones half-length versus the coating fiber
angle is given in Fig. 11 for various values of the friction coefficient. It can
be observed that both contact and stick zone increase to a cetrain extent. As
the fiber angle approches θ = 90◦, variation of the contact zone is up to 20%
whereas the stick zone may increase by a factor of 4.8, 2.2 and 1.5 corresponding
to η = 0.2, η = 0.3 and η = 0.4, respectively.

5. Conclusions

This paper established the generalized 2D contact problem between a rigid
punch and a monoclinic layer/substrate system. The partial slip boundary condi-
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tion was adapted on the contact surface. The transformed equilibrium equations
for the anisotropic layer were solved in the Fourier domain. A comprehensive
numerical stduy was carried out for the effective material and geometric param-
eters. Some concluding remarks are given below:

1. Proper adjustment of the fiber angle of the coating can be employed to
tolerate the severe surface stresses.

2. The friction coefficient has a minimal effect on the contact pressure whereas
substantially affects the shear traction distribution. Thus, the contact pres-
sure can be obtained using the uncoupled approximation.

3. When the substrate stiffness increases (while the coating material is fixed)
the contact pressure builds up and the contact area recedes. The similar
argument holds when the substrate is fixed and the stiffness of the coating
material increases.

4. For the Hertzian contact, if the load is monotonicaly increasing then the
contact half- length is increased by a factor of the square root of the ap-
plied load. However, for the anisotropic system, if the load is monotonicaly
increasing then the contact half- length is increased by a factor more than
the square root of the applied load.

5. The effect of the fiber angle variation on the stick zone length (80% varia-
tion) is more pronounced than on the contact length (20% variation).

Appendix

The composite compliance parameters βij , i, j = 1, 2 and the kernel functions
kij(x, t), i, j = 1, 2 are defined here:

k11(x, t) =

∞∫
0

[M11(ξ)− β11] sin ξ(t− x) dξ,(A.1)

k12(x, t) =

∞∫
0

[M12(ξ)− β12] cos ξ(t− x) dξ,(A.2)

k21(x, t) =

∞∫
0

[M21(ξ)− β21] cos ξ(t− x) dξ,(A.3)

k22(x, t) =

∞∫
0

[M22(ξ)− β22] sin ξ(t− x) dξ,(A.4)
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where

(A.5)

M11(ξ) = Iξ
6∑
j=1

mjA
p
j , M12(ξ) = ξ

6∑
j=1

mjA
q
j ,

M21(ξ) = −Iξ
6∑
j=1

Apj , M22(ξ) = ξ

6∑
j=1

Aqj

and

(A.6)
β11 = lim

ξ→∞
M11(ξ), β12 = lim

ξ→∞
M12(ξ),

β21 = lim
ξ→∞

M21(ξ), β22 = lim
ξ→∞

M22(ξ).
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