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THIS PAPER IS CONCERNED WITH A STRAIN GRADIENT THEORY of elastic materials
that have a double porosity structure. Firstly, we present the basic equations and the
boundary conditions of the nonlinear theory. Then, we derive the equations of the
linear theory and present the constitutive equations for chiral materials. The theory
is applied to study the deformation of a chiral cylinder. The materials with a double
porosity are of interest in geophysics and in mechanics of bone.
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1. Introduction

THE BASIC EQUATIONS AND THE BOUNDARY CONDITIONS of the strain gradient
theory of elastic solids were first established by TOUPIN [1, 2] and MINDLIN [3].
This theory has been studied and extended in various works. The linear theory
has been developed by MINDLIN and ESHEL [4]. The interest in the gradient the-
ory of elasticity is stimulated by the fact that this theory is adequate to study
problems related to size effects [5|. In this paper we present a strain gradient
theory of elastic materials which have a double porosity structure: a macrop-
orosity connected to pores in the body, and a microporosity related to fissures
in the porous skeleton. The intended applications of the theories which describe
the behavior of materials with double porosity are to geological materials and
in mechanics of bone [6-11|. Various porous composites are chiral materials. It
is known that the classical theory of porous elastic solids cannot be used to
describe the behavior of chiral materials [12, 13]. The strain gradient theory of
elasticity is an adequate tool to invest igate these materials [14-16]. The lin-
ear theory for porous elastic solids having a single porosity can be obtained as
a special case of the theory established in [17] for the deformation of non-simple
microstretch elastic solids. In the present paper we establish the nonlinear the-
ory of non-simple elastic solids that have a double porosity structure. In the first
part of the paper we use the results of [2, 3, 18, 19| to derive a nonlinear strain
gradient theory of porous elastic solids. Then, we establish the basic equations
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of the linear theory and the constitutive equations for chiral materials. Finally,
we apply the results to investigate the deformation of a chiral cylinder. We study
the equilibrium of a beam subjected to extension and torsion. It is shown that
the torsion of the cylinder produces a variation of porosities and an extension.

2. Nonlinear theory

We consider a body that at time ¢y occupies the bounded region B with
the Lipschitz boundary 0B. The boundary of the body consists of the union of
a finite number of smooth surfaces, smooth curves (edges) and points (corners).
We denote by C' the union of the edges. The deformation of the body is referred
to a rectangular Cartesian coordinate system. We assume that Latin subscripts
(unless otherwise specified) are understood to range over the integers (1,2,3),
summation over repeated subscripts is implied and a subscript preceeded by
a comma denotes partial differentiation with respect to the corresponding co-
ordinate. A superposed dot denotes the material derivative with respect to the
time ¢t. We denote by X the coordinates of a typical particle in B, and suppose
that the coordinates of this particle at time t are x;. Thus,

(21) IEiZZEi(XK,t), (XK) eB,tel,

where I = [tg,t1) is a given interval of time. In what follows we assume the
continuous differentiability of x; with respect to the variables X and t as many
times as required, and det (z; k) > 0 on B x I. We study the deformation of
nonsimple elastic solids with a double porosity structure. We denote by vy the
volume fraction field corresponding to pores and by 1o the volume fraction field
corresponding to fissures. We assume that v; and vy are sufficiently smooth
for the ensuing analysis to be valid. Let us consider an arbitrary region w of the
body, bounded by a surface dw at time ¢, and assume that € is the corresponding
region at time to, with the surface 09. Following |2, 17| we postulate an energy
balance in the form

(2.2) /p(vﬂ')i + K111 + Katnis) dv + /pé dv
Q Q
= /P(fivi + g1 + lin) + /(Tzvz + Mjv; j + oty + Tin) da,
Q onN
for every part €2 of B and every time. In this relation we have used the following
notation: p is the mass density at time ¢y, e is the internal energy per unit

mass, k1 and ko are coefficients of inertia, f; is the body force per unit mass,
g is the extrinsic equilibrated body force per unit mass associated to macro
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pores, [ is the extrinsic body forces per unit mass associated to fissures, T; is
the stress vector associated with the surface dw, but measured per unit area of
the surface 02, M;; is the dipolar surface force associated with the surface dw
and measured per unit area of 9€2, ¢ is the equilibrated stress corresponding to
v1, associated with the surface dw but measured per unit area of 92, 7 is the
equilibrated stress corresponding to vs, associated with dw and measured per
unit area of the surface 0€2, dv and da are the elements of volume and area in
the reference configuration B, and v; = &;. We use the method of GREEN and
RIVLIN [20] to derive the equations of motion from the balance of energy and the
invariance requirements under superposed rigid motion. We consider a motion
of the body which differs from the given motion by a constant superposed rigid
body translational velocity and suppose that the functions p, k1, k2, €, fi, &, g,
l, T;, M;j, o and 7 are not affected by such motion. From (2.2) we obtain the
balance of linear momentum,

(2.3) /p?'}idv: /,ofidv+/Tida.

Q Q o0

This relation implies that

where Tk; is the first Piola-Kirchhoff stress tensor, and ng is the outward unit
normal to 0€2. From (2.3) and (2.4) we obtain the well-known equations

(2.5) Trix + pfi = pii.
With the help of (2.3) and (2.4), the energy balance becomes

(2.6) /p(é + K110 + Kalrls) dv = /[TKiUi,K + p(gin + li)| dv
Q Q
+ /(Mjﬂ}@j + UDl + 7'1)2) da.
o0

If we apply this relation to a region which in the reference configuration was
a tetrahedron bounded by coordinate planes through the point (Xg) and by
a plane whose unit normal is nx, then we obtain

(2.7) (Mj; — Py jink)vij + (0 — ogng)n + (T — Tkng ) e = 0,

where P;; is the hyperstress tensor, and ok and 7x are equilibrated stress
vectors, associated with surfaces which were originally coordinate planes per-
pendicular to the Xx-axes through the point (X7 ), measured per unit unde-
formed area. Then, using (2.7) in (2.6) and applying the resulting equation to
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an arbitrary region, we get
(2.8) pé = (Tki + Prji, 1 Xk j)vik + PrjiXr1,jvi LK
+ o Kk + TrV2, K — &1 — (Do,
when the functions £ and ( satisfy the equations
(2.9) ok +&+pg=pritn, Tr K +C+pl = prois.

The functions & and ¢ are characterized by constitutive equations. If we introduce
the notation

(2.10) Mkri = PrjiXrj, Ski=Tki+ MLk L,
then Eq. (2.8) can be expressed as
(2.11) pé = Skivik + Mg ivi kI + 0xV1 Kk + T2 K — 01 — (.

The invariance requirements under superposed uniform rigid body angular ve-
locity implied the following relations

(2.12) Skixj ik + Mgrivjxr, = SkjTix + Mgr;vi ki

It is known [2| that Mg 1; = My k. The skew symmetric part of Mg r; makes
no contribution to the work over any closed surface in B.

We require constitutive equations for e, Tk, Mk, 0k, Tk, & and ¢ and
assume that these are functions of the variables x; i, =i k1, V1, V2, V1K, Vo, K
and X7. We suppose that there is no internal constraint and that the constitutive
functions are sufficiently smooth. From (2.11) we get

ow oW ow
SKz a0 MKLi = 5. OK = 3
(2.13) 0z i 0z K1, ovy K
' ow ow ow
TK = ’ = T a = T 5
Oovs i oy Ovo

where W = ppe. Since W must be invariant under the superposed rigid-body
motion it can be expressed as [2]

(2.14) W =W(Ekr, GkLM, V1, V2, V1K, V2,5, XN),
where the strain tensors Ex, and Ggrar are given by

(2.15) 2Fkr, = %i k% — Ok, GKLM = TiKTiLM,
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and O, is the Kronecker delta. In view of (2.10), (2.13)—(2.15), we obtain

o oW N oW N
Ki — BEKL i, L aGKLM i, LM
oW oW
M i = @, M = )
KE aGMKLx M K ovi,x
(2.16) - _ _
oW oW oW
K= 61/27[(7 - 8U1 ’ N 81/2 ’
_— O/Wx.+ oW N oW N
Ki — aEKL i, L 8GKLM i, LM 8GMLK i, M 7L‘

We note that if Sg; and Mgr; have the form (2.16), then the relations (2.12)
are identically satisfied.

The basic equations consist of the equations of motion (2.5), the equations of
equilibrated forces (2.10), the constitutive equations (2.16), and the geometrical
equations (2.15).

For a given deformation v; j, 74 and % in (2.7) may be chosen arbitrarily and
in view of constitutive equations we obtain

(2.17) M;j; = Pgjing, o0 =0gnK, T=TKNK.

Following [2,3] we have

(218) /(T’zvz + Mjivi,j) da = /(-szz + RlD’Ul) da + /szz dS,
oB oB C
where

(2.19) P, =Txinkg — Dp(Mgrink) + (Dpnp)Mkrinkng,
' R; = Mgringng, i = (MkrLinkvyL), YL =ELKASKNA.

Here we have used the following notation: Dy is the surface gradient, Df =
frnk, (f) denotes the difference in values of f as a given point on the edge is
approached from either side, sk are the components of the unit vector tangent
to C, and e is the alternating symbol. Let Sp, (m=1,2,...,8) be subsets
of OB such that S1USy = S3USy = S5USg = S7USg = 0B, S1NSy = S3NSy =
S5 N Sg = S7N Sg = (. We assume that the boundary conditions are

l‘l:fl OIlngI, DSEl:CA{Z Ol’l§3XI,

Vlzfvvl on§5><I, VQZ;/VQ on§7><I,
(220) Pz:ﬁz on SQXI, Rz:j:él on S4><I,
oc=0 onSgxI, T=7 on Sy xI,

Hi:ﬁiOHCXI,
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where T;, (Z-, U1, s, ]Si, éi, o,T and ﬁl are prescribed functions.
The initial conditions are
wi(XKvo) :x?(XK)v i'i(XKvo) :’U?(XK):

(2.21) )
Va(XKaO) :Vg(XK)7 I/a(XK,O):Cg, (a:1a2)7 (XK) € B,

where the functions a:?, v? ,v9 and (2 are given. The problem consists in finding

the functions z;,v; and v» that satisfy Eqs. (2.15), (2.16), (2.5) and (2.10) on
B x I, the boundary conditions (2.20) and the initial conditions (2.21).

3. Linear theory

In this section we denote the material Cartesian coordinates by X; and define
the functions

(31) uJ:x]_Xja @:Vl_yik7 ¢:V2—V§,

where v and v5 are the volume fraction fields in the reference configuration. We
suppose that ] and v are prescribed constants. In the linear theory we assume
that the functions u;, ¢ and 1 have the form u; = 5u3’f, p =ep*, p =¢ep* wheree
is a constant small enough for squares and higher powers to be neglected, and
uf, ¢* and ¢* are independent of €. Now, the strain tensors (2.15) become

1
(3.2) eij = 5(Uij + uji),  Kijk = k.

The independent constitutive variables are e;j, Kk, ¢, ¥, ¢ ; and 1 ;. In the
linear theory we assume that W is a quadratic form in these variables,

(3.3)  2W = Ajirseijers + 2Bijpgreijlipgr + Cijkpgrbijktipgr + 2DijeRijre
+ 2Eijkkijk + 2FijkmBijke,m + 2Gijkmbijethm + 2dijei0
+2fijeih + 2gi5k€ij 0k + 2hijkeij g + aijp i + 2bi0 .0 5
+ i b+ a1 + agh? 4 a3 + 2dip i + 2e0 i1
+ 2piot i + 2q0p 4,

where the constitutive coefficients have the following symmetries

Aijrs = Ajz'rs = Arsij7 Biqur = sz'pqr = Bijqpra
(3.4) Cijkpar = Cjikpar = Cpgrijk,  Dijk = Djik,

Eiji. = Ejik,  Fijkom = Fjikm,  Gijkm = Gjikm,
dij == dji, CZ']' = Cji.
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We introduce the notation

(3.5) Tij = 0ik SKj,  Mrsi = OrKOsL. MK L,

0 = 0ik0K, Ti=0KTK,tij = 0ikTk;,

where §;x is the Kronecker delta. In view of (2.16) and (3.5) we get

ew o aw oW oW
LY 8€7jj’ ,U/’ij: - aﬁijk’ 1 88077:’ v 617/}77:’
(36) ow ow

§= T ¢= o tij = Tij — Ikijk-

From (2.5), (2.9), (2.16) and (3.6) we obtain the equations

Tjig — Mkijkj + PJi = plii,

(3.7) . )
Oii + &+ pg = pr1p, Tii + ¢ + pl = prarb.

We note that in the context of linear theory, the relation (2.12) becomes 7;; = ;.
By (3.3) and (3.6) we obtain the following constitutive equations

Tij = Aijrsers + Bijpgriipgr + dijo + fij¥ + gijke ke + Pijp ks

tijk = Brsijkers + Cijkpgrtipgr + Dijke + Eijkth + Fijkm$p,m + Gijkm¥ m,
0i = Grsi€rs + Fpgrifipgr + aijpj + bij j + dip + qiv),

Ti = hpsi€rs + Gpgritipgr + bjip j + ciji j + pip + €,

§ = —dijeij — Dijikijr — a1p — a3y — dip; — piv),

¢ = —fijeij — Eijrkijr — azp — a2y — qipi — e ;.

(3.8)

In the linear theory the basic equations are (3.2), (3.7) and (3.8). The relations
(2.19) reduce to
(3.9) Py = (i = pgig)ng — Dj(prgine) + (Ding) pipginpng,

R; = prgingnsg, IL; = <Nr5inr’)/s>a Vi = EjipqSpTNq,

where n; = d;xnk, €;;r is the alternating symbol, and D; are the components
of the surface gradient. The boundary conditions (2.20) become

wi =u; on Sy x I, Dui:Ji on S3 x I,

o=@ on SsxI, @D:J on S7 x I,
(3.10) P=F onSyxI, Ri=R;onS;xI,

o=0c onSgxI, T=7 onSgxI,

leﬁz OHCXI,
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where u;, Ji, ®, 1;, P, R;, o, T and II; are given. We add the following initial
conditions

]

ui(X;,0) = u(X;),  w(X;,0) =v)(X;),
(3.11) 0(X;,0) ="(X;),  @(X;,0) =((X;)
$(X;,0) =90(X;),  ¥(X;,0) = (X))

0

where the functions u,, ’U?, ¢%, 40 and (0 are prescribed. In the case of isotropic
chiral materials the constituive equations (3.8) have the form [3, 14|

9
9

S

Tij = Aeprdij + 2peij + 01650 + 020500 + f(€ikmbjkm + EjkmBikm);

1
Hijk = §a1(/<frri5jk + 260 0ij + KrrjOik) + 2(KirrOjk + KjrrOik)

+ 203Krk0i5 + 204455 + o5 (Kiji + Krig) + 810590k
+ Bo(0inpj + dikpi) + Mok + m2(0ik; + diktb i)
+ f(ciks€js + Ejkstis),

0; = B1Brri + 2B2Kirr + ap; + b1,

Ti = MErri + 202650 + b + 1) 4,

(3.12)

§= —biey —a1p — azy,
¢ = —baerr — azp — agy),
where A\, u, o (k=1,2,...,5), Ba, Na, ba (@ =1,2), a,b,c,a; and f are consti-

tuitve coefficients. For centrosymmetric materials we have f = 0. By using (3.2)
and (3.12), we can express Eq. (3.7) in terms of the functions u;, ¢ and ¥,

(= p1A)Au; + (A + pp — peA)ug ji + b + batp

+ 2feikmAum i + pfi = pii,
alp +bAY — a1p — az + (B1 + 2P2)Auyj — biui; + pg = pr1g,
bAY + cAY — azp — agth + (m + 2m2) Aujj — bau; + pl = praih,

(3.13)

where
p1=2(az+ ), p2=2(a1+az+a3).

4. Deformation of a chiral circular cylinder

In this section we consider the equilibrium theory of isotropic and homoge-
neous elastic solids characterized by the constitutive equations (3.12). We sup-
pose that the region B from here on refers to a right cylinder of the length h
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with the cross section . We assume that the lateral boundary II is a smooth
surface. We denote by I' the boundary of ¥ and assume that the rectangular
Cartesian coordinate system is chosen such that Xj3-axis is parallel to the axis
of cylinder, and X1 Xo-plane contains one of the ends. The cross-sections located
at X3 = 0 and X3 = h are denoted by ¥; and X5, respectively. We suppose that
the surface II is free from loading so that we have the conditions

(4.1) P=0, R =0, 0ana=0, 74na=0 onlI,

where (n1,ne,0) are the direction cosines of the exterior normal to II. In what
follows we assume that the body loads are absent and that the load on the
cylinder is distributed over its ends so that the conditions of equilibrium are
satisfied. In this case the equations (3.7) reduce to

(4.2) Tjig — ijz’,kj = 0, 0j.5 +f = 0, Tiyi + C =0.
We study the extension and torsion of porous elastic beams, and assume that

the loading applied on ¥ is statically equivalent to the force F = (0,0, F3) and
the moment M = (0,0, M3). Thus, on ¥; we have the conditions

(4.3) /Pa da + /Qa ds =0,

1 INY
(4.4) [Prdas [Quis—r
1 Iy
(4.5) /(Xapg + Ra) da + /Xan ds =0,
21 1—‘1
(4.6) /EaggXaP@ da + /é‘aggXaQﬁ ds = Ms,
21 Fl

where T'y is the boundary of ;. From (3.9) we get

(47 Py = —73; + 2pa3i,0 + 1333, R = p33  on Xy,
. Qi = —2pa3ina  on I'y.

Here and in what follows Greek subscripts are confined to the range (1,2). Let
us consider the case of a circular cylinder of the radius a with the cross-section
¥y defined by ¥ = {X : X? + X3 < a?, X3 = 0}. Deformation of porous
circular cylinders in the theory of simple materials with voids has been studied



136 S. DE Cicco

in various papers (see, e.g., [21, 23] and references therein). We try to find the
solution assuming that

Uq = €38aC1X5X3 + czu(l) + czu((f),

uz = co X3 + clu:(,) ) + czui(f),

= 1) + e,
= e + ey

where ¢; and ¢y are unknown constants, and ug-p ), o and () (p = 1,2),
are unknown functions which are independent of X3. The terms which depend
on X3 coincide with those from the classical elasticity.We introduce the nota-
tions

(4.9) 2e(pﬁ) = ug))ﬂ + u(ﬂ 31, 26&’)3) = U:(J,pgu ’fg)ﬂ)j %5

The stresses in the plane strain associated to the functions ug P o) and ()
are given by

ro(é%) = Aef)ag + 2,ue(p) + 016060 + boy) P 5ap + f(go‘"?’ﬂgii)?’

+ 5/3713”&[23)

0(43) = 2#%3 +f 57763“&/257

1
nl) = 501 (k{35 + 2640 005 + K Bary) + n (K] 05y + K Gary)

+ 20‘3“%71)“75‘15 + 2044&&’27 + as(k %)a + /i(w ) + B1dasp (p)
(p)

(4.10) + ﬁQ(éav‘P,ﬁ + 5,6’7@,(5)) + Mmoap ()

+ ?72(5a7¢(§) + 5ﬁ7¢(p ) + f(ga%?e(ﬂz%) + €py3€ (04%))

Maﬁs = 2a3m£]n)35a5 + 20y /-ﬁ g+ f(gna3e,3n) + €n536(p))
oY) = Bii + 28258), + apl®) + byt)

7iP) = 771,47(7!;7)0[ + 2772,%( P 4 bgo (p) 1 c¢ ()

o) = — ble(p) — a1 — qgpP)

dmz—bﬁhww — agy®)

In view of (4.8)—(4.10) and the constitutive equations (3.12) we obtain
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TapB

Ta3 =

733 =

Hi11

H221

H121

Ha33

(4.11)

33

Ha3p

Hap3

Ou

Ta

2
= (Acg —2fc1)dap + Z cpré%)
p=1

= ﬂ0153ﬁaXB + Zcp Tas s
p=1

A+ 2p)ca + Afer +Zcp (Ael®) + b1+ byyp?),

p=1
2 2
= Z Cp/ﬁgq)p H222 = Z Cp//é%v
p=1 p=1
2 2
= —faXi+ Zcpué’é)l, prz = — faXs + Zcpugpl)g,
p*l p*l

= *f61X2 + Z Cp,u121, H122 = *fchl + Z Cp,u122,
p=1 p=1

1
= — *fchoz

1
+ Z Cp (OQHQ)\/\ + 20{ Kg\)\a + f€)\a3€ + 62410 + 7721;&55)) )

et 3o (0anBs + 20508 + Soranl)
p=1

= €3a5f62 + €308(20: — a5)cq

+ Z Cp( 1653005 + aski g + fC36A€&A))

2
= Z cpuﬁf}ﬁg, p333 = (oq + 2a3) Z Cpf‘fg\’z\)ga
p:l p:1

2 2
(p)
= Z%U&p)a 73 :512%”,\A3v
p=1 =
2

— E P — E
- Cp 9 771 Cp 177737

p=1

2
= — by + Z €, C=—baca+ Y ().

p:l p:1
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We require that the equilibrium equations (4.2) and the boundary conditions

(4.1) be satisfied for any ¢; and co. From the equilibrium equations we find that

the functions ug-p ), cp(") and ¥() satisfy the equations

P _ (1 (1 _
o5 ~ i = 05 Uoc,zx +¢W =0,
(4.12) o +€® —b =0,
TSC)HrC(”:O? Tgc)y—i-C@)—bg:O on X.
On the lateral surface we have n, = X, /a and n3 = 0. The boundary conditions
(3.9) imply the following conditions,

PWM =2fn,, Pél) -0, Rgl) =0, oWn, =0,
(413) ng =0, PP = dna, PP =0,

R® =0, 0c@ny=0, 7®n, =0,

[0}

on I';. Here we have denoted by Pj(p ) and R;P ) the functions P; and R; from (3.9),

associated to the stresses TZ-(]P ) and ME;;).C We seek the functions u§1) , cp(l) and (M)
in the form

(414) Ug}) = AlXon Ug) = 07 (10(1) = A2a ¢(1) = A3a

where A; are unknown constants.
It follows from (3.9), (4.8) and (4.10) that
PO(}) = [2(A + p)Ay + b1 Ag + ba As|ng,
(4.15) rPY =0, RWY =0,
0&1) =0, ) =0.

«

The equations of equilibrium and the conditions (4.13), for the functions u&l), o

and (1) reduce to the following equations for the constants Aj,
200+ ) A 4+ b1 Ag + baAg = 2f,
2A1b1 + 142 + azAs3 =0,
2A1by + azAs + ag Az = 0.

Thus, we obtain

Ay = f(araz — a3)/d, Az =—2f(bias — bsas)/d,
(4.16) A3 = 2f(b1a3 — albg)/d,
d= ()\ + ,u)(alag — a%) — bl(blag — b2a3) + b2(b1(13 — albg).
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The positive definiteness of the elastic potential implies that d is different from
zero. To prove this assertion we consider the elastic potential W in the form
2W = mijeij + pijkkigr + 0ipi + i — o — (.
In the case of the deformation described by the functions u§ ) (1) and ¢
find
1 1 1
e((w) = A100s, €§3) =0, ot ,2/, =0,

) = RO )AL+ b As + b Agldas, T = ) =0,

Uj(l) _ ]( ) _ 0, 5(1) = —2b1A1 —a1As — azAs,
¢ = —2by A1 — azAs — asAs,

and
OW = 4\ + p) A2 + a? A3 + a3 A3 + 4by A1 Ag + 4by A1 A3 + 2a3 A2 A3,

Let us consider the matrix

4(/\ + /L) 2b1 2by
2b1 a1 as
2b2 asz ag

Since W is a positive-definite quadratic form, the determinant of this matrix is
nonzero. It is easy to see that detA = 4d. We conclude that d # 0.

We seek the functions u(z) ©® and ¥® in the form
(4.17) u® = Bi1X,, uf) =0, o® =B,, ¢® = B;,

where B; are unknown constants. The equations and the boundary conditions
associated to these functions are satisfied if

Bl = [bl(blag — bgag) — /\(a1a2 — a%) + bQ(ale — blag)]/2d,
(4.18) BQ = /J(bgag — blag)/d, Bg = M(blag - albg)/d.

In view of (4.7), (4.11), (4.14) and (4.8) we get

1 I't 3
(4.19) /(Xan + R,) da + /Xan ds = — /(Xang + 244033) da,
1 I' 1

/EaggXapg da + /EaﬁgXan ds = — /Eagg(Xang + 2Ma35) da.
31 1N 31
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It follows from (4.11), (4.14) and (4.18) that

T30 = UC1E38aX 3,
733 = c1(4f + 2AA1 + b1 A2 + b2 A3)
(420) + CQ()\ =+ 2,& + 2)\31 + b1B2 + bng),
1
pass = — g ferXa,
Pa3p = €3a8fC2 + €308C1 (204 — a5) + €330 f (c1 A1 + c2B1).
The conditions (4.3) and (4.5) are satisfied on the basis of (4.19) and (4.20). The

conditions (4.4) and (4.6) reduce to the following conditions for the constants c¢;
and ca,

(421) Dllcl + DIQCQ - _M3,D2101 + DQQCQ = —F‘37
where we have used the notation

1
D11 = 57['&4 + 471'(2&4 — Q5 — fAl)az,
Do =4f(1 — By),
Dy = 7T(4f + 2 A1 + b1 As + b2A3)a2,
Dy = w(A+ 24 + 2ABy + b1 By + boB3)a?.
As in classical elasticity [24] we can prove that the system (4.21) determines

the constants ¢; and ca. In the case of a centrosymmetric material (f = 0) the
coefficients A;, D12 and Dg; are equal to zero and we obtain

c1 = —M3/Dy1, ca=—F3/Dao,

where D71 is the torsional rigidity. In contrast with the classical theory the
torsion and extension of a chiral cylinder cannot be treated independently of each
other. It follows from (4.8), (4.14) and (4.17) that the solution of the problem is

Uq = €38aC1 X3 X3 + (c1A1 + c2B1) X4,
uz = X3,
@ = c1Az + c2B2, = c1 A3 + c2 B3,

where the constants A; and B; are given by (4.16) and (4.18), and the con-
stants ¢, are determined by the system (4.21). We can see that the torsion of
the cylinder produces a variation of porosities.
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5. Conclusions

We study a strain gradient theory of elastic materials which have a double
porosity structure. The original results established in this paper can be summa-
rized as follows:

(a) We establish the basic equations of the nonlinear theory of porous elastic
solids and formulate the boundary-initial-value problems.

(b) We derive the field equations of the linear theory and present the consti-
tutive equations for chiral elastic solids.

(c) We investigate the deformation of a chiral elastic cylinder subjected to
extension and torsion.

(d) We show that the torsion of the cylinder produces a variation of porosities
and an extension.
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