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Using conformal mapping techniques, analytic continuation and the theory of
Cauchy singular integral equations, we prove that a non-parabolic open inhomogene-
ity embedded in an elastic matrix subjected to a uniform remote anti-plane stress
nevertheless admits an internal uniform stress field despite the presence of a finite
mode III crack in its vicinity. Our analysis indicates that: (i) the internal uniform
stress field is independent of the specific shape of the inhomogeneity and the pres-
ence of the finite crack; (ii) the existence of the finite crack plays a key role in the
non-parabolic open shape of the inhomogeneity and in the non-uniform stresses in
the surrounding matrix; (iii) the two-term asymptotic expansion at infinity of the
stress field in the matrix is independent of the presence of the finite crack. Detailed
numerical results are presented to demonstrate the proposed theory.
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1. Introduction

In the design and manufacture of composite materials, inhomogenei-
ties (material regions with distinct elastic properties) are often introduced into
a host elastic material (known as the ‘matrix’) for the purpose of improving the
mechanical properties of the composite (e.g. strength, durability, resistance to
fatigue or corrosion etc.). The ability to design inhomogeneities (via shape and
elastic properties), which enclose a uniform stress distribution, is of particular
interest. This situation is often regarded as optimal since it eliminates the possi-
bility of stress peaks within the inhomogeneity which are known to be responsible
for the failure of the entire composite. Consequently, much attention has been
devoted in the literature to the design of inhomogeneities which enclose uniform
stress distributions.
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In a seminal contribution, Eshelby [1] conjectured that ellipses and ellip-
soids are the only shape of elastic inhomogeneities permitting internal uniform
stresses and strains when the surrounding matrix is subjected to a uniform ap-
plied field. Subsequent analyses of Eshelby’s conjecture have been conducted by
various authors (see, for example, [2–12]). A comprehensive review can be found
in Zhou et al. [13]. The objective, as always, is to identify conditions under
which the stress distribution inside embedded inhomogeneities remains uniform.
In some cases, this design requirement is to be established in the presence of
other constituents introduced into the composite either intentionally (to induce
specific properties) or unintentionally via the manufacturing process. To this
end, it has recently been demonstrated by Wang et al. [14] that when a finite
mode III crack is present in the vicinity of a non-elliptical elastic inhomogeneity
bounded by a closed curvilinear contour or interface, the stresses inside the in-
homogeneity may nevertheless remain uniform through a judicious design of the
non-elliptical shape of the inhomogeneity and the location of the finite crack.
The non-elliptical closed shape of the inhomogeneity permitting internal uni-
form stresses is attributed solely to the presence of the nearby finite mode III
crack. Very recently, Wang and Schiavone [15] have established the remark-
able and surprising result in both anti-plane and in-plane elasticity that the
internal stresses inside a parabolic inhomogeneity with an open interface are
unconditionally uniform when the surrounding matrix is subjected to uniform
remote stresses. It is natural then to pose the following question: if a finite crack
is located near a non-parabolic elastic inhomogeneity with an open interface,
can the internal stress field inside the inhomogeneity be maintained uniform via
a proper design of the non-parabolic shape of the inhomogeneity together with
the location of the finite crack? This study endeavors to answer this question.
We anticipate that the two major difficulties arising from the analysis concern
the non-parabolic open shape of the inhomogeneity and the presence of the finite
crack in the matrix. Potential applications of our findings arise, for example, in
the design of capillary barriers [16, 17].

With the above objective in mind, we employ conformal mapping techniques,
together with analytic continuation [18, 19] and the theory of Cauchy singular
integral equations [20] to prove that when a finite mode III crack is present in the
neighborhood of a non-parabolic open inhomogeneity, the stress field inside the
inhomogeneity can indeed remain uniform when the matrix is subjected to uni-
form remote anti-plane shear stress. The real density function appearing in the
conformal mapping function can be determined through the solution of a Cauchy
singular integral equation obtained by imposing the traction-free condition on
the crack faces. The singular integral equation is solved numerically using the
Gauss-Chebyshev integration formula [21] which is also used quite conveniently
to evaluate the finite integral embedded in the mapping function and the non-
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uniform stress field in the matrix. We derive the displacement jump across the
crack faces and the stress intensity factors at the two crack tips. Our analy-
sis indicates that: (i) the internal uniform stress field inside the inhomogeneity
is independent of the specific shape of the inhomogeneity and the presence of
the nearby finite crack; (ii) the existence of the finite crack exerts a significant
influence on the non-parabolic open shape of the inhomogeneity and on the
non-uniform stress field in the surrounding matrix; (iii) the two-term asymp-
totic expansion at infinity of the stress field in the matrix is also independent of
the existence of the finite crack. Detailed numerical results illustrating the non-
parabolic shapes of the inhomogeneity together with the accompanying locations
of the finite crack and the stress distributions in the two-phase composite are
presented to validate the feasibility of the proposed theory.

2. Complex variable formulation

We first establish a Cartesian coordinate system {xi} (i = 1, 2, 3). Under
anti-plane shear deformations of an isotropic elastic material, the two anti-plane
shear stress components σ31 and σ32, the out-of-plane displacement w = u3 and
the stress function φ can be expressed in terms of a single analytic function f(z)
of the complex variable z = x1 + ix2 as [22]

(2.1) σ32 + iσ31 = µf ′(z), φ+ iµw = µf(z),

where µ is the shear modulus, and the two anti-plane stress components can be
expressed in terms of the stress function as [22]

(2.2) σ32 = φ,1, σ31 = −φ,2.

3. Uniformity of stresses inside the inhomogeneity

As shown in Fig. 1, we consider a domain in R2, infinite in extent, contain-
ing a non-parabolic open elastic inhomogeneity with elastic properties distinct
from those of the surrounding matrix. In addition, the matrix is weakened by
a traction-free finite mode III crack {a ≤ x1 ≤ b, x2 = 0±}. Let S1 and S2 de-
note the inhomogeneity and the matrix, respectively, both of which are per-
fectly bonded through the interface L. The crack is denoted by C. In addition,
the matrix is subjected to uniform remote anti-plane shear stresses (σ∞31, σ

∞
32).

Throughout the paper, the subscripts 1 and 2 are used to identify the respective
quantities in S1 and S2.

The corresponding boundary value problem takes the following form:

f2(z) + f2(z) = Γf1(z) + Γf1(z),

f2(z)− f2(z) = f1(z)− f1(z), z ∈ L;
(3.1a)
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Fig. 1. A model III crack interacting with a non-parabolic open inhomogeneity with internal
uniform stersses when the matrix is subjected to uniform remote anti-plane sterss.

f ′+2 (z) + f ′+2 (z) = f ′−2 (z) + f ′−2 (z) = 0, z ∈ C;(3.1b)

f2(z) ∼=
σ∞32 + iσ∞31

µ2
z +O(z1/2), |z| → ∞,(3.1c)

where Γ = µ1/µ2. Equation (3.1a) describes the continuity of traction and
displacement across the perfectly bonded interface; Eq. (3.1b) describes the
traction-free condition on the crack faces; Eq. (3.1c) characterizes the asymptotic
behavior of f2(z) at infinity due to the remote anti-plane loading.

We introduce the following conformal mapping function for the matrix region

(3.2) z = ω(ξ) = ξ2 +H1/2

ξ2∫
ξ1

q(η) ln(ξ + η − 2H1/2) dη,

ξ = ω−1(z), H > 0, ξ2 > ξ1 > H1/2, Re{ξ} ≥ H1/2,

where q(η) is an unknown dimensionless real density function to be determined,
the parameter H has the dimension of length, ξ1 = ω−1(a) and ξ2 = ω−1(b)
or conversely a = ω(ξ1) and b = ω(ξ2). As it is shown in Fig. 2, using the
mapping function in Eq. (3.2), the exterior of the inhomogeneity is mapped
onto the right half-plane Re{ξ} ≥ H1/2 in the ξ-plane; the inhomogeneity-
matrix interface L is mapped onto the vertical straight line: Re{ξ} = H1/2,
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Fig. 2. The problem in the ξ-plane.

−∞ < Im{ξ} < +∞ in the ξ-plane; the finite crack is mapped onto the slit
{ξ1 ≤ Re{ξ} ≤ ξ2, Im{ξ} = 0±} in the ξ-plane. The interface L will become
a parabola described by L: x1 = H − x22/4H when q(η) = 0 or when the crack
is far from the inhomogeneity.

Now suppose that the internal stress field inside the non-parabolic inhomo-
geneity is uniform, characterized by

(3.3) f1(z) = Az, z ∈ S1,

where A is a complex constant to be determined.
By imposing the continuity conditions of traction and displacement across

the interface in Eq. (3.1a) with the use of Eq. (3.3) and with the aid of analytic
continuation [18, 19], we arrive at

(3.4) f2(ξ) = f2(ω(ξ)) =
Γ + 1

2
Aω(ξ)+

Γ− 1

2
Āω̄(2H1/2−ξ), Re{ξ} ≥ H1/2,

which can be more explicitly written in the form

f2(ξ) =
A(Γ + 1) + Ā(Γ− 1)

2
ξ2 − 2H1/2Ā(Γ− 1)ξ(3.5)

+
H1/2Ā(Γ− 1)

2

ξ2∫
ξ1

q(η) ln(η − ξ) dη

+
H1/2A(Γ + 1)

2

ξ2∫
ξ1

q(η) ln(ξ + η − 2H1/2) dη, Re{ξ} ≥ H1/2.
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Using Eq. (3.4) to satisfy the remote asymptotic behavior in Eq. (3.1c), we
arrive at the following relationship

(3.6)
A(Γ + 1) + Ā(Γ− 1)

2
=
σ∞32 + iσ∞31

µ2
.

In order to ensure the single-valuedness of the displacement and balance
of force for any contour in the matrix surrounding the crack C, following an
inspection of Eq. (3.5), the following constraint should be satisfied

(3.7)

ξ2∫
ξ1

q(η) dη = 0.

In addition, we arrive at a Cauchy singular integral equation by assuming
that the constant A is real valued and by imposing the traction-free condition
on the crack faces in Eq. (3.1b) as follows

(3.8)

ξ2∫
ξ1

q(η)

ξ − η
dη+

1

K

ξ2∫
ξ1

q(η)

ξ + η − 2H1/2
dη = 4− 2(K + 1)

K
H−1/2ξ, ξ1 < ξ < ξ2,

where K is a mismatch parameter defined by

(3.9) K =
Γ− 1

Γ + 1
, −1 < K < 1.

Using the following standard change of variables

(3.10) x =
2ξ − ξ1 − ξ2
ξ2 − ξ1

, t =
2η − ξ1 − ξ2
ξ2 − ξ1

,

Eqs. (3.7) and (3.8) can be recast into the following normalized form

(3.11)

1∫
−1

q(t)

t− x
dt+

ξ1 − ξ2
K

1∫
−1

q(t)

(t+ x)(ξ2 − ξ1) + 2(ξ1 + ξ2)− 4H1/2
dt

=
K + 1

K
H−1/2[x(ξ2 − ξ1) + ξ1 + ξ2]− 4, −1 < x < 1,

1∫
−1

q(t) dt = 0,

where q(t) = q(η).
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The unknown real density function q(t) can be written as

(3.12) q(t) =
Q(t)√
1− t2

, −1 ≤ t ≤ 1,

where Q(t) is an unknown bounded function in [−1, 1].
SubstitutingEq. (3.12) intoEq. (3.11) andusing theGauss–Chebyshev integra-

tion formula [21], the singular integral equation in Eq. (13) reduces to the following
set of linear algebraic equations for the n unknowns Q(t1), Q(t2), . . . , Q(tn)

(3.13)

n∑
k=1

1

n
Q(tk)

[
1

tk − xr
+

ξ1 − ξ2
K[(tk + xr)(ξ2 − ξ1) + 2(ξ1 + ξ2)− 4H1/2]

]
=

1

π

{
K + 1

K
H−1/2[xr(ξ2 − ξ1) + ξ1 + ξ2]− 4

}
,

n∑
k=1

1

n
Q(tk) = 0, tk = cos

π

2n
(2k − 1), xr = cos

πr

n
, r = 1, 2, . . . , n− 1,

from which all of the n unknowns can be uniquely determined.
Also, by using the Gauss–Chebyshev integration formula, the mapping func-

tion in Eq. (3.2) containing a finite integral can be approximated as

z = ω(ξ)(3.14)

= ξ2+
H1/2(ξ2−ξ1)

2

1∫
−1

q(t) ln

[
ξ+

1

2
t(ξ2−ξ1)+

1

2
(ξ1+ξ2)−2H1/2

]
dt

≈ ξ2+
π

2
H1/2(ξ2−ξ1)

n∑
k=1

1

n
Q(tk)

×ln

[
ξ+

1

2
tk(ξ2−ξ1)+

1

2
(ξ1+ξ2)−2H1/2

]
,

where tk has been defined in Eq. (3.13).
Once A is taken to be real, it is simply deduced from Eq. (3.6) that

(3.15) A =
σ∞32
µ1

, σ∞31 = 0.

Thus, the internal uniform stress field inside the non-parabolic inhomogeneity is
given simply by

(3.16) σ32 = σ∞32, σ31 = 0, z ∈ S1.
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By substituting Eq. (3.5) into Eq. (2.1), the stresses are non-uniformly dis-
tributed in the matrix as follows

(3.17) σ32 + iσ31

= σ∞32 −
σ∞32K

[
4 +

∫ ξ2
ξ1

q(η)
η−ξ dη +

∫ ξ2
ξ1

q(η)

ξ+η−2H1/2 dη
]

(K + 1)
[
2H−1/2ξ +

∫ ξ2
ξ1

q(η)

ξ+η−2H1/2 dη
] , Re{ξ} ≥ H1/2.

The remote asymptotic behavior of the stresses can be obtained from Eq. (3.17)
as:

(3.18) σ32 + iσ31 ∼= σ∞32 −
2σ∞32K

K + 1

√
H

z
+O

(
1

z

)
, |z| → ∞.

We can see from Eqs. (3.16) and (3.17) that σ31 = 0 along the x1-axis outside
the crack. By using the Plemelj formulas [20, 23], the stress component σ31 on
the upper and lower crack faces can be obtained from Eq. (3.17) as follows:

σ+31(x1) = −σ−31(x1)(3.19)

= − πKσ∞32q(ξ)

(K + 1)
[
2H−1/2ξ +

∫ ξ2
ξ1

q(η)

ξ+η−2H1/2dη
] , ξ1 < ξ < ξ2.

It is not difficult to verify that by using Eqs. (3.7) and (3.19)

(3.20)
b∫
a

σ+31(x1) dx1 =

b∫
a

σ−31(x1) dx1 = 0.

The displacement jump across the crack faces can also be derived from Eq. (3.19)
as

(3.21) ∆w = w+ − w− = −2πKσ∞32H
1/2

µ2(K + 1)

ξ∫
ξ1

q(η) dη, ξ1 < ξ < ξ2.

It is clear that the stresses exhibit the square root singularity at the two crack
tips z = a and z = b [20]. Furthermore, the mode III stress intensity factors at
the two crack tips can be extracted from the displacement jump across the crack
faces in Eq. (3.21) as follows

(3.22)

KIII(a) = −πKσ
∞
32H

1/2Q(−1)

K + 1

√
π(ξ2 − ξ1)

2ω′(ξ1)
,

KIII(b) =
πKσ∞32H

1/2Q(1)

K + 1

√
π(ξ2 − ξ1)

2ω′(ξ2)
.
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It is seen from the above analysis that: (i) the internal uniform stress field
in Eq. (3.16) is independent of the specific shape of the inhomogeneity and the
presence of the nearby finite mode III crack; (ii) the existence of the finite crack
exerts a significant influence on the non-parabolic shape of the inhomogeneity
and on the non-uniform stress distribution in the matrix through the real density
function q(η) and the two real parameters ξ1 and ξ2; (iii) the two-term asymptotic
expansion at infinity of the stress field in the matrix in Eq. (3.18) is independent
of the presence of the finite crack. The stresses in the matrix outside the crack in
Eq. (3.17), σ±31 in Eq. (3.19) on the two crack faces, and the two stress intensity
factors in Eq. (3.22) can also be conveniently evaluated by using the Gauss–
Chebyshev integration formula.

4. Numerical results

In this section, numerical results for the non-parabolic shapes of the inho-
mogeneity and the stress distributions in the composite are presented to demon-
strate the theory proposed in Section 3. In fact, the configuration in Fig. 1 is
obtained by choosing the following parameters

(4.1) K = −0.5, ξ1 = 1.05H1/2, ξ2 = 2.05H1/2.

In this case, the inhomogeneity is softer than the matrix (Γ = 1/3 < 1).
The non-parabolic shape of the inhomogeneity and the location of the finite

Fig. 3. The non-parabolic shape of the inhomogeneity and the location of the finite crack
when choosing K = 0.8, ξ1 = 1.2H1/2, ξ2 = 2.2H1/2.
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crack when choosing K = 0.8, ξ1 = 1.2H1/2, ξ2 = 2.2H1/2 are illustrated in
Fig. 3 in which case the inhomogeneity is harder than the matrix (Γ = 9 > 1).
A comparison of Fig. 1 with Fig. 3 reveals that the non-parabolic shape for

Fig. 4. The non-parabolic shape of the inhomogeneity and the location of the finite crack
when choosing K = −0.5, ξ1 = 1.0064H1/2, ξ2 = 2.0064H1/2.

Fig. 5. The non-parabolic shape of the inhomogeneity and the location of the finite crack
when choosing K = 0.8, ξ1 = 1.0064H1/2, ξ2 = 2.0064H1/2.
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a soft inhomogeneity (Γ < 1) permitting internal uniform stresses is quite dif-
ferent than that for a hard inhomogeneity (Γ > 1) permitting internal uniform
stresses.

Fig. 6. The distribution od σ32 along the x1-axis when choosing K = −0.5, ξ1 = 1.05H1/2,
ξ2 = 2.05H1/2.

Fig. 7. The distribution od σ32 along the x1-axis when choosing K = 0.8, ξ1 = 1.2H1/2,
ξ2 = 2.2H1/2.
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Our results indicate that it is permissible for the interface L to have two sharp
corners for a soft inhomogeneity (Fig. 4) and only one sharp corner for a hard
inhomogeneity (Fig. 5). At these sharp corners, we have ω′(ξ) = 0. However,

Fig. 8. The distribution od σ31 on the upper and lower crack faces when choosing
K = −0.5, ξ1 = 1.05H1/2, ξ2 = 2.05H1/2.

Fig. 9. The distribution od σ31 on the upper and lower crack faces when choosing K = 0.8,
ξ1 = 1.2H1/2, ξ2 = 2.2H1/2.
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following an examination of Eqs. (2.1) and (3.4), we find that the stresses in the
matrix remain bounded at these sharp corners on the interface.

We illustrate in Figs. 6 and 7 the distribution of σ32 along the x1-axis. In
Fig. 6, σ32 = 3σ∞32 = σ∞32/Γ at the interface on the matrix side. In Fig. 7,
σ32 = 0.1111σ∞32 = σ∞32/Γ at the interface on the matrix side. These observa-
tions reflect the fact that the continuity of displacement (or equivalently the
continuity of the tangential derivative of the displacement) along the perfectly
bonded inhomogeneity-matrix interface has been satisfied. As x1 → +∞, σ32 in
the matrix in both Figs. 6 and 7 behave in a manner according to Eq. (3.18).
It is also apparent from Figs. 6 and 7 that the stress field is singular at the two
crack tips. The stress intensity factors at the two crack tips can be determined
from Eq. (3.22) as follows

KIII(a)

σ∞32H
1/2

= 5.7001,
KIII(b)

σ∞32H
1/2

= 5.7142(4.2)

when K = −0.5, ξ1 = 1.05H1/2, ξ2 = 2.05H1/2;

KIII(a)

σ∞32H
1/2

= 0.8444,
KIII(b)

σ∞32H
1/2

= 1.2267(4.3)

when K = 0.8, ξ1 = 1.2H1/2, ξ2 = 2.2H1/2,

the correctness of which has been verified from the results in Figs. 6 and 7.
We see from Eqs. (4.2) and (4.3) that: (i) the magnitudes of the stress in-
tensity factors at the two crack tips in the presence of a soft inhomogeneity
with K = −0.5 is larger than those of KIII(a) = KIII(b) = σ∞32

√
π
2 (b− a) =

2.9043σ∞32H
1/2 for the same crack in an infinite homogeneous medium; (ii) the

magnitudes of the stress intensity factors at the two crack tips in the presence of
a hard inhomogeneity with K = 0.8 is lower than those of KIII(a) = KIII(b) =
σ∞32
√

π
2 (b− a) = 2.2211σ∞32H

1/2 for the same crack in an infinite homogeneous
medium.

Finally, we illustrate in Figs. 8 and 9 the distribution of σ31 on the upper
and lower crack faces. It is clear from Figs. 8 and 9 that σ31 is singular at the
two crack tips and that the conditions in Eq. (3.20) are satisfied.

5. Conclusions

We have proved that within the framework of anti-plane elasticity, the inter-
nal stresses inside a non-parabolic open inhomogeneity in the vicinity of a finite
mode III crack lying on the x1-axis in the matrix can nevertheless be maintained
uniform when the matrix is subjected only to a uniform remote anti-plane stress
σ∞32 with σ∞31 = 0. The conformal mapping function is introduced in Eq. (2.2)
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with the real density function q(η) determined through numerical solution via
the application of the Gauss–Chebyshev integration formula to the Cauchy sin-
gular integral equation in Eq. (3.8) together with the constraint in Eq. (3.7). The
internal uniform stress field inside the inhomogeneity is given by Eq. (3.16), the
non-uniform stress field in the matrix is given by Eq. (3.17) with its two-term
asymptotic expansion at infinity given by Eq. (3.18). The displacement jump
across the crack faces and the stress intensity factors at the two crack tips are
given by Eqs. (3.21) and (3.22), respectively.

Our method extends to the problem of an anticrack (or rigid line inclusion)
interacting with a non-parabolic inhomogeneity with internal uniform stresses. In
this case, the matrix should be subjected to the uniform remote anti-plane stress
σ∞31 with σ∞32 = 0 and the uniform stresses inside the non-parabolic inhomogeneity
are simply given by: σ31 = Γσ∞31, σ32 = 0. The problem of a Zener–Stroh crack
with a net screw dislocation Burgers vector near a non-parabolic inhomogeneity
permitting internal uniform stresses can also be addressed quite conveniently
using this method.
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