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The linear theory of viscoelasticity remains an important field of research
like most solids and polymer materials when exposed to a vicious dynamic loading
effect. This article introduces a new model for describing the behavior of thermo-
viscoelastic microbeams considering the effects of temperature change and the lon-
gitudinal magnetic field. The governing equations in this model are derived based
on the Euler–Bernoulli beam theory, Kelvin–Voigt model of viscosity, the general-
ized thermoelasticity, and the classical Maxwell equations. The two ends of the mi-
crobeam are clamped and subjected to the influence of a laser pulse with a temporal
intensity profile. The analytical solutions to the physical fields are evaluated using
the Laplace transform and its inversion transforms are performed numerically. The
thermo-viscoelastic responses of the microbeam are calculated numerically and inves-
tigated graphically. The effect of different parameters such as viscosity, laser intensity,
and the magnitude of the magnetic field are studied in detail.
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Notation

λ, µ Lame’s constants,
αt thermal expansion coefficient,
γ = Eαt/(1− 2ν) coupling parameter,
T0 environmental temperature,
θ = T − T0 temperature increment,
T absolute temperature,
CE specific heat,
e cubical dilatation,
σij nonlocal stress tensor,
eij strain tensor,
L microbeam length,
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A = bh cross-section area,
α1, α2 viscoelastic relaxation times,
µ0 magnetic permeability,
τq phase-lag of heat flux,
ν Poisson’s ratio,
MT thermal moment,
qi components of the heat flows vector,
K thermal conductivity,
w lateral deflection,
qi components of heat flows vector,
δij Kronecker’s delta tensor,
u axial displacement,
Fi body force components,
Q heat source,
t0 pulse width,
h nanobeam thickness,
ρ material density,
b microbeam width,
oxyz Cartesian coordinate,
∇2 Laplacian operator,
E Young’s modulus,
τθ phase-lag of temperature gradient,
I = bh3/12 inertia moment,
IE flexural rigidity.

1. Introduction

Laser pulse technology has wide applications in material process-
ing, characterization, and non-destructive detection. Also, laser, ultrasound is
an innovation where a laser is used to produce and test, ultrasound and includes
acoustics, optics, calorific, material, electrics, physic, and so on. Laser ultrasound
has many fascinating and interesting points. For example, it is non-contact, fast,
non-destructive, and accurate and requires a small effort [1-4]. When the laser
affects the microbeams, a portion of the photons is absorbed by the microbeam
and their energy is turned to heat while the other photons are reflected. Absorbed
heat energy leads to non-uniform thermal stresses, resulting in the vibration of
the microbeams [5].

The thermal vibration of bars has led to earth importance in space spacecraft,
turbines, reactor vessels, and other machine parts that are exposed to varying
heating. Very fast thermal procedures, under the action of a laser heartbeat,
are fascinating from the point of view of thermoelasticity, because it requires
the investigation of the coupled strain and temperature fields. This indicates
the absorption of the energy results of the laser strikes at a limited expansion
temperature, causing thermal expansion and creating rapid movements in the
structure components, thus bringing a rise of vibrations. Because the duration
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of the laser pulse is very short, there will be a very rapid heating process and
Fourier’s law of heat conduction won’t be valid anymore as well as non-Fourier
equation of heat conduction that takes into consideration the limited speed of
thermal signal propagation [6–8].

Isotropic and anisotropic materials are now commonly used in various engi-
neering fields, including mechanical engineering, aerospace, chemistry, and en-
ergy. These materials help to make a device with optimal output in many con-
structions, such as flats, beams, shells, and curved structures. In a broad variety
of applications Microelectromechanical devices (MEMS), Nanoelectromechanical
systems (NEMS), and Atomic Force Microscopes, such as an actuator, micro-
switch, micro-resonator, and AFMS, are increasingly being considered, in which
the thicknesses and lengths of microbeams are usually in the order of microns
and sub microns [9–15].

Over recent years the main structures commonly used in microsensors, mi-
crosoners, microscopes, micro-switches, microfluidic systems have been MEMS-
based microbeams. A significant number of researches is therefore carried out to
predict and understand the static and dynamic conduct of microbeams [16–20].
Microbeams are also increasingly being considered for different applications.
A lot of investigators have discussed the vibration and thermal process of the mi-
crobeams [21–27]. Usually, micro/nanobeam or micro/nanoplates are also mod-
eled on MEMS/NEMS. When studying these structures, the classical elastic
theory is no longer successful. Several theories have also been established for
higher-order continuum theory, such as the theory of non-local elasticity [28],
surface elasticity [29], strain gradient [30], micropolar theory [31], and couple
stress theory [32, 33].

Studying the viscous behavior of viscous materials such as in bone and bio-
protective materials is of interest in various contexts. The linear theory of vis-
coelasticity is still a significant area of research as most solids and polymer
materials when exposed to a dynamic loading manifest a viscous effect. Vis-
coelasticity is of interest in solid-state physics, materials science, and metallurgy
because it is causally linked to a variation of microphysical processes and can be
used as an experimental investigation of those procedures. Hooke’s law can be
approximated for different materials by the linear theory of viscoelasticity. Many
investigators have dealt with several thermo-viscoelastic problems by using the
generalized models of thermoelasticity [34–41].

The combination of temperature and deformation is an important factor
that is commonly disregarded in the literature on microbeams. In simplifying
estimates, the viscosity between nanoscale microbeams is also often neglected.
This paper analyzes for the first time the viscosity of dynamics microbeams
using, the dual-phase-lag heat conduction equation, Kelvin–Voigt viscosity type,
and beam theory of Euler–Bernoulli.
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In this work, the vibration analysis of thermos-viscoelastic microbeam under
the effects of temperature change and an axial magnetic field is investigated. The
equations of motion and heat conduction are derived by using the generalized
thermoelastic model with phase lags. This paper also, which produces linear
coupling used the Kelvin–Voigt viscosity model. The influences of the magnetic
field and laser intensity of the vibration behavior of the microbeam is investigated
and discussed in detail. Moreover, numerical results are illustrated to investigate
the effect of parameters of viscoelastic medium and phase lags.

2. Mathematical modeling

The structure under investigation is a Kelvin–Voigt type thermo-viscoelastic
microbeam of length L, thickness h, and width b (Fig. 1). The microbeam is
heated uniformly by a laser pulse, fully submerged in a longitudinal magnetic
field, and subjected to varying sinusoidal pulse temperature. It is assumed that
the microbeam is thin enough so that the Euler–Bernoulli beam theory is suffi-
cient to describe the mechanical behavior of the microbeam. The x-coordinate
is parallel to the axis of the microbeam while the thickness and width direc-
tions are parallel to the y- and z-axes, respectively. Also, the microbeam can
be demonstrated as a prism microbeam with either simply supported or doubly
clamped ends.

Fig. 1. Schematic of the microbeam under the longitudinal magnetic field.

The displacements are given as

(2.1) u = −z ∂w
∂x

, v = 0, w = w(x, z, t).

The thermoelastic stress field in the slender microbeam is supposed to be
uniaxial; only the axial stress σxx can attained non-zero values [42].

The use of viscoelastic models is important, instead of an elastic model, to ef-
fectively model the dynamic behavior of microbeams. Viscosity can be integrated
into the dynamic model of the popular Maxwell, Kelvin–Voigt, linear standard,
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in solid mechanically. In this paper, the Kelvin–Voigt viscosity model produces
linear couples. According to the Kelvin–Voigt scheme, the axial stress σxx of the
viscoelastic microscale microbeam can be expressed as [43]:

(2.2) σxx = (2µ∗ + λ∗)
∂u

∂x
− β∗θ,

The viscoelastic parameters µ∗, λ∗ and β∗ are expressed as [44, 45]

(2.3)
λ∗ = λ

(
1 + α1

∂

∂t

)
, µ∗ = µ

(
1 + α2

∂

∂t

)
, β∗ = β0

(
1 + βv

∂

∂t

)
,

β0 = (3λ+ 2µ)αt, βv =
(3λα1 + 2µα2)αt

β0
.

The flexure moment of the beams M(x, t) is given by:

(2.4) M(x, t) = −b
h/2∫
−h/2

zσxx dz.

Substituting Eq. (2.2) into Eq. (2.4), one has

(2.5) M(x, t) = I(2µ∗ + λ∗)z
∂2w

∂x2
+ β∗MT

where

(2.6) MT = b

h/2∫
−h/2

zθ(x, z, t) dz.

After applying the initial magnetic field ~H and current density ~J , one gets as
a result of an induced magnetic field ~h and an induced electric field ~E. Maxwell’s
electromagnetic field equations for a homogeneous and electrically perfect con-
ducting medium may be defined as [46]

(2.7)
~J = ∇× ~h, ∇× ~E = −µ0

∂~h

∂t
, ~E = −µ0(

∂~u

∂t
× ~H),

~h = ∇× (~u× ~H), ∇ · ~h = 0.

The application of the longitudinal magnetic field ~H ≡ (Hx, 0, 0) in the axial
direction of the microbeam. We can write the vector of the induced magnetic
field ~h and current density ~J after using Eq. (2.1) in the following forms:
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(2.8)

~h = ∇× (~u× ~H) = ∇×

∣∣∣∣∣∣
ex ey ez
u 0 w
Hx 0 0

∣∣∣∣∣∣ ≡ Hx

(
0, 0,

∂w

∂x

)
,

~J = ∇× ~h = Hx

∣∣∣∣∣∣
ex ey ez
∂
∂x

∂
∂y

∂
∂z

0 0 ∂w
∂x

∣∣∣∣∣∣ ≡ −Hx

(
0,
∂2w

∂x2
, 0

)
.

Using the previous equation, Eq. (2.8), into Lorentz force ~F that induced by
applying the longitudinal magnetic field ~H, yields [47]
(2.9)

~F ≡ (fx, fy, fz) ≡ µ0( ~J × ~H) = −µ0Hx

∣∣∣∣∣∣
ex ey ez
0 ∂2w

∂x2
0

Hx 0 0

∣∣∣∣∣∣ ≡ µ0H2
x

(
0, 0,

∂2w

∂x2

)
.

For transverse vibration of microbeams, the equilibrium equation can be
written as [47]

(2.10)
∂2M

∂x2
+ ρA

∂2w

∂t2
+ f(x) = 0

where f(x) is a function of space that incorporates the longitudinal magnetic
force. Here f(x) 6= fz, since fz denotes a body force and f(x) represents the
force per length. So, f(x) is expressed as

(2.11) f(x) = Afz = Aµ0H
2
x

∂2w

∂x2
.

Let us consider that there is no heat flow across the surfaces of the microbeam,
so that ∂θ

∂x = 0 at z = ±h
2 . According to this assumption, we take the variation

of temperature increment as

(2.12) θ(x, z, t) = φ(x, t) sin(pz), p =
π

h
.

Introducing Eqs. (2.12) into Eq. (2.6), one has

(2.13) MT = 2ap2φ(x, t).

The substitution of Eq. (2.13) into Eq. (2.5), and Eq. (2.5) into Eq. (2.10), gives

M(x, t) = I(2µ∗ + λ∗)z
∂2w

∂x2
+ 2ap2β∗φ(x, t),(2.14)

I(2µ∗ + λ∗)
∂4w

∂x4
+ ρA

∂2w

∂t2
+ 2ap2β∗

∂2φ

∂x2
+Aµ0H

2
x

∂2w

∂x2
= 0.(2.15)
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The classical theory of coupled thermoelasticity meant an infinite rate of
propagation of thermal signals and this counteracts physical facts. During the
last four decades, generalized theories including finite speed of heat transporta-
tion in thermoelastic mediums have been advanced to eliminate this absurdity.
The relevant theoretical developments on the subject are due to Tzou [48, 49]
called dual-phase-lag model (DPL) for heat transport mechanism. In this model,
Tzou presented two phase-lags to both the temperature gradient τθ and the heat
flux vector τq. The generalized model of heat conduction equation with phase-
lags is given by [50]:

(2.16) K

(
1 + τθ

∂

∂t

)
θ,ii =

(
δ + τq

∂

∂t

)[
ρCE

∂θ

∂t
+ β∗T0

∂e

∂t
− ρQ

]
.

The model in Eq. (2.16) is said to be a hyperbolic heat conduction model since
it contains the second-order derivative of temperature versus time. If τq > τθ,
the local heat flux vector is the result of the temperature gradient in the same
place but early. That is, if τq < τθ the temperature gradient is the result of the
heat flux early. For more details on Eq. (2.16), one can refer to [51–56].

In absence of PL for temperature gradient (τθ = 0), Eq. (2.16) is simplified
to the hyperbolic conduction model proposed by Lord and Shulman (LS) [57].
Under the Euler–Bernoulli assumption, the heat conduction equation (2.16),
becomes

(2.17) K

(
1+τθ

∂

∂t

)(
∂2

∂x2
+
∂2

∂z2

)
θ =

(
1+τq

∂

∂t

)[
ρCE

∂θ

∂t
−β∗T0z

∂3w

∂x2∂t
−ρQ

]
.

For τq = τθ = 0, this is identical with classical heat conduction Fourier’s law. In
addition, in the absence of viscous effect the viscoelastic relaxation times should
have vanished (i.e., α1 = α2 = 0).

The laser heat source term with an ultra-short pulse duration tp and intensity
L0 is given as follows [58, 59]:

(2.18) Q(z, t) =
Ra
δ0
Ī(t)e

2z−h
2δ0 =

L0Ra
δ0t2p

te
( 2z−h

2δ0
− t
tp

)

where Ra is surface reflectivity, δ0 is optical penetration depth and Ī(t) is the
non-Gaussian temporal profile which is given by [59]:

(2.19) Ī(t) =
L0

t2p
te
− t
tp .

It is obvious that the maximum laser intensity is decreasing with the increase
in tp. According to [59], the conduction in the microbeam is displayed as a 1D
problem with a heat source Q(z, t) given by:
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(2.20) Q(z, t) =
Ra
δ0
Ī(t)e

2z−h
2δ0 =

L0Ra
δ0t2p

te
( 2z−h

2δ0
− t
tp

)

where δ0 denotes the absorptive depth of heating energy and Ra represents ab-
sorptivity of the irradiated surface. Using Eqs. (2.12), (2.19), the heat equation
(2.17) can be written as

(2.21) sin(pz)

(
1 + τθ

∂

∂t

)(
∂2

∂x2
− p2

)
φ

=

(
δ + τq

∂

∂t

)[
ρCE
K

sin(pz)
∂φ

∂t
− β∗T0

K
z
∂3w

∂x2∂t
− ρI0Ra
Kδ0t2p

te
( 2z−h

2δ0
− t
tp

)
]
.

Multiplying the previous equation by z and integrating zfrom −h/2 to h/2 with
respect to z, we obtain

(2.22)
(

1 + τθ
∂

∂t

)(
∂2

∂x2
− p2

)
φ =

(
δ + τq

∂

∂t

)[
η0
∂φ

∂t
− β∗η1

∂3w

∂x2∂t
− η2f(t)

]
where

(2.23)
η0 =

ρCE
K

, η1 =
T0h

3

2p2K
,

η2 =
ρL0Raδ0
2p2Kt2p

[
h

2δ0
− 1 +

(
h

2δ0
+ 1

)
e

−h
δ0

]
, f(t) = te

− t
tp .

3. Dimensionless quantities

In terms of the non-dimensional quantities

(3.1)
{x′, w′, u′, z′, L′, b′} = c1η0{x,w, u, z, L, b}, {t′, τ ′q, τ ′θ} = c21η0{t, τq, τθ},

θ′ =
β

ρc21
θ, σ′xx =

1

ρc21
σxx, Q′ =

1

Kc21η
2
2T0

Q, c21 =
2µ+ λ

ρ
,

the governing equations (2.15), (2.22), and (2.2) can be written as

(3.2)

(
1 + c22

∂

∂t

)
∂4w

∂x4
+ η3

∂2w

∂t2
+ η4

(
1 + β1

∂

∂t

)
∂2φ

∂x2
+ a20η3

∂2w

∂x2
= 0,

(3.3)

(
1 + τθ

∂

∂t

)(
∂2

∂x2
− p2

)
φ

=

(
δ + τq

∂

∂t

)[
∂φ

∂t
− εη5

(
1 + β1

∂

∂t

)
∂3w

∂x2∂t
− η6f(t)

]
,

(3.4) σxx = −z
(

1 + η0c
2
2

∂

∂t

)
∂2w

∂x2
− sin(pz)

(
1 + β1

∂

∂t

)
φ
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where

(3.2)
c22 =

α1λ+ 2µα2

ρ
, η3 =

12

h2
, η4 =

24p2c51η0
h3

, η5 =
h3

2p2c61η
4
0

,

a20 =
µ0H

2
x

ρ
, η6 =

βη2
ρc41η

3
0

, ε =
β2T0
ρ2CEc21

.

4. Solution of the problem

The considered field variables can be obtained by using the mechanism of the
Laplace transform. So, the following initial conditions should be considered

(4.1) w(x, t)|t=0 =
∂w(x, t)

∂t

∣∣∣∣
t=0

= 0, φ(x, t)|t=0 =
∂φ(x, t)

∂t

∣∣∣∣
t=0

= 0.

After using Laplace transform the field equations Eqs. (3.2)–(3.4) can be given
by

d4w̄

dx4
+A0

d2w̄

dx2
+A1w̄ +A2

d2φ̄

dx2
= 0,(4.2) (

d2

dx2
−A3

)
φ̄ = −A4

d2w̄

dx2
−A5ḡ(s),(4.3)

σ̄xx = −(1 + η0c
2
2s)z

d2w̄

dx2
− sin(pz)(1 + β1s)φ̄(4.4)

where

(4.5)

A1 =
s2η3

1 + sc22
, A2 =

η4(1 + β1s)

1 + sc22
, A0 =

a20η3
1 + sc22

,

A3 = p2 + q, q =
s(δ + τqs)

1 + τθs
,

A4 = qη5ε(1 + β1s), A5 = qη6, ḡ(s) =

(
tp

1 + tps

)2

.

Eliminating φ̄(x) between Eqs. (4.2) and (4.3), one obtains a differential equation
satisfied by w̄ as

(4.6)
d6w̄

dx6
− a1

d4w̄

dx4
+ a2

d2w̄

dx2
− a3w̄ = 0,

where the coefficients a1, a2 and a3 are presented by

(4.7) a1 = A2A4 +A3 −A0, a2 = A1 −A0A3, a3 = A1A3.
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The general solutions of Eqs. (4.6) can be expressed as

(4.8) w̄ =
3∑
j=1

(Cje
−kjx + Cj+3e

kjx)

where k21, k22 and k23 are the roots of

(4.9) k6 − a1k4 + a2k
2 − a3 = 0.

These roots are expressed as [58]

(4.10) k2i =
1

3
[ψi(2a

3
1 + 27a3 − 9a1a2)

1/3 + a2], i = 1, 2, 3,

where

(4.11)

{ψ1, ψ2, ψ3} = −1

2
{2R0,−R0 + i

√
3R1,−R0 − i

√
3R1},

R0 =
ξ2 −R0

ξ
, R1 =

ξ2 +R2

ξ
, R2 =

3a2 − a21
(2a31 + 27a3 − 9a1a2)2/3

,

ξ =
1

2
(4 + 4

√
4R3

2 + 1)1/3.

Introducing Eq. (4.2) in Eq. (4.3), we get

(4.12) φ̄ =
−1

A2A3

(
d4w̄

dx4
+ (A0 −A2A4)

d2w̄

dx2
+A1w̄ −A2A5ḡ(s)

)
.

Substituting the value of w̄ into (4.12), we can express the general solution of
temperature θ̄ as

(4.13) θ̄ = sin(pz)
3∑
j=1

Hj(Cje
−kjx + Cj+3e

kjx) + sin(pz)H4

where

(4.14) Hj =
−1

A2A3
(k4j + (A0 −A2A4)k

2
j +A1), H4 =

A5ḡ(s)

A3
.

The displacement ū after using Eq. (4.8) takes the form

(4.15) ū = −zdw̄

dx
= z

3∑
j=1

kj(Cje
−kjx − Cj+3e

kjx).
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Also, the strain is

(4.16) ē = −z d
2w̄

dx2
= −z

3∑
j=1

k2j (Cje
−kjx + Cj+3e

kjx).

In addition, the thermal stress σ̄xx given in Eq. (4.4) with the aid of Eqs. (4.8)
and (4.13), become

(4.17) σ̄xx = −
3∑
j=1

(z(1+η0c
2
2s)k

2
j +sin(pz)(1+β1s)Hj)(Cje

−kjx+Cj+3e
kjx)

−sin(pz)(1+β1s)H4.

The theories of Lord and Shulman [57] and Green and Naghdi [60] as well as the
classical thermoelasticity theory (CTE), are adopted as special cases depending
on the values of the PLs τq and τθ.

5. Applications

The present microbeam is thermally loaded on the boundary x = 0 as

(5.1) θ(0, z, t) = θ(0, t) sin(pz) = θ0f(x, t) sin(pz)

where θ0 is a constant. We consider the function f(x, t) is varying with time as
a sinusoidal pulse described mathematically as

(5.2) f(x, t) = f(t) =

{
sin(π/t0t), 0 ≤ t ≤ t0,
0, t > t0, t < 0,

where t0 represents the pulse width of the temperature varying. Furthermore,
the temperature at the end boundary satisfies the following relation:

(5.3)
∂θ(x, t)

∂x

∣∣∣∣
x=L

= 0.

Additionally, since the ends of the microbeam are clamped then,

(5.4) w(x, t)|x=0,L =
∂w(x, t)

∂x

∣∣∣∣
x=0,L

= 0.

In the Laplace transform domain, the boundary conditions in Eqs. (5.1), (5.3)
and (5.4) become in the forms

(5.5)
w̄(x, s)|x=0,L =

dw̄(x, s)

dx

∣∣∣∣
x=0,L

= 0,

φ̄(x, s)|x=0 =
πt0

π2 + t20s
2
,

dφ̄(x, s)

dx

∣∣∣∣
x=L

= 0.
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The replacement of Eqs. (4.8) and (4.13) into Eq. (5.5) yields the unknown
parameters Cj , j = 1, . . . , 6.

6. Numerical inversion of Laplace transforms

The solutions for deflection, displacement, temperature, and stress of the
present microbeam in the physical field may be obtained by using a numerical
inversion technique via a Fourier series expansion. In this procedure, the inverse
g(xt) of Laplace transform g(s)ḡ(x, s) is come close to the relation [61]

(6.1) g(x, t) =
ect

t1

[
1

2
ḡ(x, c) + Re

{ n∑
k=1

ḡ

(
x, c+

ikπ

t1

)}]
, 0 ≤ t ≤ t1

where n denotes a sufficiently large integer. The optimal choice of the free pa-
rameter c is obtained according to the criteria described in [61].

7. Discussions of the results

In this section, the thermoelastic dynamic behavior of viscoelastic microscale
beams is investigated in detail. The current analysis is validated by comparing
calculated outcomes with those available for viscoelastic microbeams. A numer-
ical example is given to study the effect of viscosity, pulse width and the time
of laser-pulse as well as the laser intensity parameters on dimensionless lateral
vibration w, temperature θ, displacement u and stress σxx of microbeams along
the x-direction. For this purpose, we take the following physical values of copper
material

ρ = 8.954× 103 kg/m3, CE = 383.1 J/(kg ·K), T0 = 296 K,

αt = 1.78× 10−5 K−1, λ = 7.76× 1010 kg/m3, µ = 3.86× 1010 kg/m3,

K = 386 W/(m ·K), E = 8.4× 1010 kg/m3, α1 = 0.6 s, α2 = 0.9 s,

t = 0.1 s, τq = 0.05 s, τθ = 0.01 s, ν = 0.33,

µ0 = 1.26× 10−6 Hm−1, Hx = 107 Am−1.

Also, unless otherwise indicated, the value of the parameters Ra, δ0 and L0

of the viscoelastic microbeam are taken as 0.5, 0.01 and 1011 J/m2. Also, we
assumed that the ratios of viscoelastic microbeam are fixed as L/h = 10 and
b/h = 0.5. Consequently, when the thickness h is varied, the length L and width
b are changed accordingly with h. The results are presented for L = 1 and
z = h/6. The computations are performed for one value of time, namely t = 0.1.
The intensity of a laser L̄0 (L̄0 = 10−11L0) is also considered. Various cases of
the field variables are studied by clarifying numerical values in Figs. 2–5.
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7.1. The effects of viscosity parameters

In this case the variations of the field variables for different values of the
viscosity parameters α1 and α2 are investigated. The effects of viscosity have been
presented in Fig. 2 when the pulse width parameter t0, time of laser-pulse tp, laser
intensity I0 and phase-lags τq and τθ parameters remain constants. It is known
that all materials consist of molecules and atoms that are permanently moving.
When the temperature is added to a material, the atoms and molecules vibrate
faster. As atoms vibrate faster, the space between atoms increases. Movement
and particle spacing determine the state of the material from the material then
the object expands and takes up more space.

As shown in Fig. 2, we can see that due to the presence of the viscosity term
in the phase lag model, the amplitude of the thermoelastic fields has decreased
considerably for the viscous microbeam compared with the non-viscous one. Also,
it should be noted that all the field quantities vanish identically with the increase

(a) Transverse deflection w versus x. (b) Temperature θ versus x.

(c) Displacement u versus x. (d) Thermal stress σxx versus x.

Fig. 2. The transverse deflection, temperature, displacement, and thermal stress
distributions of the microbeam for different values of the viscosity parameters α1 and α2.
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of the length x. Thus, we have found some significant differences in the effect of
the two phase-lags τθ and τq of temperature gradient and heat flux vector on all
the physical variables.

Figure 2(a) shows that the lateral vibration distribution w satisfies the bound-
ary condition at the two ends of the microbeam (i.e. vanishes at x = 0, L). The
microbeam exerts maximum deflection near the first end of the microbeam at all
times as compared to that at other points on the axial axis. The deflection w first
decreases sharply to its minimum values near x ∼= 0.14 and then increases slowly
to zero values at x = 1. The magnitudes of the displacement are decreasing due
to the presence of viscosity.

Figure 2(b) illustrates that the behavior of temperature θ starts with max-
imum values on the boundary of microbeam x = 0, thereafter continuously
decrease to zero value in the range 0.3 ≤ x ≤ 1. As shown in Fig. 2(b), we see
that the temperature profile decreases due to viscosity presence.

Figure 2(c) displays the variation of the displacement u behavior versus dif-
ferent values of the viscosity parameters α1 and α2. It is observed from Fig. 2(c)
that the displacement u starts with a positive value and then decreases continu-
ously to negative values and thereafter continuously increases to zero values for
all the two cases. In the axial direction, due to the coupling movement of the
device, the excitation thermal load can cause considerable axial displacement.

The effect of the viscosity parameters α1 and α2 on the thermal stress σxx.
of the viscoelastic microscale beam is shown in Fig. 2(d). From Fig. 2(d), we
can find that the stress σxx starts with a negative value and then increases
continuously to zero values for all the two cases. The presence of viscosity helps
to minimize the magnitude of thermal stress.

The velocity of stress diffusion can be observed as being finite and coinciding
with the physical behavior of viscoelastic materials. In addition, the boundary
is satisfied with these figures. Finally, from the previous conclusions, we can
conclude that viscosity has a clear effect on all different distributions. Also, it is
of interest that when α1 = α2 = 0, the results for non-viscoelasticity theory are
rendered. Good agreement was observed between the current results and those
of Mashat et al. [62].

7.2. The effects of the parameter of pulse width t0 on the field variables

This case is studying how the distributions of deflection, temperature, ther-
mal stress, and displacement vary with the pulse width of the temperature t0
when the parameters τq, τθ, tp, I0, α1 and α2 remain constants. To show the
influences of pulse width on all the studied fields of the microbeam, the results
for various values of t0 = 0.1, 0.15, 0.2 are highlighted in Fig. 3.

From Fig. 3, it is observed that all the field variables are very sensitive to
the variation of the pulse width t0. Fig. 3(a) reveals that the lateral vibration
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(a) Transverse deflection w versus x. (b) Temperature θ versus x.

(c) Displacement u versus x. (d) Thermal stress σxx versus x.

Fig. 3. The transverse deflection, temperature, displacement, and thermal stress
distributions of the microbeam for three different values of the pulse width of the

temperature t0.

w decreases as pulse width increases. The temperature-response curves for the
different pulse width parameter t0 are plotted in Fig. 3(b). It was found that an
increase in the values of t0 increases the temperature values.

The influence of the pulse width parameter t0 on the response of the dis-
placement u and the thermal stress σxx of viscoelastic microbeams are shown in
Figs. 3(c) and 3(d). From Fig. 3(c), it has been observed that an increased pulse
width parameter, significantly increases the displacement behavior. It is worth
noting that that thermal stress σxx of the microbeam is significantly affected by
the pulse width parameter of the thermal load.

7.3. The effects of the laser pulse tp on the field variables

The thermoelastic vibrations due to an axial magnetic field and laser-pulse, the
behavior of the field variables with different values of the laser-pulse tp parameter
is investigated. The values of parameters I0, τq, t0, τθ, α1 and α2 remain constants.
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The laser-pulse effect on the dynamic deflection and temperature of viscoelastic
microbeams is illustrated in Fig. 4. Comparing Fig. 4(a–d), it was found that
a significant effect of the laser-pulse parameter on all the fields studied was very
clear. Figure 4(a) and 4(d) show by increasing the values of the laser-pulse tp
causes an increase in the values of deflection w and thermal stress σxx which
is very evident in the peek points of the curves. As an expected increase in the
values of the laser-pulse tp causes a decrease in the values of temperature (see
Fig. 4(b)). As shown in Fig. 4(c), we can see that the displacement values u
decrease with the laser parameter in the range 0 ≤ x ≤ 0.1, then increase in the
range 0.1 ≤ x ≤ 0.5.

The so-called ultra-short lasers range from nanoseconds to femtoseconds in
general and have pulse length. The high-intensity energy flow and the extremely
short laser beam have produced situations in which very wide thermal gradients
or an ultra higher heat speed can occur along with the limits of ultra-short laser
heating [15–17].

(a) Transverse deflection w versus x. (b) Temperature θ versus x.

(c) Displacement u versus x. (d) Thermal stress σxx versus x.

Fig. 4. The transverse deflection, temperature, displacement, and thermal stress
distributions of the microbeam for different values of the laser-pulse parameter tp.
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From a physical point of view, when a laser pulse irradiates the top surface
of a beam, the heat flow sequentially goes through each infinitesimal part per-
pendicular to the z-axis. The energy conservation law states that one portion of
the heat flux is consumed by the element and increases its intrinsically essential
energy, as the temperature increases step by step. Owing to the temperature
gradient, the other part of the heat stream tends to disperse through the heat
conduction. As the heat fluctuation is continuously absorbed in the spread phase,
the amplitude of thermal distortion decreases [17–19].

7.4. The effects of the laser intensity on the field quantities

From Fig. 5, it is clear that when the parameters τq, t0, τθ, α1 and α2 remain
constant, the laser intensity parameter I0 has an increasing effect on the field
variables. As shown in Figs. 5(a) and 5(d), the non-dimensional deflection and
stress increase with the increasing of the laser intensity I0 while temperature
and displacement decrease (Figs. 5(b, c)).

(a) Transverse deflection w versus x. (b) Temperature θ versus x.

(c) Displacement u versus x. (d) Thermal stress σxx versus x.

Fig. 5. The transverse deflection, temperature, displacement, and thermal stress
distributions of the microbeam for different values of the laser intencity parameter I0.
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When a laser with a short pulse irradiates the surface of the microbeam,
the temperature rise speed becomes very fast due to the high energy intensity
in a very short time, which causes the temperature gradient to increase signif-
icantly. As a result, the deflection w increases rapidly with the laser intensity
parameter I0 and the peak deflection takes place. Over time, the temperature
rises rapidly and the temperature gradient decrease, thus deflection weakens to
a relatively small value. It is to be noted from these figures that the amplitude
of thermal deformation decreases when the heat transfer outside the thermal
diffusion zone is reduced.

7.5. The effects of the longitudinal magnetic field on the field quantities

Figure 6 (Case 5) show the variations of the non-dimensional temperature,
stress, and displacement, respectively, which demonstrate the effects of the lon-
gitudinal magnetic field parameter on the variations of the considered variables.

(a) Transverse deflection w versus x. (b) Temperature θ versus x.

(c) Displacement u versus x. (d) Thermal stress σxx versus x.

Fig. 6. The transverse deflection, temperature, displacement, and thermal stress
distributions of the microbeam for different values of the longitudinal magnetic field H0.
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If the magnetic field effect is neglected, then the results are in agreement with
[46] with suitable modification in the procedure of the solution.

Therefore, the magnetic field has an important influence on the thermal vi-
bration of the resonators of the microresonators. Thus, when designing micro-
resonators, with a high-quality factor and lower energy consumption, considera-
tion must be given to the effect of the permanent magnetic field on the thermal
vibration. In addition, our studies reveal that by increasing the intensity of the
axial magnetic field, the vibration of the microbeam decreases due to the influ-
ence of Lorentz’s force and Maxwell stresses the vibrations of small beams. It
is worth noting that the impacts of the magnetic field on the thermo-dynamic
behavior of the micro-beams were examined in detail [35, 46].

7.6. The effect of the phase lags τq and τθ on the field quantities

In this case, we consider various values of phase delays of the heat flow and the
temperature gradient τq and τθ, respectively. The graphs in Fig. 7 represent the

(a) Transverse deflection w versus x. (b) Temperature θ versus x.

(c) Displacement u versus x. (d) Thermal stress σxx versus x.

Fig. 7. The transverse deflection, temperature, displacement, and thermal stress
distributions of the microbeam for different values of phase lag parameters τ1 and τθ.



22 A. E. Abouelregal, A. M. Zenkour

curves that predicted three different thermoelasticity theories obtained as special
cases of the DPL model. The computations for different values of the parameters
τq and τθ were performed to get the associated theories: coupled theory (CTE)
when (τq = τθ), Lord–Shulman theory (LS) when (τθ = 0, τq = 0.2) and finally
the Tzou model (DPL) when (τθ = 0.1, τq = 0.2).

The classical Fourier model, which leads to an endless propagation speed
of thermal energy, is no longer valid in these cases, as many researchers have
pointed out. The non-Fourier effect of heat conduction takes into account the
effect of mean free time (phase delays) in the energy carrier’s collision process,
which can eliminate this contradiction.

From the different figures, it is detected that the phase delay parameters have
significant implications for the distribution of field quantities. Also, we can note
that near the ends of the beam where the boundary conditions predominate, the
coupled and the generalized models give results very close. Inside the beam, the
solution differs significantly. This is due to the phenomenon that heatwaves in the
conventional theory are transmitted with the infinite speed of heat propagation
in contrast with the limited speed in the generalized state. Finally, by increasing
the distance, the results are very close to one another, which is consistent with
the generalized theories of thermal heat.

8. Conclusions

The present study has investigated the thermoelastic vibration of thermo-
viscoelastic microbeams at the same time exposed to an axial magnetic force.
The upper surface of the microbeam is also excited regularly by a laser pulse
and subjected to a thermal load. Using the thermoelastic model with phase-
lags, the effects of mechanical relaxations (viscosity), magnetic, the pulse width
of varying temperature, and laser pulse parameters on vibrations of nanobeam
with clamped-clamped boundary conditions have been evaluated analytically.
According to our work, we reached the following conclusion:
• The pulse width of varying temperature plays a significant role in all the

field variables. As a short-pulsed laser irradiates the beam’s surface, the
temperature rise is quick due to a high energy strength in a very short
time, which significantly raises the temperature gradient. This results in
increasingly rising deflection and peak deflection. Over time, the tempera-
ture increases and the temperature drops to a relative lower deflect.
• The laser-pulse and the laser intensity parameters have significant effects

on all the studied quantities. Thus, thermodynamics can be seen as a short-
term and thin-scale operation. It affects every aspect very quickly, and is
therefore harmful,
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• The effects of the longitudinal magnetic field on the variations of the con-
sidered variables is very clear. Therefore, the magnetic field has an impor-
tant influence on the thermal vibration of the resonators of the microres-
onators and should be considered.
• The existence of viscosity terms in the thermoelastic model with phase

lags causes significant changes in all the studied fields It must be noted
that the magnitude of thermoelastic fields has decreased considerably for
viscous cases compared to non-viscous cases.
• It is appropriate to remember that after the peak deflection, the beam

reaches a quasi-steady vibration, showing a distinct non-Fourier effect.
• Finally, from the previous analysis it can be concluded that the viscoelas-

ticity and magnetic field effect of materials are gradually applied to the
design of the micro-electromechanical systems.
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