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Ponding on an inflated tube and the membrane trough
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The ponding on an inflated membrane tube is studied. Membrane tubes have
the advantage of zero leakage and ease of transportation and set-up. A novel related
problem is the membrane trough which can be used to contain water and does not
need anchoring. These problems depend on two non-dimensional parameters which
characterize membrane tension and pressure. Perturbation solutions to second or-
der are found for shallow ponding, and compare well with those of exact numerical
integration. Tables for the pertinent parameters are constructed and cross section ge-
ometries are found. This research illustrates the interaction of membrane structure,
pressure load, and hydrostatics.
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1. Introduction

Inflated membrane structures have been used as enclosures for shelters,
warehouses, and sports arenas [1,2]. Inflated membrane tubes are also used as
storage for gasses, floating devices, and flood control [3–5].

Inflated membrane cylinders can be subjected to ponding, i.e. accumulation
of rain water, sand, ice, or snow on the top. Ponding may lead to collapse of
the membrane structure. Using a linear approximation, Malcolm and Glock-
ner [6] considered the ponding on an inflated circular arc membrane cylinder
with an added center load. Extension to the asymmetric loading case was done
by Lukasiewicz and Glockner [7]. Maaskant and Roorda [8] used ellip-
tic functions to study the large deformations due to ponding and established
stability criteria.

All previous literature considered the inflated circular arc membrane cylinder
anchored at longitudinal edges. The aim of the present paper is as follows. Firstly,
we study the nonlinear deformations due to ponding on a complete membrane
tube. This enclosed geometry is especially important for the storage of gasses.
Secondly, we propose utilizing ponding as a new type of water containment.
Applications may include temporary recreational pools, livestock water troughs
and open channels for water transport. The two problems are related.
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We shall assume the membrane tube is long (two-dimensional), inextensible
and its own weight is negligible. The ponded water, or other material, exerts
hydrostatic pressure on the membrane.

2. Formulation

Figure 1(a) shows the cross section of a ponding on an inflated membrane
tube. Let the pressure inside the tube be p0 and the ambient pressure be pa. Let
the total peripheral length of the tube be L and the height of the impounded fluid
be H. The origin of the Cartesian axes (x′, y′) is at the bottom of the ponding.
Let s′ be the arc length from the origin and θ be the local angle of inclination. The
wetted section is from 0 to s∗′ where the membrane is subjected to hydrostatic
pressure. From s∗′ to ŝ′ the membrane is circular due to the constant pressure
difference. The membrane is in contact with ground after ŝ′. The distance from
the origin to the ground is d′. Figure 1(b) shows the right half, where all lengths
have been normalized by H and the primes are dropped. When d is zero, we
obtain the right end of a membrane trough shown in Fig. 1(c).

(a) (b)

(c)

Fig. 1. (a) Membrane tube under ponding. (b) Normalized coordinates. (c) A membrane
trough.

For the wetted segment the governing equation is

(2.1) −T dθ
ds′

= p0 − [pa + ρg(H − y′)].

Here T is the tension of the membrane, ρ is the density of water, and g is the
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gravitation acceleration. For the segment exposed to ambient air the equation is

(2.2) −T dθ
ds′

= p0 − pa.

The coordinates are kinematically related by

(2.3)
dx′

ds′
= cos θ,

dy′

ds′
= sin θ.

In the normalized variables, Eq. (2.1) becomes

(2.4) α
dθ

ds
= 1− β − y,

where

(2.5) α =
T

ρgH2
, β =

p0 − pa
ρgH

are important positive non-dimensional parameters representing membrane ten-
sion and pressure difference respectively. Equations (2.3) become

(2.6)
dx

ds
= cos θ,

dy

ds
= sin θ.

The boundary conditions are that

(2.7) θ(0) = 0, x(0) = 0, y(0) = 0.

At the transition point s = s∗, y(s∗) = 1, θ is continuous, and at the next
touching point s = ŝ,

(2.8) y(ŝ) = −d, θ(ŝ) = −π.

The tension parameter α is unknown. The problem is formidable as it is.

3. Some analytic observations

For the wetted part, Eq. (2.4) can be written as

(3.1) α
dθ

dy
sin θ = 1− β − y

which after integration once and using Eqs. (2.7a, c)

(3.2) α(1− cos θ) = (1− β)y − y2/2.

At transition, Eq. (3.2) is

(3.3) α(1− cos θ∗) =
1

2
− β,
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where θ∗ = θ(s∗). If water is filled to the brim, θ∗ = 0 and Eq. (3.3) shows
β = 0.5 regardless of α.

For the exposed segment Eq. (2.2) gives

(3.4)
dθ

ds
= −β

α
.

Integration gives

(3.5) θ = −β
α

(s− s∗) + θ∗.

Equation (2.6b) yields

(3.6)
dy

ds
= sin

[
−β
α

(s− s∗) + θ∗
]
.

Integrating and using y(s∗) = 1 result in

(3.7) y =
α

β

{
cos

[
−β
α

(s− s∗) + θ∗
]
− cos θ∗

}
+ 1.

But Eqs. (2.8b) and (3.5) give

(3.8) −β
α

(ŝ− s∗) + θ∗ = −π.

Thus at s = ŝ Eqs. (2.8a), (3.7) and (3.8) give

(3.9)
α

β
(−1− cos θ∗) + 1 = ŷ ≤ 0.

Solving Eqs. (3.3) and (3.9) gives the distance

(3.10) d = −ŷ =
1

2β
(4α− 1)

also

(3.11) cos θ∗ = 1 +
1

α

(
β − 1

2

)
.

Notice that cosine is less than one, thus 0 < β ≤ 0.5. Using Eqs. (3.6) and (3.7)
the maximum height is

(3.12) ym =
α

β
(1− cos θ∗) + 1 =

1

2β
,

occurring at

(3.13) s = s∗ +
αθ∗

β
,
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where θ∗ is from Eq. (3.11). The total height of the membrane tube is

(3.14) ym + d =
2α

β

is the volume of water per depth impounded is of interest. The half volume,
normalized by H2 is

(3.15) v =

y∗∫
0

x dy =

s∗∫
0

x sin θ ds.

Using Eq. (3.5), integrate Eq. (2.6a) to obtain

(3.16) x = x∗ − α

β

{
sin

[
−β
α

(s− s∗) + θ∗
]
− sin θ∗

}
.

Equations (3.8) and (3.16) yield

(3.17) x̂ = x∗ +
α

β
sin θ∗ = a.

The perimeter length l of the right half is

(3.18) l = a+ ŝ = x∗ + s∗ +
α

β
(π + θ∗ + sin θ∗).

In order to normalize by the total perimeter length L = 2lH instead of the height
of the fluid H, divide all normalized lengths and β by 2l, and α by 4l2.

For the wetted segment, differentiate Eq. (2.4) to eliminate β

(3.19)
d2θ

ds2
= − 1

α
sin θ.

Multiply by dθ/ds to get the first integral

(3.20)
1

2

(
dθ

ds

)2

=
1

α
cos θ + c,

where from Eqs. (2.4), (2.7a), (2.7c)

(3.21) c =
1

2α2
(1− β)2 − 1

α
.

Taking the square root of Eq. (3.20) and integrating, one can express s in terms
of elliptic functions in θ. This method is very tedious, and numerical evaluations
are still needed to apply the boundary conditions. In a later section we use
a simpler initial value integration.
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4. Perturbation solution for shallow ponding

If tension is large, the amount of possible ponding would be small. We expect
a shallow layer on top of the membrane tube. Since the y coordinate was nor-
malized to order unity, the s and x coordinates would be large. Define a small
number ε

(4.1) ε =
1√
α
� 1.

An order of magnitude analysis suggests the expansions

s =
t

ε
, θ = εθ0(t) + ε3θ1(t) +O(ε5),(4.2)

y = y0(t) + ε2y1(t) +O(ε4), x =
1

ε
x0(t) + εx1(t) +O(ε3),(4.3)

where t is of order unity, and all functions of t are of order unity. Substitution
into Eq. (3.19) and comparing like powers of ε yield

(4.4)
d2θ0

dt2
= −θ0,

d2θ1

dt2
= −

(
θ1 −

1

6
θ3

0

)
.

Since θ0(0) = θ1(0) = 0, the solutions to Eqs. (4.4) are

θ0 = c0 sin t,(4.5)

θ1 =
c3

0

192
[sin(3t)− 12t cos t] + c1 sin t.(4.6)

Here c0, c1 are constants to be determined. Expansion of Eq. (2.6b) gives

(4.7)
dy0

dt
= θ0,

dy1

dt
= θ1 −

1

6
θ3

0.

The solution to Eq. (4.7a) which is zero at the origin is

(4.8) y0 = c0(1− cos t).

Due to normalization, the boundary conditions at the transition point t∗ are

(4.9) y0(t∗) = 1, y1(t∗) = 0.

Equations (4.8) and (4.9a) give

(4.10) c0 =
1

1− cos t∗
.
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On the other hand, the leading order of Eq. (2.4) is

(4.11)
dθ0

dt
= 1− β − y0.

Substitution of Eqs. (4.5) and (4.8) yields

(4.12) β = 1− c0 =
− cos t∗

1− cos t∗
.

Or given β, the location t∗ can be found independent of tension α

(4.13) t∗ = cos−1

(
β

β − 1

)
.

Since 0 < β ≤ 0.5, thus 0.5π < t∗ ≤ π. After some work, the solution to
Eq. (4.7b) is

(4.14) y1 =
1

64
{c3

0[1− cos(3t)]− 4c3
0t sin t+ 4(1− cos t)(16c1 − c3

0)}.

Equation (4.9b) then gives

(4.15) c1 =
3− 4 cos t∗ + cos(3t∗) + 4t∗ sin t∗

64(1− cos t∗)4
.

Expansion of Eq. (2.6a) gives

(4.16)
dx0

dt
= 1,

dx1

dt
= −1

2
θ2

0.

The solution with zero initial condition is

(4.17) x0 = t, x1 =
c2

0

8
[sin(2t)− 2t].

As for the volume, Eq. (3.15) is perturbed by substituting Eqs. (4.2) and (4.3b)

(4.18) v =
1

ε
v0(t∗) + εv1(t∗) +O(ε3),

where

v0 =

t∗∫
0

x0θ0 dt = c0(sin t∗ − t∗ cos t∗),(4.19)

v1 =

t∗∫
0

[
x1θ0 + x0

(
θ1 −

1

6
θ3

0

)]
dt(4.20)

=
1

64
[16(c3

0 − 4c1)t∗ cos t∗ − c3
0t
∗ cos(3t∗)

+ 64c1 sin t∗ − 4c3
0(3 + t∗

2
) sin t∗ − c3

0 sin(3t∗)].
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Given β and large α, Eq. (4.13) gives t∗ and

s∗ =
√
αt∗, y∗ = 1,(4.21)

θ∗ = α−1/2θ0(t∗) + α−3/2θ1(t∗) +O(α−5/2),(4.22)

x∗ = α1/2x0(t∗) + α−1/2x1(t∗) +O(α−3/2),(4.23)

v = α1/2v0(t∗) + α−1/2v1(t∗) +O(α−3/2).(4.24)

Then from Eqs. (3.8), (3.9) and (3.17)

ŝ = s∗ + (θ∗ + π)
α

β
= α

π

β
+ α1/2

(
t∗ +

θ∗0
β

)
+O(α−1/2),(4.25)

x̂ = α1/2

[
x0(t∗) +

1

β
θ0(t∗)

]
(4.26)

+ α−1/2

[
x1(t∗) +

1

β
θ1(t∗)− 1

6β
θ3

0(t∗)

]
+O(α−3/2),

ŷ =
−1

2β
(4α− 1).(4.27)

The half perimeter length is l = ŝ + x̂. These perturbation results shall be
compared with those of the exact numerical integration.

5. The membrane trough

Inflatable membrane cylinders have been used as temporary dams for water
containment [9–11, 3]. Usually a membrane strip is anchored along the two lon-
gitudinal edges. In order to minimize leakage from the strip, a membrane tube
can be used, but the tube still needs to be anchored to prevent lateral movement.
Kim et al. [12] attached an apron on the wetted side, using hydrostatic pressure
as the anchor. Expanding on this idea, we propose a membrane trough which
has the advantage of zero leakage and complete anchoring.

This membrane trough is very related to the ponding problem in previous
sections. When ponding is severe, the center part of the tube collapsed. This can
be used as a membrane trough shown in Fig. 1(c). Only the right inflated section
needs to be considered. Due to the arbitrary length of the collapsed section, the
total perimeter length of the tube is now irrelevant.

We require the distance d in Fig. 1(b) to be zero. From Eq. (3.10) the nor-
malized tension is determined:

(5.1) α =
1

4
.
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The maximum height of the trough is 1
2β . The analyses are the same as be-

fore, except the perturbation results (for large α or shallow ponding) are not
applicable.

6. Results and discussions

For any given α and β Eqs. (2.4), (2.6) and (2.7) can be numerically integrated
as an initial value problem by a Runge–Kutta algorithm. The integration stops
when y = 1 where we note s∗, θ∗, x∗. The solution to the exposed circular segment
is then Eq. (3.5), and the circular arc ends at ŝ from Eq. (3.8). The distance d
is found from Eq. (3.10) and the half perimeter length from Eq. (3.18).

The reason why the ponding height H is used as length scale instead of
the tube perimeter length L is as follows. The length H quantifies the wetted
region, where perturbation and numerical computations are needed. Also, for
the membrane trough, only the height H matters.

Table 1 shows our results. Our perturbation results compare well with those
of numerical integration for large α, and sometime even valid down to α = 0.5.

Table 1. Essential design parameters. Perturbation results are in parentheses.
Only values that differ with numerical results within 5% are shown.

β = 0.5

α 0.25 0.5 1 2 5
s∗ 1.686 2.296 (2.221) 3.192 (3.142) 4.478 (4.428) 6.995 (7.025)
θ∗ 0 0 0 (0.0245) 0 (0.0087) 0 (0.0022)
x∗ 1.249 2.004 (1.944) 2.991 (2.945) 4.338 (4.304) 6.914 (6.937)
v 0.6246 1.002 (1.007) 1.496 (1.497) 2.169 (2.169) 3.478 (3.479)
x̂ 1.249 2.004 (2.013) 2.991 (2.994) 4.338 (4.339) 6.914 (6.959)
ŷ 0 −1 −3 −7 −19

ŝ 3.257 5.438 (5.363) 9.471 (9.425) 17.05 (17.01) 38.41 (38.44)
l 4.506 7.442 (7.376) 12.47 (12.42) 21.38 (21.35) 45.33 (45.40)

β = 0.4

α 0.25 0.5 1 2 5
s∗ 1.313 1.727 2.367 (2.301) 3.299 (3.253) 5.173 (5.144)
θ∗ 0.9273 0.6436 0.4510 0.3176 (0.3309) 0.2003 (0.2037)
x∗ 0.7141 1.342 2.106 (2.049) 3.118 (3.075) 5.059 (5.032)
v 0.4856 0.8366 (0.8071) 1.496 (1.497) 2.169 (2.169) 3.019 (3.007)
x̂ 1.214 2.092 (2.155) 3.195 (3.233) 4.679 (4.704) 7.547 (7.561)
ŷ 0 −1.25 −3.75 −8.75 −23.75

ŝ 3.856 6.458 (6.344) 11.35 (11.27) 20.60 (20.54) 46.95 (46.91)
l 5.070 8.550 (8.500) 14.54 (14.51) 25.27 (25.25) 54.49 (54.48)
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Table 1. [cont.]

β = 0.3

α 0.25 0.5 1 2 5
s∗ 1.224 1.547 2.093 (2.014) 2.902 (2.848) 4.536 (4.503)
θ∗ 1.370 0.9273 0.6435 0.4510 (0.4691) 0.2838 (0.2884)
x∗ 0.4570 1.081 1.783 (1.720) 2.688 (2.640) 4.403 (4.371)
v 0.3820 0.7243 1.135 (1.103) 1.678 (1.654) 2.721 (2.705)
x̂ 1.274 2.415 3.783 (3.894) 5.594 (5.668) 9.020 (9.115)
ŷ 0 −1.667 −5 −11.67 −31.67

ŝ 4.983 8.328 (8.151) 14.71 (14.59) 26.85 (26.77) 61.63 (61.58)
l 6.257 10.74 (10.74) 18.49 (18.491) 32.45 (32.44) 70.70 (70.69)

β = 0.2

α 0.25 0.5 1 2 5
s∗ 1.204 1.436 1.915 (1.824) 2.640 (2.579) 4.115 (4.077)
θ∗ 1.772 1.159 0.7954 0.5548 (0.5779) 0.3482 (0.3541)
x∗ 0.2263 0.8915 1.561 (1.493) 2.399 (2.345) 3.965 (3.930)
v 0.2902 0.6365 1.026 (0.9878) 1.533 (1.504) 2.499 (2.480)
x̂ 1.448 3.183 5.132 7.666 (7.851) 12.50 (12.61)
ŷ 0 −2.5 −7.5 −17.5 −47.5

ŝ 7.347 12.19 (11.88) 21.60 (21.40) 39.60 (39.47) 91.36 (91.28)
l 8.798 15.37 (15.50) 26.73 (26.81) 47.27 (47.32) 103.9 (103.9)

β = 0.1

α 0.25 0.5 1 2 5
s∗ 1.267 1.361 1.786 2.447 (2.379) 3.803 (3.761)
θ∗ 2.214 1.370 0.9273 0.6435 (0.6719) 0.4027 (0.4100)
x∗ −0.0462 0.7360 1.389 (1.319) 2.180 (2.122) 3.638 (3.599)
v 0.1954 0.5634 0.9389 (0.8957) 1.418 (1.385) 2.324 (2.302)
x̂ 1.954 5.635 9.389 14.18 (14.72) 23.23 (23.56)
ŷ 0 −5 −15 −35 −95

ŝ 14.66 23.92 (23.22) 42.47 (42.04) 78.15 (77.86) 181.0 (180.8)
l 16.61 29.55 (30.11) 51.86 (52.23) 92.33 (92.58) 204.3 (204.4)

As noted before, all lengths in the table have been normalized by the height of
the ponding H. In order to normalize by the perimeter of a membrane tube,
one needs to divide the length entries by 2l, where l is the half length of the
perimeter, normalized by H. Similarly for the volume or the parameters α and β
all of which have been normalized with H. As for a membrane trough, the total
perimeter is 2l + 2b where b could be any length of the collapsed segment.

The parameter β is the pressure difference normalized by H. Equation (3.11)
shows β = 0.5 is the limit when water fully fills (to the brim) of the ponding.
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Partially filled cases are possible when some water is added or removed, or when
the pressure difference is decreased while the fluid volume (or mass) remains
the same. Thus 0 < β/0.5 ≤ 1 is a measure of the fractional level of filling in the
depression.

The parameter α represents tension normalized by H2. For given filling
level β, Eq. (3.12) shows (4α − 1) is proportional to d, or the distance to the
ground normalized by the thickness of the ponding. For the membrane trough
α = 1/4 and for general membrane tubes α ≥ 0.25.

From the tables we see that when β increases, θ∗, ŝ, l and d = −ŷ decrease,
v, x∗ increase, and x̂, s∗ first decrease then increase. When α increases, all the
listed parameters increase, except for θ∗ which decreases.

As an example, consider a given membrane tube with the pressure difference
maintained constant. The ponding is now gradually increased due to precipita-
tion. Thus the dimensional half perimeter length l′ is fixed and p0 − pa is fixed.
Since the ponding height H varies, it is eliminated from l′ = lH and Eq. (2.5b)
to obtain

(6.1)
p0 − pa
ρgl′

=
β

l
.

Let’s just say the left side of Eq. (6.1) is evaluated to be 0.01. For given β
or partial fill, the normalized half-length is l = β/0.01. From interpolation in
Table 1 or from computation the following parameters in Table 2 are obtained
for this particular case. Since in dimensional form l′ = lH, v′ = vH2 we find

(6.2)
v′

l′2
=
v

l2
.

The actual volume impounded is not v but v’ which is proportional to v
l2

in
Table 2. We see as β is decreased, the actual volume increases. The β = 0.1
case is absent since the tube has partially collapsed and the tube becomes a
membrane trough. Figure 2 shows the cross sections of the membrane tube as
ponding is increased.

Fig. 2. Typical cross sections for increased ponding on a tube with constant pressure.
From left: β = 0.5, 0.4, 0.3, 0.2.
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Table 2. A typical case for which pressure is maintained constant.

β 0.5 0.4 0.3 0.2
l 50 40 30 20
α 5.62 3.48 1.82 0.697
s∗ 7.38 4.33 2.77 1.64
θ∗ 0 0.240 0.473 0.965
x∗ 7.31 4.19 2.55 1.20
v 3.69 2.38 1.59 0.812
x̂ 7.30 6.26 5.31 4.06
ŷ −21.5 −16.1 −10.5 −4.47

ŝ 42.7 33.8 24.7 15.9
v/l2 0.00148 0.00149 0.00177 0.00203

Figure 3 shows some typical cross sections for the membrane trough. They
depict the membrane deformations as the fluid level gradually rises. In these
cases α is always 0.25.

Fig. 3. Cross-sectional shapes for the membrane trough. Clockwise from top: β = 0.1, 0.2,
0.3, 0.4, 0.5.

Maaskant and Roorda [6] considered the ponding of a membrane arc strip
anchored at the two longitudinal edges. Two kinds of instability were found: snap
through for shallow arcs and side sway for deep arcs. The membrane tube studied
here is never shallow, and snap through phenomenon was not detected. Also, the
membrane tube adjusts to any lateral movement of the ponding, therefore it is
neutrally stable to side sway.
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7. Conclusions

Our second-order perturbation solutions, in their range of validity, compare
well with those of the exact numerical integration, and thus ascertain both meth-
ods.

In comparison to membrane strips which require anchoring and sealing, mem-
brane tubes have the advantage of minimal leakage, easier to transport, set up,
and dismantle. This paper considers the ponding of a membrane tube for the
first time.

Ponding is usually undesirable. However, the proposed novel membrane
trough utilizes ponding as a means of water containment. In addition to the
above-mentioned advantages, the membrane trough is automatically anchored.

It is hoped that this paper would elicit further research in these interesting
topics.
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