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Misfit dislocation in a precipitate/matrix interface of any
orientation relative to the matrix free-surface
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The presence of an edge dislocation in a surface of a two-dimensional precipi-
tate of square shape embedded in a semi-infinite matrix has been discussed when
the precipitate is submitted to misfit strain due to the lattice mismatch between
the two phases. Considering any orientation of the precipitate relative to the matrix
free-surface, the total force applying on the dislocation has been analytically calcu-
lated and its equilibrium position has been determined. The conjugated effects of
the precipitate misorientation, of the lattice mismatch and of the precipitate/matrix
distance have been finally characterized. A shifting effect on this equilibrium position
has been analyzed.
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1. Introduction

The mechanical properties of multiphase and multilayered mate-

rials have been extensively studied in different fields of research among which
one can cite solid mechanics, materials science and metallurgy or engineering.
Indeed, the control of the deformation, ageing and deterioration of such ma-
terials is of paramount importance because of their numerous applications in
aeronautic, nano-electronics and nano-optics for example. In case of single crys-
tal superalloys used for turbine blades, it is now well-admitted that the creep
deformation regime consisting in low stress and high temperature is character-
ized by the development of networks of dislocations in the interfaces between
the cuboidal γ′ precipitates and the γ matrix. Using the discrete dislocation
dynamics (DDD) model, the effects of dislocation interaction and misfit stress
have been numerically characterized on the motion of the interfacial dislocations
and dynamic recovery [1]. Still at high temperature, the creep behavior of rafted
[001] oriented AM1 Ni-based single crystal superalloys has been also experimen-
tally investigated during in-situ creep tests on synchrotrons [2]. The interaction
between the plastic stress and dislocations in the γ phase has been thus char-
acterized under variable applied stress. Focusing on the early stages of creep for
Ni-based superalloys, where the dislocations are confined in the γ channel, DDD
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simulations have also shown that in the low-stress regime, a network of dislo-
cations develops near the corners of the γ′ precipitates [3]. In the high stress
regime, the dislocations are squeezed into the γ channels and dislocation seg-
ments are deposited at the γ/γ′ interfaces. Likewise, considering the misfit stress,
the stress due to the dislocations and the external stress, the glide and climb
forces on γ-channel dislocations have been calculated [4]. In particular, it has
been found that the dislocation spacing corresponds to the one experimentally
observed after high temperature and low stress creep. Using a three-dimensional
level set dislocation dynamics method, the degree of coherency of the interface
between a spherical particle and its infinite-size matrix has been also character-
ized when matrix dislocations are interacting with the precipitate [5]. Likewise,
in the framework of atomistic-based models, the interaction between the mov-
ing dislocations in the matrix channels and the interface misfit dislocations has
been studied in case of Ni-based single crystal superalloys and the effects of the
type and position of the moving dislocations on the critical bowing stress for the
(moving) dislocations have been determined [6].

In case of core-shell nanowires with potential applications in optoelectronics,
a number of studies have also focused on the determination of the different criti-
cal parameters for the formation of defects such as straight edge dislocations [7],
screw dislocations [8–10] and dislocation loops [7, 11–14]. Likewise, the possi-
bility of formation of circular dislocation loops in bulk [15, 16] and hollow [17]
core-shell nanoparticles has been investigated. When an edge dislocation is em-
bedded in the shell of the core-shell structure, non-classical effects such as stress
oscillations along the surfaces for negative surface/interface elastic moduli have
been characterized on the elastic behavior of the dislocation in the framework
of the surface/interface elasticity theory [18]. When the edge dislocation is lying
in the core of the core-shell structure embedded in an infinite-size matrix, the
interface effects have been also studied and the dislocation positions have been
determined [19]. Likewise, the non-classical surface/interface effects have been
investigated on the critical conditions for the formation of edge misfit disloca-
tions, these effects being found to be significant for fine cores smaller than 20
interatomic distances [20]. The surface stress effects have been also discussed for
an edge [21] and a screw [22] dislocation embedded in the wall of a multi-walled
nanotube.

For a nanowire with a rectangular cross-section embedded in a semi-infinite
matrix, the formation of loops, semi-loops and dipoles of misfit dislocations in
the precipitate/matrix interface has been recently theoretically investigated from
an energy variation calculation [23] and the geometric parameters for which the
dislocation formation is energetically favorable have been identified. Likewise,
when the misfitting nanowire of the form of a long parallelepiped is embed-
ded in a nanolayer, the stress relaxation due to the introduction of a dipole of
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edge misfit dislocations in the interfaces of the precipitate perpendicular to the
two free-surfaces of the layers has been studied [24]. More specifically, calcu-
lating the energy variation resulting from the introduction of this dipole from
one free-surface to the interfaces, the equilibrium positions of the dislocations
and the corresponding energy barriers have been calculated. Finally, it can be
noticed that when two square-shaped precipitates are located near their ma-
trix free-surface, the formation of two misfit edge dislocations gliding in two
consecutive interfaces between the matrix and two neighboring precipitates has
already been considered and the different equilibrium positions have been char-
acterized [25].

In this paper, the possibility of introduction of a misfit dislocation in an inter-
face between a square-shaped precipitate and its semi-infinite matrix has been
theoretically investigated when the precipitate is tilted relative to the matrix
free-surface. The influence of the orientation angle of the precipitate relative to
the matrix free-surface has been discussed on the stable equilibrium position of
the dislocation as well as the effects of the misfit strain and the effects of the
distance of the precipitate from the free-surface.

2. Modeling and discussion

A two-dimensional square shaped precipitate (ABCD) of side L is embedded
in a semi-infinite matrix (see Fig. 1 for axes). It is tilted relative to the horizon-

Fig. 1. Schematic in the (Oxy) plane of a square shaped precipitate embedded in
a semi-infinite matrix. The position of the precipitate center from the surface is labelled p, its

side L and tilt angle α. A misfit dislocation of Burgers vector bM is lying in the (DA)
interface between the precipitate and the matrix, at a distance d from the corner A.
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tal axis of an angle α, and the distances of its center O′ and corner A from the
free-surface are labelled p and h, respectively, with h = p− L

2

(

cos α+sinα
)

. The
shear modulus µ and Poisson’s ratio ν are assumed to be equal in both matrix
and inclusion phases. Despite the fact that the elastic coefficients are usually het-
erogeneous in superalloys [26], it is believed that the present analytical analysis
with homogeneous elastic coefficients should give some insights into the effects
of the matrix free-surface and the precipitate tilt angle on the misfit dislocation
positions [3]. Due to the lattice mismatch δa = a∗ − a at the precipitate-matrix
interfaces, a misfit strain develops in the biphase solid, with a∗ and a the lattice
parameters of the precipitate and the matrix, respectively [27]. To determine the
stress field ¯̄σM resulting from the coherency of both lattices at the interfaces, the
formalism of distributions of virtual dislocations of the infinitesimal Burgers vec-
tor has been used [28, 29], in the framework of the linear and isotropic elasticity
theory [27, 30]. To do so, one row of virtual edge dislocations has been introduced
on each of the four interfaces of the inclusion. The first step of this work has
been to determine the stress field of one virtual dislocation of the Burgers vector
bv = (bv

x, bv
y) located at (xv, yv) near the free-surface, with yv < 0 and |bv| = δa.

The problem of the determination of the stress field in the neighborhood of the
free-surface is well-known [28] and can be solved considering two dislocations,
one of the Burgers vector (bv

x, 0) and one of the Burgers vector (0, bv
y), both

at (xv, yv), using Airy’s function formalism [30]. For the first dislocation of the
Burgers vector (bv

x, 0), the problem has been solved considering Airy’s function
of an edge dislocation embedded in an infinite-size medium φ0

bx
(x − xv, y − yv),

corresponding Airy’s function for its image dislocation with respect to the free-
surface located at (xv,−yv) and of Burgers vector (−bv

x, 0), and a supplementary
term characterized by the Airy’s function φsup

bx
(x, y). Airy’s function φbv

x
finally

writes [28]:

(2.1) φbv
x
(x, xv, y, yv) = φ0

bv
x
(x − xv, y − yv) − φ0

bv
x
(x − xv, y + yv) + φsup

bv
x

(x, y),

with

φ0
bv
x
(x, y) = − µbv

x

2π(1 − ν)

y

2
ln

[

x2 + y2
]

,(2.2)

φsup
bv
x

(x, y) = − µbv
x

π(1 − ν)

(

− yvy(y + yv)

(x − xv)2 + (y + yv)2
(2.3)

+
yv

2
ln

[

(x − xv)
2 + (y + yv)

2
]

)

.

For the dislocation of the Burgers vector (0, bv
y), an equivalent procedure has
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been used and the corresponding Airy’s function φby has been found to be [28]:

φbv
y
(x, xv, y, yv) =

µbv
y

2π(1 − ν)

(

x − xv

2
ln

[

(x − xv)
2 + (y − yv)

2
]

(2.4)

− x − xv

2
ln

[

(x − xv)
2 + (y + yv)

2
]

+
2yvy(x − xv)

(x − xv)2 + (y + yv)2

)

,

where the first term of the right-end side of the above Eq. (2.4) corresponds to the
self-term of the dislocation in an infinite-size media, the second one to its image
dislocation and the third one to the supplementary term. Finally, the complete
Airy’s function for the dislocation of the Burgers vector (bv

x, bv
y) is given by:

(2.5) φbv(x, xv, y, yv) = φbv
x
(x, xv, y, yv) + φbv

y
(x, xv, y, yv),

the stress components being derived as [30]:

σbv
xx(x, xv, y, yv) =

∂2

∂y2
φbv(x, xv, y, yv),(2.6)

σbv
xy (x, xv, y, yv) = − ∂2

∂x∂y
φbv(x, xv, y, yv),(2.7)

σbv
yy (x, xv, y, yv) =

∂2

∂x2
φbv(x, xv, y, y, yv).(2.8)

Once the stress field of a virtual dislocation is known, the contribution to the
misfit stress of each of the four rows located at the matrix/precipitate interfaces
can be determined by summing up all the contributions of each virtual dislocation
of the corresponding row. For example, taking bv

x = bM sinα and bv
y = bM cos α,

the Airy’s function φ
(CB)
M associated with the dislocation row located on the side

(CB) is defined as [28, 29]:

(2.9) φ
(CB)
M (x, y) =

l cos α
∫

l(cos α−sin α)

φbv(x, xv, y, xv/ tanα − h − l/ sinα)
dxv

a sinα
.

The other Airy’s functions φ
(DA)
M , φ

(DC)
M and φ

(AB)
M have been calculated for the

sides (DA), (DC) and (AB), respectively, using equivalent formulas to the one
displayed in Eq. (2.9) (see Appendix). Finally, the complete Airy’s function φM

characterizing the misfit stress tensor ¯̄σM can be obtained by summing up the
contributions of the four rows:

φM (x, y) = φ
(CB)
M (x, y) + φ

(DA)
M (x, y) + φ

(DC)
M (x, y) + φ

(AB)
M (x, y),
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the stress component formulas being given in the Appendix. Once the stress field
resulting from the misfit is known, its effect on an edge dislocation introduced
in one interface of the precipitate to release this misfit stress can be considered
from the study of the (PK) Peach–Koehler force [31]. More specifically, an edge
misfit dislocation of the Burgers vector bM = (bM sinα, bM cos α) is introduced
in the (DA) interface (chosen without loss of generality) which has been slightly
shifted of a quantity bM into the matrix to avoid the region at the precipitate
corner where the misfit stress field may diverge. Its position is thus given by
(xM = −d sinα−bM cos α, yM = −h−d cos α+bM sin α), where d is the distance
of the dislocation from the corner A, with d > 0. Assuming 0 ≤ α ≤ π/2 in the
present work, it is underlined that an equivalent analysis would apply to the (AB)
interface. The problem of the dislocation lying in the (DC) or (CB) interface is
not studied in this paper, since these interfaces are farther from the free-surface
than the (DA) and (AB) interfaces and the surface effect on the dislocation
position is thus assumed to be weaker. This PK force per unit length on the
dislocation of the Burgers vector bM due to the misfit stress ¯̄σM generated by
the precipitate is defined as [31]:

(2.10) FM
PK = ¯̄σMbM ∧ ζ,

with ζ the unit line vector of the dislocation along (Oz) axis. Considering the
gliding part of the PK force along u = (sinα, cos α) direction, it yields:

FM
u (h, d, α) = FM

PKu(2.11)

= −bM cos 2α σM
xy(xM , yM )

+
bM

2
sin 2α

(

σM
yy(xM , yM ) − σM

xx(xM , yM )
)

=
µbMδa

2π(1 − ν)
Λ(h, d, α)

where the analytical expression of the Λ function versus d, h and α which can be
derived from Eqs. (4.13) and (4.14) defined in the Appendix is not displayed in
this paper for the sake of compactness. Likewise, the force FS

PK due to the free-
surface of the matrix on the edge dislocation has been considered. The expression
of this force is well-known [28] and has been calculated from the stress field of the
dislocation whose Airy’s function is equivalent to the one displayed in Eq. (2.5).
Omitting the self-term of the dislocation corresponding to the stress field in the
infinite-size medium and using an equivalent expression to the one displayed in
Eq. (2.10), the PK force per unit length in the gliding plane due to the stress
relaxation near the free-surface has been found to be [28]:

(2.12) FS
u (h̃, d̃, α) =

µb2
M

4π(1 − ν)

cos α

h + d cos α − bM sinα
.
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Assuming without loss of generality that bM = a and introducing the dimension-
less parameters d̃ = d/a, h̃ = h/a and L̃ = L/a, the dimensionless total force
has been then written as:

F̃ t
u(h̃, d̃, α) =

FM
u (h̃, d̃, α) + FS

u (h̃, d̃, α)

F0
(2.13)

=
cos α

2
(

h̃ + d̃ cos α − sinα
) +

δa

a
Λ(h̃, d̃, α),

with F0 = µbM/
[

2π(1− ν)
]

. It is emphasized at this point that the study of the

F̃ t
u variations (and zeros) will only give relevant information on the equilibrium

positions (stable or unstable) of the dislocation, the study of the nucleation
mechanism (from the free-surface or the interface), the determination of the
energy barrier and energy gain for each mechanism would require an energy-
based analysis that is beyond the scope of the present work. In Figs. 2, the
reduced force F̃ t

u has been plotted versus the distance d̃ of the misfit dislocation
from the corner A, with L̃ = 200, this value of L̃ being considered as constant
in the following (except for Fig. 7). Taking α = π/4 and p̃ = 300, it is found
in Fig. 2a that there exists for the dislocation a stable equilibrium position d̃eq

from corner A, i.e. F̃ t
u < 0 for d̃ < d̃eq and F̃ t

u > 0 for d̃ > d̃eq, this distance d̃eq

increasing with δa/a. Likewise, taking δa/a = 0.01 and p̃ = 300 in Fig. 2b, it is
observed that the stable equilibrium position also depends in a nontrivial way on
the orientation angle α of the precipitate, the surface force in the gliding plane
going to zero when α = π/2 and the equilibrium position being thus the middle
of the precipitate side. In Fig. 2c, it is finally observed that as the distance p̃
of the precipitate from the free-surface of the matrix decreases from p̃ = 10000
corresponding to a precipitate in an (almost) infinite-size matrix to p̃ = 200, the
attracting force of the surface increasing as p̃ decreases, the initial equilibrium
position d̃eq of the dislocation at the middle of the (DA) side, obtained when the
precipitate is far from the surface (p̃ = 10000), is shifted from the middle of the
(DA) side to shorter distances from the free-surface. In the case where h̃ → 0,

i.e. for p̃ =
√

2
2 L̃ + 1 ≈ 143, it is found that a new unstable equilibrium position

is obtained very close to the free-surface for d̃ ≈ 3, while the stable equilibrium
position is slightly pulled back into the interface d̃eq ≈ 95 (compared to the ones
obtained for higher p̃).

This effect for a precipitate close to the free-surface has been characterized
in Figs. 3, where the position shift of the dislocation with respect to the (DA)
side center ∆deq = deq − l/2 has been plotted versus p̃ for increasing values of
δa/a from 0.005 to 0.06 with a step of 0.005 and with L̃ = 200. For α = π/4 and
α = π/16, it is confirmed in Figs. 3a and b that the equilibrium position shift
∆d̃eq is increased as the precipitate/surface distance goes to zero, while ∆d̃eq
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a)

b)

c)

Fig. 2. Reduced total force F̃ t
u

applied on the misfit dislocation in the (DA) interface versus
the dimensionless distance d̃ of the dislocation from the corner A, with L̃ = 200; a) different
values of the misfit δa/a, with α = π/4 and p̃ = 300, b) different values of the tilt angle α,
with δa/a = 0.01 and p̃ = 300, c) different values of the precipitate/surface distance p̃, with

α = π/4 and δa/a = 0.01.

tends to zero when p̃ goes to infinity and the precipitate can be assumed to be
embedded in an infinite-size matrix.
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a)

b)

Fig. 3. Dislocation equilibrium position shift ∆d̃eq = d̃eq − l/2 with respect to the middle of
the (DA) side versus d̃ for increasing values of δa/a from 0.005 to 0.06 with a step of 0.005

and with L̃ = 200; a) α = π/4, b) for α = π/16.

In order to specify more precisely the effect of the misfit on the dislocation po-
sition, ∆d̃eq has been then plotted versus δa/a in Figs. 4 for two different values
of the tilt angle α. Taking α = π/4 in Fig. 4a, the precipitate/surface distance p̃
increasing from 200 to 1000, with a step of 50, it is observed that for each tested
value of p̃, ∆d̃eq increases with δa/a and is always negative, meaning that the
dislocation is closer to the surface than the middle of the (DA) side. As the pre-
cipitate/surface distance increases, the dislocation position tends to the middle
of the precipitate side, as it can be expected when the precipitate is embedded in
an infinite-size matrix. When the tilt angle is lower, i.e. for α = π/16, it is found
in Fig. 4b that for p̃ increasing from 200 to 350, with a step of 10, ∆d̃eq still
increases with δa/a but can become positive when the precipitate is sufficiently
close to the surface, i.e. for p̃ < 350 in the present case, and when the misfit is
large enough (depending on p̃). It can thus be stated that the combined effects
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a)

b)

Fig. 4. Dislocation equilibrium position shift ∆d̃eq = d̃eq − l/2 with respect to the middle of
the (DA) side versus δa/a, with L̃ = 200; a) for α = π/4, the precipitate/surface distance p̃

increases from 200 to 1000, with a step of 50, b) for α = π/16, the precipitate/surface
distance p̃ increases from 200 to 350, with a step of 10.

of the misfit stress promoting the introduction of the dislocation into the inter-
face and of the free-surface attracting force can lead to this shifting effect, i.e.
∆d̃eq < 0 for α = π/4 to ∆d̃eq > 0 for α = π/16. This effect of the tilt angle α has
also been investigated in Figs. 5, where the variations of ∆d̃eq versus α have been
reported when p̃ increases from 200 to 400, with a step of 20. For δa/a = 0.01,
it is observed in Fig. 5a that the misfit force can shift the equilibrium position
beyond the middle of the (DA) side for low angle values and p̃ < 260. The shift-
ing effect is amplified in Fig. 5b when the misfit is larger, i.e. for δa/a = 0.02,
the repealing effect on the dislocation into the interface being increased. In both
cases of Figs. 5a and b, negative ∆d̃eq increases for the larger values of α and
goes to zero when α = π/2 and the surface force in the gliding plane cancels
(see Eq. (2.12)). To investigate the effect of the precipitate/surface distance,
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a)

b)

Fig. 5. Dislocation equilibrium position shift ∆d̃eq with respect to the middle of the (DA)
side versus tilt angle α when the precipitate/surface distance p̃ increases from 200 to 400,

with a step of 20 and L̃ = 200; a) δa/a = 0.01, b) δa/a = 0.02.

∆d̃eq variation versus p̃ has been displayed in Figs. 6 for different values of α,
with δa/a = 0.01 and L̃ = 200. It is again confirmed that ∆d̃eq decreases as α in-
creases from 0◦ to 55◦ in Fig. (6)a, while it increases in Fig. 6b when α increases
from 55◦ to 90◦. In both cases, ∆d̃eq is positive for sufficiently small p̃ distances,
becomes negative when p̃ increases and goes to zero when p̃ tends to infinity.

The size effect of the precipitate combined with α tilt angle effect has been
also investigated in Fig. 7, where the relative variation of the dislocation position
shift ∆d̃eq/(L̃/2) has been plotted versus the precipitate side L̃ for different
values of α, with p̃ = 200 and δa/a = 0.01. In the particular case where the
distance between the precipitate and the free-surface is fixed at p̃ = 200, it is
observed that for L̃ > 80, the relative shift decreases as α goes from 0 to π/4.
Between π/4 and π/2, the relative shift is negative for all L̃ > 10 and goes to
zero when α → π/2.
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a)

b)

Fig. 6. Dislocation equilibrium position shift ∆d̃eq with respect to the middle of the (DA)
side versus the precipitate/surface distance p̃, with δa/a = 0.01 and L̃ = 200; a) the tilt angle
α increases from 0◦ to 55◦, with a step of 5◦, b) the tilt angle α increases from 55◦ to 90◦,

with a step of 5◦.

Fig. 7. Relative equilibrium position shift 2∆d̃eq/L̃ versus the precipitate side L̃ for different
values of the α tilt angle, with p̃ = 200 and δa/a = 0.01.



Misfit dislocation in a precipitate/matrix interface. . . 457

Fig. 8. Position diagram in the (δa/a, α) plane of the misfit edge dislocation for different
values of d̃, with L̃ = 200. In region 1, the dislocation is closer to the matrix free-surface than

the middle of the (DA) side. In region 2, the dislocation is farther to the surface than the
middle of the (DA) side.

Finally, a “position diagram” for the misfit dislocation has been plotted in
Fig. 8 in the (δa/a, α) plane for different values of p̃, with 0 ≤ α ≤ π/2 and
L̃ = 200. Each curve at given d̃ delimits two regions in the plane. In region 1,
the equilibrium position of the dislocation is closer to the surface than the middle
of the (DA) side. In region 2, the dislocation is located farther than the middle
of the (DA) side. The main feature of this evolution is that as the misfit δa/a
increases, the critical angle α characterizing this shifting effect increases.

3. Conclusion

The equilibrium position of a misfit edge dislocation has been theoretically
determined in the interface of a square shaped precipitate embedded in a semi-
infinite matrix, when the precipitate is tilted relative to the matrix free-surface.
From the study of the variations of the force applying on the dislocation, the
combined effects of the precipitate tilt angle, misfit strain and precipitate/free-
surface distance have been analyzed on the dislocation equilibrium position.
It has been first found that due to misfit strain, a stable equilibrium position of
the dislocation may exit into the precipitate/matrix interfaces. This equilibrium
position has been then found to be shifted to shorter values with respect to the
middle of the precipitate side as the corresponding interface is tilted relative
to the free-surface from the configuration where it is the perpendicular to the
free-surface. This effect is enhanced as the precipitate/free-surface distance is
reduced. The next step of this study would be to investigate at the microscopic
scale, using molecular dynamics simulations for example, the nucleation mech-
anisms to determine where the misfit dislocation can be created as well as the
energy barrier and energy gain resulting from this formation.
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4. Appendix

For the side (AB), taking bv
x = −bM cos α and bv

y = bM sinα, the Airy’s

function φ
(AB)
M is given by:

(4.1) φ
(AB)
M (x, y) =

∫ l cos α

0
φbv(x, xv, y,−xv tan α − h)

dxv

a cos α
.

It yields:

(4.2) φ
(AB)
M (x, y) =

µδa

2π(1 − ν)a

×
(

f1(0,−h) − f1(l cos α,−h) + f2(0,−h) − f2(l cos α,−h)
)

.

For the side (DC), taking bv
x = bM cos α and bv

y = −bM sin α, the Airy’s function

φ
(DC)
M is given by:

(4.3) φ
(DC)
M (x, y) =

l(cos α−sin α)
∫

−l sin α

φbv(x, xv, y,−xv tanα − h − l/ cos α)
dxv

a cos α
.

It yields:

(4.4) φ
(DC)
M (x, y) =

µδa

2π(1 − ν)a

×
(

f1(l(cos α − sinα),−h − l/ cos α) − f1(−l sinα,−h − l/ cos α)

+ f2(l(cos α − sinα),−h − l/ cos α) − f2(−l sinα,−h − l/ cos α)
)

.

For the side (CB), taking bv
x = bM sin α and bv

y = bM cos α, the Airy’s function

φ
(CB)
M is given by:

(4.5) φ
(CB)
M (x, y) =

l cos α
∫

l(cos α−sin α)

φbv(x, xv, y, xv/ tanα − h − l/ sinα)
dxv

a sinα
.

It yields:

(4.6) φ
(CB)
M (x, y) =

µδa

2π(1 − ν)a

×
(

g1(l cos α,−h − l/ sinα) − g1(l(cos α − sinα),−h − l/ sinα)

+ g2(l cos α,−h − l/ sinα) − g2(l(cos α − sinα),−h − l/ sinα)
)

.
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For the side (DA), taking bv
x = −bM sinα and bv

y = −bM cos α, the Airy’s function

φ
(DA)
M is given by:

(4.7) φ
(DA)
M (x, y) =

0
∫

−l sin α

φbv(x, xv, y, xv/ tan α − h)
dxv

a sinα
.

It yields:

φ
(DA)
M (x, y) =

µδa

2π(1 − ν)a

(

g1(−l sinα,−h) − g1(0,−h)(4.8)

+ g2(−l sinα,−h) − g2(0,−h)
)

.

The functions f1, f2, g1 and g2 are defined as:

(4.9) f1(xv, yc)

=
1

4

(

2x2
v tan α ln

[

−2xv(tanα(y + yc) + x) + x2
v sec2 α + x2 + (y + yc)

2
]

+ 4yc

(

cos2 α(tan α(y + yc) + x)

× ln

(

−2xv(tanα(y + yc) + x) + x2
v sec2 α + x2 + (y + yc)

2
)

+ 2 cos2 α(−x tan α + y + yc)

× tan−1

[−xv sec2 α + tanα(y + yc) + x

−x tanα + y + yc

]

+ 2xv

)

+ cos 2α cos2 α cot α(−x tan α + y + yc)
2

× ln
[

−2xv(tanα(y + yc) + x) + x2
v sec2 α + x2 + (y + yc)

2
]

− 4y sinα cos α(−x sin 2α + cos 2α(y + yc) + yc)

× ln
[

−2xv(tanα(y + yc) + x) + x2
v sec2 α + x2 + (y + yc)

2
]

− 2 sinα cos α
(

cos 2α
(

x2 − (y + yc)
2
)

+ 2x sin 2α(y + yc)
)

× ln
[

−2xv(tanα(y + yc) + x) + x2
v sec2 α + x2 + (y + yc)

2
]

+ sinα cos 2α cos α(cot α(y − yc) + x)2

× ln
[

x2
v sec2 α + 2xv tan α(y − yc) + x(x − 2xv) + (y − yc)

2
]

− 4xvyc ln
[

(−xv tan α + y + yc)
2 + (x − xv)

2
]

− 4xv sinα(x cos α + sin α(y + yc))

− 4 cos4 α(−x tan α + y + yc)
2 tan−1

[−xv sec2 α + tanα(y + yc) + x

−x tanα + y + yc

]

+ 4 cos4 α(x tan α + y − yc)
2 tan−1

[−xv sec2 α + tanα(yc − y) + x

x tanα + y − yc

]
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− 8y cos4 α
(

x tan3 α − x tanα − tan2 α(2y + yc) + yc

)

× tan−1

[−xv sec2 α + tanα(y + yc) + x

−x tanα + y + yc

]

− cot α(−xv tan α + y + yc)
2 ln

[

(−xv tan α + y + yc)
2 + (x − xv)

2
]

− cot α(xv tan α + y − yc)
2 ln

[

(xv tan α + y − yc)
2 + (x − xv)

2
]

− 8 sinα cos α(cos α(y + yc)

− x sinα)(x cos α + sin α(y + yc)) tan−1

[−xv sec2 α + tanα(y + yc) + x

−x tanα + y + yc

]

+ 2xxv sin 2α − xv cos 2α(y + yc)

+ xv(cos 2α + 3)(y − yc) + 8xvy sin2 α − 3xv(y + yc)

)

,

(4.10) f2(xv, yc) =
1

8
tan α

(

cos α
(

cos α
(

−
(

3x2 + 5y2 − 2yyc + y2
c

))

+ cos 3α
(

x2 + (3y − yc)(y + yc)
)

+ 2x(sinα − sin 3α)(y − yc)
)

ln
[

cos 2α
(

x2 − 2xxv + (y + yc)
2
]

− 2xv sin 2α(y + yc) + x2 − 2xxv + 2x2
v + (y + yc)

2
)

+ cos α
(

cos α
(

3x2 + (y − yc)
2
)

+ cos 3α
(

(y − yc)
2 − x2

)

+2x(sin 3α−sinα)(y−yc)
)

ln
[

cos 2α
(

x2−2xxv+(y−yc)
2
)

+2xv sin 2α(y−yc)

+ x2 − 2xxv + 2x2
v + (y − yc)

2
]

+ 2 sin 2α
(

− cos 2α
(

x2 + (3y − yc)(y + yc)
)

+2x sin 2α(y−yc)+x2+(y−yc)
2
)

cot−1

[

2 cos α(cos α(y + yc) − x sinα)

x cos 2α + sin 2α(y + yc) + x − 2xv

]

− 2xv(xv − 2x) ln
[

(−xv tan α + y + yc)
2 + (x − xv)

2
]

+ 2xv(xv − 2x) ln
[

(xv tanα + y − yc)
2 + (x − xv)

2
]

+ 8 sinα cos α(x sin α + cosα(y − yc))
2

× cot−1

[

2 cos α(x sin α + cos α(y − yc))

x cos 2α + sin 2α(yc − y) + x − 2xv

]

− 4xvy sin 2α

)

,

(4.11) g1(xv, yc)

=
1

4

(

sin 2α
(

(y−yc)
2 ln

[

−2xv(cot α(y−yc)+x)+x2
v csc2 α+x2 +(y−yc)

2
]

+
(

y2 +2yyc − y2
c

)

ln
[

x2
v csc2 α+2xv cot α(y + yc)+x(x− 2xv)+ (y + yc)

2
)]

− 1

4
sin 4α

((

x2 + (3y − yc)(y + yc)
)

× ln
[

x2
v csc2 α + 2xv cot α(y + yc) + x(x − 2xv) + (y + yc)

2
]

− (x + y − yc)(x − y + yc)
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× ln
[

−2xv(cot α(y − yc) + x) + x2
v csc2 α + x2 + (y − yc)

2
)]

+ cos 2α
(

2x sin2 α(yc − y)

× ln
[

−2xv(cot α(y − yc) + x) + x2
v csc2 α + x2 + (y − yc)

2
]

+x(y− yc) ln
[

x2
v csc2 α+2xv cot α(y + yc)+x(x− 2xv)+ (y + yc)

2
]

+2xvy
)

+ 2 sin2 α
(

cos 2α
(

x2 + (3y − yc)(y + yc)
)

+ 2x sin 2α(yc − y)

+ x2 + (y − yc)
2
)

tan−1

[−xv csc2 α − cot α(y + yc) + x

x cot α + y + yc

]

−
(

x cos2 2α(y − yc) + 2x2
v cot α

)

× ln
[

x2
v csc2 α + 2xv cot α(y + yc) + x(x − 2xv) + (y + yc)

2
]

+ 2xv

(

(yc − y) ln
[

(xv cot α − y + yc)
2 + (x − xv)

2
]

+ y
)

+ xv

(

xv cot α ln
[

(xv cot α − y + yc)
2 + (x − xv)

2
]

+ (xv cot α + 2y − 2yc) ln
[

(xv cot α + y + yc)
2 + (x − xv)

2
])

+4 sin2 α(x cos α+sin α(yc − y))2 tan−1

[−xv csc2 α + cotα(y − yc) + x

−x cot α + y − yc

])

,

(4.12) g2(xv, yc)

= −1

4
cot α

(

− sinα
(

sinα
(

cos 2α
(

x2 + (3y − yc)(y + yc)
)

+ 2
(

x2 + 2y2
))

+ x cos α(y − yc) + x cos 3α(y − yc)
)

× ln
[

− cos 2α
(

x2 − 2xxv + (y + yc)
2
)

+ 2xv sin 2α(y + yc)

+ x2 − 2xxv + 2x2
v + (y + yc)

2
]

+ sinα
(

sin α
(

cos 2α(x + y − yc)(x − y + yc) + 2x2
)

+ x cos α(y − yc)

+ x cos 3α(y − yc)
)

ln
(

− cos 2α
(

x2 − 2xxv + (y − yc)
2
)

+ 2xv sin 2α(yc − y) + x2 − 2xxv + 2x2
v + (y − yc)

2
)

+ sin 2α
(

cos 2α
(

x2 + (3y − yc)(y + yc)
)

+ 2x sin 2α(yc − y) + x2

+ (y − yc)
2
)

cot−1

[

2 sinα(x cos α + sinα(y + yc))

x cos 2α + sin 2α(y + yc) − x + 2xv

]

+ xv(xv − 2x) ln
[

(xv cot α − y + yc)
2 + (x − xv)

2
]

− xv(xv − 2x)

× ln
[

(xv cot α + y + yc)
2 + (x − xv)

2
]

− 4 sinα cos α(x cos α + sinα(yc − y))2

× cot−1

[

2 sinα(x cos α + sinα(yc − y))

x cos 2α + sin 2α(yc − y) − x + 2xv

]

+ 2xvy sin 2α

)

.

Finally, the Airy’s function characterizing the misfit stress ¯̄σM is found to be:

(4.13) φM (x, y) = φ
(CB)
M (x, y) + φ

(DA)
M (x, y) + φ

(DC)
M (x, y) + φ

(AB)
M (x, y),
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and the stress components are derived as [30]:

(4.14)

σM
xx(x, y) =

∂2

∂y2
φM (x, y),

σM
xy(x, y) = − ∂2

∂x∂y
φM (x, y),

σM
yy(x, y) =

∂2

∂x2
φM (x, y).
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