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The classification of simple singularities in the post-buckling analysis of
truss structures is well-known for elastic stability. To focus on multiple singularities
including a hilltop bifurcation point (h-BP) and its bifurcation paths, we reviewed
the multiple bifurcation analysis of multi-folding microstructure (MFM) models with
periodic symmetry. Because the Jacobian at the h-BP of the MFM involves multiple
0-eigenvalues, it is challenging to analyse the bifurcation paths from the h-BP accu-
rately. In this study, we investigated the multiple folding mechanism by analysing the
neighbourhood of the h-BP and the symmetric subgroups of the geometric system in
the two-dimensional plane and three-dimensional core of the MFM. We demonstrated
that through the classification of multiple h-BP and bifurcation paths, it is possible
to determine the unknown bifurcation equilibrium paths following h-BP, based on
the Jacobian stability and the mechanism of symmetric subgroups in group theory
containing the relationships between the primary path and the known bifurcation
path(s) in the MFM system with periodic symmetry.
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bifurcation, multi-folding microstructure.
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1. Introduction

Fundamental mechanisms for the global and local (un-)stabilities
based on geometrically periodic micro-macro structures and materials such as
porous bodies, honeycomb [1–7], or a new resolving method of finite element
method for the periodic scissors structure [8], between the scales of atomic lat-
tice structure and periodic deformation pattern of geological folding under com-
pression loading were reviewed from a post-buckling perspective. This folding
phenomenon, in nonlinear mechanics, appears beyond the physics of scales prob-
lem as multi-body dynamics [9, 11]. From the viewpoint of multi-body physics
issues, the structure is assumed to be the mechanical model of the multi-folding

microstructure (MFM) [10, 11, 12], in a closed boundary condition.
The main purpose of this study is to clarify the structure of multiple bifur-

cation points, as well as that of bifurcation paths. This was achieved by tracking
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Fig. 1. Classification of simple singular point.

the nonlinear bifurcation behaviour of the folding phenomenon in the direction
of the main axis of the applied load. The analysed structure was a multi-layer
truss with pin-supported joints, without horizontal displacements. Additionally,
the structure was allowed to fold to a stable state through sequential unstable
states, such as snap-through or snap-back phenomena. Deflections were consid-
ered to be in range of large-deformation. The classification of a single singu-
lar point as a limit point, symmetry/asymmetry or stable/unstable bifurcation
is well-known, as shown in Fig. 1. A hilltop branching point occurs as a re-
sult of collinearity of a limit point and many arbitrary bifurcation points of
finite-dimensional, elastic, conservative, and equivariant systems, to its symme-
try. Mathematical approaches have been presented by many scientists for these
multiple h-BP problems, such as the group theory, stochastic approach, asymp-
totic method for bifurcation equations, perturbation method, and imperfection
sensitivity, in static singular analysis [13–20]. The mechanical and elastic models
of the multi-folding microstructure (MFM) were derived for finite dimensional
elastic conservative systems, exhibiting hilltop branching at which many arbi-
trary bifurcation points coincided with a limit point. We investigated the clas-
sification and/or homoclinic bifurcation and chaos attractor in elastic two-bar
truss with a symmetric structure [21]. The imperfection sensitivity with the h-
BP point displayed complex phenomena of the geometrical nonlinearlity of the
multi-folding elastic model. We also investigated the structural instability of the
multiple symmetry bifurcation paths from the hilltop limit point in the MFM
model with periodic symmetry and/or loss-symmetry [22, 23].
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To discover the multiple bifurcation points as the critical load in theoretical
folding mechanics, a method for obtaining the bifurcation paths of a discrete
structural system with nonlinear equilibrium equations was studied by [24, 25].
In these papers, they referred to the hilltop-bifurcation behaviour of a three-layer
plane truss subjected to a vertical loading at the top node. A comment was also
given, without any proof, for the existence of an infinite number of multiple snap-
through behaviours for a multiple-layered pantograph truss system. Additionally,
the h-BP and bifurcation paths for the system were also studied. We are more
interested in a system which is made of three-dimensional space, even though it is
a simple model, because there may be more complex and strange phenomena in
nonlinear mechanics. Thus, higher geometric symmetry tends to yield a greater
number of bifurcation paths.

This paper presents our investigation for the bifurcation behaviour of the
periodic symmetric truss, as shown in Fig. 2. Our prime concern is to know
why there were more interesting bifurcation paths for this folding truss. The
bifurcation behaviour of a diamond space truss was studied as a simplified folding
model. Because the main objective of our study was the bifurcation behaviour
of a symmetric truss with the axis line, the Euler buckling of each member was
disregarded, i.e. it was assumed not to occur.
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Fig. 2. Multi-folding pantographic systems; a) multi-layer model, b) one half of multi-layer
model, c) basic 3-layer model.
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2. Theory of elastic folding

In this section, we consider the folding mechanisms for the periodic linked
truss structure, subjected to a vertical load at the top node, as shown in Fig. 2.
The system is a pin-jointed elastic truss, and all nodes of the system displace
vertically only. No allowance is made for friction or gravity for this geometrically
nonlinear problem.

2.1. Theoretical approach for multi-folding truss on 2D

We assume a periodic height for each layer of hi = γiL, where the width L
of the truss is fixed. Therefore, an initial length for each bar in the geometry of
the figure is expressed as

(2.1) ℓi =
√

L2 + h2
i = L

√

1 + γ2
i for i = 1, . . . ,m.

The deformed length of each bar denoted as ℓ̂i, is a function of the height and
the nodal displacement variables

ℓ̂1 = L
√

1 + (γ1 − v̄1 + v̄2)2,(2.2)
...

ℓ̂i = L
√

1 + (γi − v̄i + v̄i+1)2,(2.3)
...

ℓ̂m = L
√

1 + (γm − v̄m)2(2.4)

where γi = hi/L > 0, v̄i = vi/L, (i = 1, · · · ,m) and v̄m+1 = 0 because the
bottom node is translationally fixed.

Using Green’s expression for strain, it is shown in each bar as

(2.5) εi ≡
1

2

{(
ℓ̂i
ℓi

)2

− 1

}

for i = 1, . . . ,m.

Substituting Eq. (2.1) to Eq. (2.4) into Eq. (2.5) we obtain

(2.6) εi =
1

2

{
1 + (γi − v̄i + v̄i+1)

2

1 + γ2
i

− 1

}

for i = 1, . . . ,m.

The total potential energy, V, of the half model, subject to loading f/2 is then
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given by

V =
m∑

i=1

EAiℓi
2

(εi)
2 − f

2
v̄1L(2.7)

=
m∑

i=1

EAiL
√

1 + γ2
i

2

1

4

{
1 + (γi − v̄i + v̄i+1)

2

1 + γ2
i

− 1

}2

− f

2
v̄1L.

For the case when γi = γ (i = 1, . . . ,m) and EAi = EA (i = 1, . . . ,m) the
total potential energy can be written as

(2.8) V =
κL

8

m∑

i=1

(v̄i − v̄i+1)
2 ((v̄i − v̄i+1) − 2γ)2 − f

2
v̄1L

where the stiffness parameter κ = EA/(1 + γ2)3/2 (i.e. κ is a function of γ).
From Eq. (2.8), we can obtain the equilibrium equations based on the principle
of minimum energy [24] in the following way:

(2.9) Fi(. . . , vi, . . .) ≡
∂V
∂vi

=
∂V
∂v̄i

∂v̄i

∂vi
= 0, for i = 1, . . . ,m.

Hence, for the 1st, i−th and m−th equilibrium equations are

F1(v̄1, v̄2) =
κ

2
(v̄1−v̄2)((v̄1−v̄2)−γ)((v̄1−v̄2)−2γ)−f

2
= 0,(2.10)

Fi(v̄i−1, v̄i, v̄i+1) = −κ
2
(v̄i−1−v̄i)((v̄i−1−v̄i)−γ)((v̄i−1−v̄i)−2γ)(2.11)

+
κ

2
(v̄i−v̄i+1)((v̄i−v̄i+1)−γ)((v̄i−v̄i+1)−2γ) = 0,

Fm(v̄m−1, v̄m) = −κ
2
(v̄m−1−v̄m)((v̄m−1−v̄m)−γ)((v̄m−1−v̄m)−2γ)(2.12)

+
κ

2
v̄m(v̄m−γ)(v̄m−2γ) = 0.

By using the implicit function theorem, it is then possible to solve for all variables
v̄i, (i = m, . . . , 1) as follows:

Fm(v̄m−1, v̄m) = 0 → v̄m = Fm(v̄m−1),(2.13)

Fi(v̄i−1, v̄i, v̄i+1) = Fi(v̄i−1, v̄i,Fi+1(v̄i)) = 0 → v̄i = Fi(v̄i−1),(2.14)

F1(v̄1, v̄2) = F1(v̄1,F2(v̄1)) = 0(2.15)

where F(·) denotes a nonlinear function. Thus, we obtain all the solutions for
each nonlinear equilibrium path by finding the normalised nodal displacements
in turn.
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Here, we consider the deformation relationship between the nodal displace-
ment differences in the m-layer truss model. Up to the critical point, this overall
deformation behaviour is assumed to be on the primary path. It is assumed that
the deformation at the lowermost boundary condition in Fig. 2b) is 0, and that
the arbitrary nodal displacements v̄i and v̄i+1 are directly proportional to the
displacement v̄1 at the top point. Based on the relationship between Eq. (2.13)
and Eq. (2.15), the layers of the truss model are assumed to be homogeneous
and of the same height:

(2.16) (v̄i − v̄i+1) =
m− i+ 1

m
v̄1 −

m− i

m
v̄1 =

1

m
v̄1,

where

v̄i =
m− i+ 1

m
v̄1, i = 2, . . . ,m,

v̄i+1 =
m− i

m
v̄1, i = 1, . . . ,m− 1.

An engineering problem arises when the proportional relation of Eq. (2.16) is
satisfied until the singular point at which the structure is destabilized is reached.

2.2. Stability by Jacobian

The structural stability of the system can be determined from the eigenvalue
of the tangent stiffness matrix, the Jacobian J ∈ R

m×m. If all the eigenvalues are
positive, then the structure is considered to be stable, and if any eigenvalue has
a negative value, then the structure is considered to be unstable. The stability
of the structural system is determined from the singularity condition of the
equilibrium equation having a singular point of displacements under the load
parameter f . The stability of the system state is defined by the value of the
determinant of the Jacobian J ;

(2.17) detJ(v̄i)







> 0: stable,

= 0: critical,

< 0: unstable.

When the determinant at the critical point becomes zero, the number of null
eigenvalues for the Jacobian is related to the number of singularities related to
the structural instability. If, at the critical state, the number of null eigenvalues
is one, the phenomenon is called a simple singularity. If there are two or more
null eigenvalues, then the phenomenon is called singularity multiplicity, owing
to the presence of multi-singularity. When the load has a point of maximum
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intensity and multiple bifurcation points, this situation is called hilltop type

multiple bifurcation point, and is commonly referred to as ‘h-BP’.
The tangent stiffness matrix of this system J is defined as follows:

J =

(
∂2V

∂vi∂vj

)

=

(
∂2V

∂v̄i∂v̄j

∂v̄i ∂v̄j

∂vi ∂vj

)

=

(
∂Fi

∂v̄j

∂v̄j

∂vj

)

for i, j = 1, . . . , m,(2.18)

=
κ

2L











J1,2 −J1,2 O
−J1,2 J1,2+J2,3 −J2,3

−J2,3 J2,3+J3,4
. . .

. . . . . . −Jm−1,m

O −Jm−1,m Jm−1,m+Jm,m











where Ji,j is defined by the following;

Ji,i+1 = 3(v̄i − v̄i+1)
2 − 6(v̄i − v̄i+1)γ + 2γ2, i = 1, . . . , m − 1,(2.19)

Jm,m = 3v̄2
m − 6v̄mγ + 2γ2.(2.20)

Jacobian on the primary path. The Jacobian on the primary path, expressed
by v̄i, can be derived from the sequential equations. The sequential equations
are based on the proportional relationship between the nodal displacement differ-
ences. These sequential equations can be represented in each layer of the model
as follows. Using Eq. (2.16) and Eq. (2.20), Ji,j is defined as follows:

Ji,i+1 = 3

(
v̄1

m

)2

− 6

(
v̄1

m

)

γ + 2γ2, i = 1, . . . , m − 1(2.21)

Jm,m = 3

(
v̄1

m

)2

− 6

(
v̄1

m

)

γ + 2γ2.(2.22)

By substituting these components into the Jacobian (2.18), we obtain the fol-
lowing equation,

(2.23) J(v̄1)|pr =
κ

2L

{

3

(
v̄1

m

)2

− 6

(
v̄1

m

)

γ + 2γ2

}











1 −1 O
−1 2 −1

−1 2
. . .

. . . . . . −1
O −1 2











.
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The critical state of stability based on Eq. (2.17) is defined as

(2.24) detJ(v̄1)|pr

=
κ

2L

{

3

(
v̄1
m

)2

− 6

(
v̄1
m

)

γ + 2γ2

}

× det











1 −1 O
−1 2 −1

−1 2
. . .

. . . . . . −1
O −1 2











= 0.

Then, the following condition is obtained:

(2.25) 3

(
v̄1
m

)2

− 6

(
v̄1
m

)

γ + 2γ2 = 0.

From the condition of Eq. (2.25), a solution for the critical displacement v̄BP
1 can

be obtained by the following equation:

(2.26) v̄BP
1 =

{(

1 − 1√
3

)

mγ,

(

1 +
1√
3

)

mγ

}

.

The state of this system is classified as

(2.27)







v̄1 <

(

1 − 1√
3

)

mγ: stable,

v̄1 =

(

1 − 1√
3

)

mγ: critical,
(

1 − 1√
3

)

mγ < v̄1 <

(

1 +
1√
3

)

mγ: unstable,

v̄1 =

(

1 +
1√
3

)

mγ: critical,
(

1 +
1√
3

)

mγ < v̄1: stable.

In Eq. (2.27), there is an unstable state on the primary path, between two critical
displacements v̄BP

1 .
When the vertical displacement v̄1 at the top node reaches the critical value

v̄BP
1 on the primary path, the Jacobian of Eq. (2.23) becomes

(2.28) J(v̄BP
1 ) =

κ

2L
0











1 −1 O
−1 2 −1

−1 2
. . .

. . . . . . −1
O −1 2











=











0 0 O
0 0 0

0 0
. . .

. . . . . . 0
O 0 0











,

λi = 0, i = 1, . . .m.
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When the critical state is reached, all eigenvalues λi, (i = 1, . . . ,m) are zero. In
the critical state, eigenvalues correspond to an unstable state, where there are
multiple bifurcations in the system.

In the general case, if the ideal folding truss had a multiple layer m, it would
be possible to obtain the primary equilibrium equations. Let us consider the
proportional relationship between the nodal displacements at the neighbourhood
of Eqs.(2.10) or (2.15). If the nodal displacements of Eqs.(2.10) or (2.15) are used
in Eq. (2.16), the load parameter f(v̄1), including the maximum fmax at the top,
equals the primary equilibrium path in the following:

f = κ(v̄1 − v̄2)((v̄1 − v̄2) − γ)((v̄1 − v̄2) − 2γ)(2.29)

= κ
v̄1
m

(
v̄1
m

− γ

)(
v̄1
m

− 2γ

)

=
κ

m3
v̄1 (v̄1 −mγ) (v̄1 − 2mγ) ,

fmax =
κ

m3
v̄BP
1 (v̄BP

1 −mγ)(v̄BP
1 − 2mγ) at v̄BP

1 =

(

1 − 1√
3

)

mγ.(2.30)

In this way, it is possible to express and generalize the equilibrium equations
of the main path in the truss model. The considered truss model comprises m
layers with a periodic structure.

2.3. Bifurcation analysis for three layers model (m = 3)

It is determined the equilibrium paths for the basic model, shown in Fig. 2c).
The height of each layer was identical, i.e. hi = h, hence γi = γ. To solve the
variable v̄i, we used the implicit function theorem and substituted m = 3 into
Eqs.(2.12) and (2.13), which gave the solution as follows:

v̄3 = F3(v̄2)

{

= v̄2/2 for primary path,

= 1
2

(
v̄2±

√

−3v̄2
2+12γv̄2−8γ2

)
for bif. paths,

(2.31)

v̄2 = F2(v̄1)







= 2v̄1/3 for primary path,

= −γ+v̄1±
√

3

3

√

−(v̄1−γ)(v̄1−5γ) for bif. paths.
(2.32)

From the use of the implicit function theorem (2.15) and/or (2.10) for v̄1 hence
it is seen that the relationship between the load parameter and the displacement
v̄1 was nonlinear

(2.33) f = κF1(v̄1).
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Using v̄2 = F2(v̄1) and v̄3 = F3(v̄2), we could then express the equilibrium
equations for the primary and bifurcation paths in terms of variable v̄1, as follows:

fpr = κ
v̄1
3

(
v̄1
3

− γ

)(
v̄1
3

− 2γ

)

for primary path,(2.34)

fbf1 = ± κ

3
√

3

√

−(v̄1 − γ)(v̄1 − 5γ) · (v̄1 − 2γ)(v̄1 − 4γ) for bif. paths.(2.35)

The equilibrium solutions fpr and fbf1 are solved for v̄1; fbf1 represents a sym-
metric bifurcation path. In this system, the other asymmetric bifurcation path
fbf2 exhibits half of the whole stiffness after bifurcation has occurred. This is
due to the asymmetric deformation mode, which breaks the left-right symmetry,
leading to half the sum of Eq. (2.34) and Eq. (2.35), which is represented by the
following equation:

(2.36) fbf2(v̄1) =
fpr(v̄1) + fbf1(v̄1)

2
for asymmetric bif. path.

2 3 4 5 6

h-BP

b-BP

prim
ary unstable  path fpri.

b
if. p

ath
 f

b
f1

b
if. p

ath
 fb

f1

v10

Load parameter f

fpri

fpri

v1
BP

=1.268

=v1/L

b
if. p

ath
 fb

f2

Fig. 3. Nonlinear equilibrium paths using Eqs. (2.34)–(2.36).

The different equilibrium paths, such as fpr, fbf1 and fbf2, from Eq. (2.34)
to Eq. (2.36), are depicted in Fig. 3. In Fig. 3, the dotted line on the primary
path represents the unstable state. The unstable state is considered to occur
from the minimum value, at the ‘b-BP’ of the bottom node, to the maximum
load at the limit point (h-BP). The main path fpr becomes zero at the centre of
the instability, when v̄1 = 3γ equals the height of the three-layer truss model.
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When the vertical displacement v̄1 reaches the critical displacement v̄BP
1 at the

top node, the load parameter becomes fmax at the same h-BP. Moreover, the
equilibrium path is changed from the main equilibrium path fpr to one of the sev-
eral bifurcation paths fbf at the limit and a bifurcation point. This is called the

hilltop-bifurcation point, and is defined as fmax = fpr(v̄
BP
1 ) = fbf(v̄

BP
1 ). There-

fore, at the critical displacement v̄BP
1 , the relationship between the primary path

fpr, including the load parameter, and the bifurcation path fbf corresponds to
multiple equilibrium states as fpr(v̄

BP
1 ) = fbf1(v̄

BP
1 ) = fbf2(v̄

BP
1 ).

The gradients at the top point (h-BP) for the all equilibrium paths are smooth
and can be represented by df/dv̄1 = 0, as shown in Fig. 3. This relationship is
valid to both before and after h-BP. In Fig. 3, it can be observed that two
bifurcation paths fbf1 from h-BP pass through the marks of ‘◦’. Also presenting
asymmetric deformation, two bifurcation paths fbf2 from h-BP are indicated
by the thin blue lines in Fig. 3. Using bifurcation analysis, and based on the
structural stability of the post-buckling problem, it is realised that there are
the multiple limit and bifurcation points. These points can be, for example,
the h-BP, and may occur in many harmonic equilibrium paths in geometric
nonlineariity. The limit and bifurcation points may occur in trusses with multiple
microstructures, including periodically symmetric folding systems.

From the equation of the Jacobian (2.23), considering the generalized repre-
sentation of the m layer, the tangential stiffness matrix of the three-layer truss J
can be systematically obtained. The characteristic equation of expression (2.38)
can be represented by the following:

J(vi) =
κ

2L

{

3

(
v̄1
3

)2

−6

(
v̄1
3

)

γ+2γ2

}




1 −1 0
−1 2 −1
0 −1 2



 ,(2.37)

det |J−λI| =
κ

2L

{

3

(
v̄1
3

)2

−6

(
v̄1
3

)

γ+2γ2

}

(−λ3+5λ2−6λ+1) = 0.(2.38)

From the characteristic equation (2.38), three eigenvalues λi depend on v̄1
Fig. 4 depicts the result of the solution curve. In this figure, when the displace-
ment v̄1 reaches its critical value, v̄BP

1 , all three eigenvalues are zero, indicating
the existence of multiple solutions.

The critical displacement of the formula (2.26) can be obtained by the fol-
lowing equation, in the case of m = 3:

(2.39) v̄BP
1 = {1.268γ, 4.732γ}.

Since the eigenvalues are all null at v̄BP
1 = 1.268γ, it is impossible to solve the

eigenvectors as their bifurcation modes. Therefore, in this system, we focus on
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Disp. v1

BP
=1.268v1

BP
=4.732v1

Fig. 4. Change of eigenvalues depends on v1 in n = 3 layers model.

the localization of the folding patterns of a truss with a multi-layer symmet-
ric structure. Using the eigenvalue analysis near the critical displacement, just
before destabilization, the normal eigenvectors for each eigenvalue are obtained
Fig. 5a1), b1), c1). If the maximum value of the displacement changes locally
in the vector, it can be understood that each folding pattern becomes differ-
ent. Furthermore, the maximum nodal deformation after the bifurcation point
is localized concentrically, as shown in Fig. 5a2), b2), c2a), c2b).

{

λ1, λ2, λ3 > 0, at v̄1 < 1.268γ: stable state,

λ1 = λ2 = λ3 = 0, at v̄1 = 1.268γ: multiple critical states.

The maximum load at h-BP can be obtained as follows by applying m = 3 to
the primary path of Eq. (2.30).

(2.40) fmax
pr = f(v̄BP

1 ) = +0.3849κγ3 at v̄BP
1 = 1.268γ.

Alternatively, Eq. (2.34) can be used. The load parameter for the two bifur-
cation paths, fbf1 of Eq. (2.35) and fbf2 of Eq. (2.36), is traced at v̄BP

1 = 1.268γ;

fbf1(v̄
BP
1 ) = ± κ

3
√

3

√

−(v̄BP
1 − γ)(v̄BP

1 − 5γ) · (v̄BP
1 − 2γ)(v̄BP

1 − 4γ)(2.41)

= {+0.3849κγ3,−0.3849κγ3},

fbf2(v̄
BP
1 ) =

fpr(v̄
BP
1 ) + fbf1(v̄

BP
1 )

2
(2.42)

= {+0.3849κγ3, 0}.
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Fig. 5. Eigenvectors and the localised folding patterns: a1) eigenvector for λ1,
b1) eigenvector for λ2, c1) eigenvector for λ3, a2) local folding mode at the top node,

b2) locally symmetric folding mode at the third node, c2a) locally symmetric folding mode at
the second nodes, c2b) locally asymmetric folding mode at the second nodes.

In the different Eqs. (2.40)–(2.42), the load parameter in a three-layer mo-
del (2D), at v̄1 = 1.268γ, correspond to the same maximum value. In the
calculations, the limit point and the bifurcation point, corresponding to the
maximum load of the f(v̄BP

1 ) curve, are consistent with each other. Therefore,
fpr(v̄

BP
1 ) = fbf(v̄

BP
1 ) is also a critical point. As such, it was recognised as a bi-

furcation point.
From the stability analysis of the Jacobian, in a displacement-constrained 2D

truss model of an m-layer pantograph with a periodic structure, there are multi-
ple bifurcation points. In these bifurcation points, multiple null eigenvalues occur
at a single critical displacement. All the singular points are coincident with the
maximum and minimum points in the primary equilibrium path and bifurcation
paths. Thus, it was found that, when the number of layers m is odd, the singu-
lar point is a hilltop multi-bifurcation point, with several symmetric patterns.
In this paper, we calculated theoretically the proportional relationship of the
main path equilibrium state and bifurcation paths from the Jacobian near the
hilltop bifurcation point, however it is not available to obtain bifurcation hier-
archy or more complex folding patterns of the MFM. Therefore, further analysis
including the multi-degree of freedom of the periodic structure and/or the hori-
zontal displacement behavior will be necessary. The multi-folding analysis of the
three-dimensional core truss of the MFM is explained in next section.
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3. Theoretical approach for multi-folding truss in 3D

We considered the folding mechanisms for a (pantographic) truss structure
subject to a vertical load at the top node of the system, shown in Fig. 6. The
system was a pin-jointed elastic truss and all nodes of the system displaced ver-
tically only. No allowance was made for friction or gravity for this geometrically
nonlinear problem. In addition, we believe that no Euler elastic buckling oc-
curred for each bar by itself in this truss. We assumed a periodic height for each
layer of hi = γiL, where the width L of the truss was fixed. Therefore, the initial
length of each bar in the geometry of the figure is expressed as

(3.1) ℓ(i),k =
√

L2 + h2
i = L

√

1 + γ2
i for k = 1, . . . , n, i = 1, 2,

where n represents the number of polygonal model’s members.

v

h

2h

1

2,1

3

f

2,4

2,2

2,3

X

z

2,1

2,3

2,2

2,4

1
X

Y

a) b)

Fig. 6. Folding model in 3D; a) side view, b) plan view.

Using a definition of the Green strain, the potential strain energy for the up
and down side of this model, Vi, of the model shown in Fig. 6(a), subject to
loading f∗ is then given by

V1 =
κL

8

n∑

k=1

(v̄1 − v̄2,k)
2(v̄1 − v̄2,k − 2γ)2,(3.2)

V2 =
κL

8

n∑

k=1

(v̄2,k)
2(v̄2,k − 2γ)2.(3.3)

Here, it was assumed, as the condition for this model κ = EA/(1+γ)3/2, γi = γ,
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v̄i = vi/L, hi = h. The total potential energy is expressed as follows:

V = V1 + V2 − fv̄1L(3.4)

=
κL

8

n∑

k=1

[(v̄1 − v̄2,k)
2(v̄1 − v̄2,k − 2γ)2 + (v̄2,k)

2(v̄2,k − 2γ)2] − fv̄1L.

We can obtain the equilibrium equations based on the principle of minimum
energy in the following way:

(3.5) Fi(. . . , vi, . . .) ≡
∂V
∂vi

=
∂V
∂v̄i

∂v̄i

∂vi
= 0 for i = 1, . . . ,m.

For example for v̄1, it is shown as

F1 =
∂V
∂v̄1

1

L
= 0(3.6)

=
κ

8

n∑

k=1

{
∂(v̄1−v̄2,k)

2

∂v̄1
(v̄1−v̄2,k−2γ)2+(v̄1−v̄2,k)

2∂(v̄1−v̄2,k−2γ)2

∂v̄1

}

−f

=
κ

4

n∑

k=1

{
(v̄1−v̄2,k)(v̄1−v̄2,k−2γ)2+(v̄1−v̄2,k)

2(v̄1−v̄2,k−2γ)
}
−f

=
κ

4

n∑

k=1

(v̄1−v̄2,k)(v̄1−v̄2,k−2γ) {(v̄1−v̄2,k)+(v̄1−v̄2,k−2γ)}−f

=
κ

2

n∑

k=1

(v̄1−v̄2,k)(v̄1−v̄2,k−γ)(v̄1−v̄2,k−2γ)−f = 0.

The other shows

F2,k =
∂V
∂v̄2,k

1

L
= 0(3.7)

=
κ

8

{
∂(v̄1−v̄2,k)

2(v̄1−v̄2,k−2γ)2

∂v2,k
+
∂(v̄2,k)

2(v̄2,k−2γ)2

∂v2,k

}

=
κ

8
{(−2)(v̄1−v̄2,k)(v̄1−v̄2,k−2γ)2+(v̄1−v̄2,k)

2(−2)(v̄1−v̄2,k−2γ)2

+2v̄2,k(v̄2,k−2γ)2+v̄2
2,k2(v̄2,k−2γ)2}

=
κ

4
{−(v̄1−v̄2,k)(v̄1−v̄2,k−2γ)2(v̄1−v̄2,k−γ)+v̄2,k(v̄2,k−2γ)2(v̄2,k−γ)}

=
κ

2
{−(v̄1−v̄2,k)(v̄1−v̄2,k−γ)(v̄1−v̄2,k−2γ)+v̄2,k(v̄2,k−γ)(v̄2,k−2γ)} = 0,

k = 1, . . . , n.

After this equation, let us consider the 3D model as n = 4.
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The results obtained regarding the force versus displacement curves are de-
picted in Fig. 3 (or later Fig. 10). The force versus displacement curves were ob-
tained considering that the system was subjected to a vertical load of increasing
intensity, applied at the top point h-BP. This system consisted of multiple limit
and bifurcation points, located in the elastic unstable state, outside the primary
path. We can also refer to another relevant case, as shown in Ikeda et al. [18,
Fig. 10, p. 762]. These results are similar to the force versus displacement curves
of the two-bar truss model. The two-bar truss model presents bifurcations of the
hilltop type, having several imperfection paths in their dimensional space. Thus,
we may be able to foresee where there exist several folding and post-buckling
patterns in this system. This can be performed based on symmetry-breaking
laws, considering the subgroups of its symmetry. The degrees of freedom of this
MFM system only allowed vertical displacements.

The loading displacement at the top node suddenly appeared large upon
loading, and snap-through nonlinear behaviour was observed. At the critical dis-
placement, there were four nodal points on the mid layer. There are typical
deformation patterns in the dihedral group D4 ∈ Dn, in the vertical Z-direction.
The dihedral group contains the subgroups of the initial regular n-gonal symme-
try, D4(= C4v) as shown in the following:

subgroups: D4, (C4, ) Dk
2, (C2, ) Dj

1,C1 for k = 1, 2, j = 1, . . . , 4.

The relationship between several deformed patterns for each subgroup space
of D4 is shown in Fig. 7.

v1

v2,b

v2,c

v2,d

v2,a

( + )

( + ) ( + )

( + )

v1

v2,2

v2,3v2,4

v2,1

( - )

( - )

( + )

( + )

a) Subgroup D4 b) Subgroup D2

v1

v2,2

v2,3

v2,4

v2,1

( - )

( - ) ( + )

( + )

v1

v2,2

v2,3v2,4

v2,1

( - )

( - )

( + )( + )

c) Subgroup D1 d) Subgroup D3
1

Fig. 7. Deformation patterns for 3D folding model.
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1

Fig. 8. Corresponding to an order of solutions (◦ and • denote the linear and the nonlinear
solutions, respectively, to be substituted).

The primary and bifurcation solutions are obtained by solving Eq. (3.7) as
follows:

(3.8) v̄2,k

{

= v̄1/2 for primary path,

= 1
2

(
v̄1 ±

√

−8γ2 + 12γv̄1 − 3v̄2
1

)
for bifurcation path,

for k = 1, . . . , 4.

These solutions include the linear and nonlinear terms for each nodal displace-
ment, v̄2,k. And, it was considered that several equilibrium paths were combined
by these chosen solutions. Therefore, it was shown that there was a combina-
tion of linear and nonlinear solutions, such as ◦ and • as shown in Fig. 8. This
figure represents a number of linear and nonlinear solutions for the nodal dis-
placement, v̄2,k. For example, figure a) marked the layout for four nodal points,
which correspond to the deformation pattern of the primary path, when the
combination of all linear solutions is v̄2,k = v̄1/2. Figure b) marked the lay-
out for four nodal points with nonlinear solutions after the h-BP. Figures c)–e)
have two primary and nonlinear bifurcation solutions with symmetric subgroups,
respectively.

3.1. Primary path and bifurcation paths

In the previous subsection, the three solutions for v̄2,k were determined, and
they were substituted into the equilibrium equations F i. There were several
equilibrium paths to be satisfied for the combination of these solutions. Firstly,
if all displacements equal the same linear relationship v̄2,k = v̄1/2 (k = 1, . . . , 4),
as shown in Fig. 9a), Eq. (3.6) will be the fundamental equilibrium equation as
the primary path in the following:

(3.9) fpr =
κ

4
v̄1(v̄1 − 2γ)(v̄1 − 4γ).

This equation is the primary nonlinear path which has the D4 symmetry of
the same vertical displacements for v̄2,k. This deformation of the system is not
symmetry-breaking of D4, i.e. before D4 symmetry-breaking.
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Fig. 9. Corresponding to an order of solutions (‘◦’ and ‘•’ denote the linear and nonlinear
solutions, respectively, to be substituted).

Secondly, there were several bifurcation paths under the condition of solu-
tion’s combination shown in Fig. 9b) in the following:

v̄2,2 = v̄2,3 = v̄2,4 = v̄1/2, v̄2,1 =
1

2

(

v̄1 −
√

−8γ2 + 12v̄1γ − 3v̄2
1

)

,

fbf1 =
κ

16
(48γ3 − 64v1γ

2 + 30v2
1γ − 5v3

1) for bif. path 1.(3.10)

Next, the condition of another combination of solutions, including two nonlinear
solutions, shown in Fig. 9c) is given as follows:

v̄2,3 = v̄2,4 = v̄1/2, v̄2,1 = v̄2,2 =
1

2

(

v̄1 −
√

−8γ2 + 12v̄1γ − 3v̄2
1

)

,

fbf2 =
κ

8
(48γ3 − 80v1γ

2 + 42v2
1γ − 7v3

1) for bif. path 2.(3.11)

Two nonlinear solutions shown in Fig. 9c) are corresponding to the bifurcation
equilibrium paths in Figs. 8c)–e).

With an increasing number of nonlinear solutions for substituting into
Eq. (3.6), there is one remaining linear relationship for v̄2,k, shown in Fig. 9d);

v̄2,4 = v̄1/2, v̄2,1 = v̄2,2 = v̄2,3 =
1

2

(

v̄1 −
√

−8γ2 + 12v̄1γ − 3v̄2
1

)

,

fbf3 = κ

(

9γ3 − 16v1γ
2 +

69v1
2γ

8
− 23v1

3

16

)

for bif. path 3.(3.12)

Finally, substituting all the nonlinear solutions into Eq. (3.6), we obtained the
following relationship, shown in Fig. 9e);

v̄2,1 = v̄2,2 = v̄2,3 = v̄2,4 =
1

2

(

v̄1 −
√

−8γ2 + 12v̄1γ − 3v̄2
1

)

fbf4 = 2κ(6γ3 − 11v1γ
2 + 6v2

1γ − v3
1) for bif. path 4.(3.13)

It corresponds to the deformation pattern of the 4th bifurcation path. This
equilibrium path is the most unstable state from h-BP.
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These relationships are plotted in Fig. 10 as bifurcation paths from the first
h-BP. It is known that there are several different unstable paths between h-BP
and b-BP. The loss of the load parameter from h-BP depends on the number of
nonlinear solutions as ‘•’, i.e. when all solutions are linear, it corresponds to the
primary unstable path. However, when all solutions are nonlinear, it corresponds
to the most decreasing unstable bifurcation path (bif. path 4 in Fig. 10). for
this simple model in three dimensions. All paths go through the center position
v̄1 = 2.

In general, the number of all bifurcation paths is n and then the equation is
defined fbfn from fbf4 in case of n = 4. We obtained the following law from the
relationship between the primary path fpr and bifurcation paths fbfi.

(3.14) fbfi =
(n− i)fpr + ifbfn

n
, i = 1, . . . , n.

In case of n = 4, any bifurcation path fbfi shows from fpr and fbf4 of Eq. (3.14)
in the following;

fbf1 =
3fpr + fbf4

4
,(3.15)

fbf2 =
fpr + fbf4

2
,(3.16)

fbf3 =
fpr + 3fbf4

4
.(3.17)

These bifurcation paths correspond to the analytical results in Fig. 10 (Refer
Fig. 11a)). We realised that if one of these relationships was obtained from
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experimental data, consequently, there would be a bifurcation path and a number
of bifurcation solutions which depend on the influence of the lost load resistance.

3.2. Classification of hilltop type multiple bifurcation points

As a result of the nonlinear equilibrium path of the three-layer periodic MFM
truss Fig. 3, it was confirmed that there were a h-BP point and bifurcation paths
from h-BP. It is predicted that more unstable bifurcation paths are derived in
periodic structures with three or more layers. This suggests the existence of mul-
tiple singularities and multiple different symmetric and unstable branch paths
in the periodic structure system. If the bifurcation path is stable, it becomes a
symmetric and stable type of h-BP. In the results of the nonlinear equilibrium
path of the two-layer core truss shown in Fig. 10, consisting of 4-bars in the 3D
space, we focused on the bifurcation path in the hierarchical subgroup with D4-
symmetry. By substituting the solution ‘◦’ and the bifurcated solution ‘•’ into
the bifurcation equation, unstable bifurcation paths arose from several differ-
ent h-BP. As a result of determining bifurcation paths of interesting behaviour,
those of the three-layer MFM truss with symmetric group D2 were found to
be unstable. Moreover, the foldings present bifurcation patterns with symmetric
subgroup D1 and asymmetric subgroup C2. If the number of layers in the MFM
system is odd, the bifurcation paths at the h-BP exhibit the smoothness limit
point similar to that of the shape of the primary path. In contrast, if the number
of layers is even, the bifurcation paths cross each other at the h-BP. From the
analysis and results regarding bifurcation, it is realised that the number of lay-
ers is different, depending on the branch type of the bifurcation paths. However,
we realised that the number and position of the bifurcation solutions associated
to those bifurcation paths, corresponded to part of the D4− subgroup. Thus,
the system was not completely asymmetric. In fact, the system had an unstable
path, presenting a D4 symmetric subgroup.

In summary, the classification and characteristics of multiple hilltop bifur-
cation points in a periodic structure system can be drawn as shown in the bi-
furcation diagram Fig. 11. This can be done similarly to the results for the 3D
diamond truss, in the case of an even number of layers. Fig. 11a) shows a type of
bifurcation, in which a plurality of unstable asymmetric bifurcation paths arose
the loss of the number of the stiffness from h-BP. Fig. 11b) shows unstable sym-
metric multiple bifurcation paths from h-BP in odd number m layers. Fig. 11c),
shows an even number of layer truss, where it is possible to see multiple sym-
metrically unstable parabola and asymmetric bifurcation paths from h-BP in the
MFM system of 3D. It is shown in the results regarding the bifurcation of the
MFM truss, with the multiple number layers, that the existence of bifurcation
can be systematically inferred. If we considered the 3D case with imperfections,
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it would seem more complicate than a bifurcation system where the real mi-
crostructure of the MFM system has many layers and degrees-of-freedom. In
that case, there are evidences of the occurrence of more complex phenomena.
However, this evidence is based on the diagram system for symmetry groups,
considering the initial periodic symmetries of the MFM model.

4. Conclusion

This study clearly demonstrates, by using theoretical analysis, that there
exist different bifurcation paths and primary nonlinear equilibrium paths in pe-
riodic structures. MFM truss models with multiple singularities were used. In
this approach, the following conclusions are obtained based on the analytical
results;

1. The existence of stable and unstable types, as well as the existence of sym-
metric and asymmetric systems at the h-BP, is recognized. This nonlinear
phenomenon is essential for the stability of the periodic structure system,
considering its microstructure. Moreover, it is also important when consid-
ering the stability of the folding mechanism that limits the holding support
of a real structure, such as a deployable periodic structure.
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2. Regarding a folding truss model (2D plane) of an m-layer pantograph,
there exist multiple bifurcation points. Considering the stability analysis
of the Jacobian, where multiple null eigenvalues occur at a certain critical
displacement. It was found that there were multiple bifurcation points of
the hilltop type and different bifurcation paths, when the number of layers
m in the periodic MFM system was either odd or even.

3. The bifurcation behaviour of an elastic multi-layer MFM truss model
such as a core truss with a diamond-shaped axisymmetric space truss in 3D,
was elucidated in terms of its folding mechanism. The bifurcation paths
with the regular n gonal space truss were derived from h-BP by n bi-
furcation paths. This indicates that the m-layers in the MFM, which has
a large degree of freedom, has abundant branching paths. Furthermore,
it was found that the derivation of branching path from the main one is
technically quite difficult, and the more the number of 0 eigenvalues is, the
more severe the stiffness decrease. The equilibrium equations were com-
pared and investigated, by analysing different bifurcation paths, based on
the symmetric group.

4. The geometrical symmetry of the truss was an important singularity of
this simplified model, resulting in the occurrence of unstable deformation
that disrupted the periodic symmetry. Therefore, the results of this study
clarify the classification and invariance of multiple singularities in periodic
structures.

5. In this paper, it was not available to obtain bifurcation hierarchy or more
complex folding patterns of the multiple layers in the MFM. Therefore,
further analysis including the more multi-degrees of freedom and/or the
imperfection sensitivity variation will be necessary.
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