
ARCHIVES OF MECHANICS

Arch. Mech. 72 (3), 193–215, 2020, DOI: 10.24423/aom.3443

Performance of isotropic constitutive laws in simulating failure

mechanisms in scaled RC beams

I. MARZEC, J. BOBIŃSKI

Gdansk University of Technology, Faculty of Civil and Environmental Engineering,
Narutowicza 11/12, 80-233 Gdańsk, Poland, e-mails: irek@pg.edu.pl, bobin@pg.edu.pl

Results of numerical calculations of reinforced concrete (RC) beams are pre-
sented. Based on experimental results on longitudinally reinforced specimens of dif-
ferent sizes and shapes are investigated. Four different continuum constitutive laws
with isotropic softening are used: one defined within continuum damage mechanics, an
elasto-plastic with the Rankine criterion in tension and the Drucker–Prager criterion
in compression, a formulation coupling elasto-plasticity and damage mechanics and
the concrete damaged plasticity (CDP) model implemented in Abaqus. In a softening
regime, a non-local theory of integral format is applied to the first three constitutive
laws. A fracture energy approach is utilised in CDP model. An ability to reproduce
different failure mechanisms observed in experiments for each constitutive model is
analysed. A comparison of force-displacement curves and crack patterns between nu-
merical and experimental outcomes is performed.
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1. Introduction

In numerical simulations of quasi-brittle materials like concrete the
presence of cracks and shear zones has to be taken into account. These two phe-
nomena lead to the occurrence of strain softening of the material (i.e. decrease
of the strength with increasing the imposed strain) observed both in tension and
compression. In tension, cracks start to nucleate as a band of diffused microc-
racks in the region of finite size, called fracture process zone (FPZ). In opposite
to perfectly brittle materials, its size is not negligible with the respect to the
size of the specimen. Upon further loading, these microcracks form a discrete
macrocrack. The proper numerical description of cracks and shear zones is of
major importance to obtain physically meaningful results.

Within continuum mechanics localisation zones (i.e. cracks and shear zones)
can be defined with two alternative methods. In the first approach they are mod-
elled in a smeared sense (displacement field continuity is not violated). Many dif-
ferent constitutive laws can be utilised: elasto-plastic ones [1–3], models defined
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within continuum damage mechanics with isotropic [4, 5] or anisotropic [6, 7]
description of the material degradation or formulations coupling mentioned ones
[8–10]. Due to the strain softening incorporated into the definition of the ma-
terial, the numerical simulations suffer from the mesh sensitivity. Classical con-
tinuum laws have to be enriched with a characteristic length, which reflects
the heterogeneous mesostructure of the material. It can be done by using the
Cosserat continuum [11, 12], applying the non-local theory in the integral [13, 14]
or gradient [5, 15] format or by adding viscous terms in the dynamics [16]. As
a second alternative description of cracks/shear zones, zero width displacement
jumps can be introduced. It can be achieved by inserting interface cohesive el-
ements [17, 18] or using strong discontinuity approach like the eXtended Finite
Element Method (XFEM) [19, 20].

In simulations of reinforced concrete specimens, two additional issues should
be also analysed. Firstly, the description of the interaction between concrete and
steel reinforcement bars has to be defined. Several so-called slip-bond laws are
available in the literature [21, 22]. Secondly, the complexity of failure mecha-
nisms and crack patterns has to be addressed. In simulations of plain concrete
structures only one failure mechanism is captured by a selected constitutive law
usually (e.g. cracks only). Additionally, in plain concrete specimens only one/few
independent cracks are formed usually. In RC elements several different failure
mechanisms can be observed: steel yielding, concrete cracking in tension, concrete
crushing in compression and shear failure modes with dominant normal diagonal
crack displacements (so-called shear-tension failure mode) or with simultaneous
significant normal and tangential diagonal crack displacements (so-called shear-
compression failure mode). Moreover, observed crack patterns are very complex,
cracks are not independent but they join/intersect. Smeared crack descriptions
are much better in handling these phenomena, so they are commonly used in nu-
merical simulations of RC specimens [23–25], while application of discrete cracks
to RC elements is less popular [26].

The goal of the present paper is to offer numerical simulations of the beam
response by the finite element (FE) model and to relate them to our laboratory
tests on reinforced concrete beams subjected to four-point bending (with respect
to strength and fracture) by taking different failure mechanisms into account.
Thus, the attention is given to confirm the ability of different available in liter-
ature FE-models to realistically evaluate the RC-beam’s load-bearing capacity
and to capture the evolution of cracks. This issue is in particular important since
there is still a lack of comprehensive research regarding to realistic modelling of
complex failure modes in RC structures. Moreover, finding the crucial compo-
nent of FE models driving the model performance in this field is still an open
question. Four different continuum constitutive laws with isotropic softening are
used: one defined within continuum damage mechanics, an elasto-plastic with
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the Rankine criterion in tension and the Drucker–Prager criterion in compres-
sion, a formulation coupling elasto-plasticity and damage mechanics and con-
crete damaged plasticity (CDP) model implemented in Abaqus. A comparison
of force-displacement curves and crack patterns between numerical and experi-
mental outcomes is performed.

The paper is organised as follows. After a short introduction (Section 1),
external laboratory tests, used to evaluate results of numerical calculations, are
described in Section 2. Next, the description of all constitutive laws utilised
in this study is presented. In addition, the strain localisation phenomenon is
introduced and the basic information on non-local theory is given. Results of
numerical calculations with a comparison with experimental outcomes is depicted
in Section 4. Finally, some conclusions are gathered in Section 5.

2. Experiment

2.1. Input data

As reference data, results of the experimental tests conducted at the Gdansk
University of Technology were taken [27]. The main goal of the experimental
campaign was to analyse the size effect phenomenon in RC beams scaled along
with the depth or the length. Four point bending tests were performed on beams
with longitudinal reinforcement and without (series S1 and S2) or with (series S3
and S4) transverse reinforcement (stirrups). In this paper, only series S1 and S2
are simulated (beams without stirrups). The thickness of all specimens was kept
constant and it was equal to t = 25 cm to eliminate the influence of hydration
heat.

In the series S1 beams were scaled along with the effective height D in the
proportion 1:2:4 (Fig. 1a). The effective height D was taken as 18 cm, 36 cm
and 72 cm for the beam denoted as S1D18a108, S1D36a108 and S1D72a108,
respectively. The span length leff was kept constant (leff = 2700 mm) and
the distance between the support and the force point (shear zone length) was
a = 108 cm. The shear slenderness defined as ηa = a/D was equal to 6, 3 and
1.5 for the effective height D taken as 18 cm, 36 cm and 72 cm, respectively. For
each geometry three specimens were tested.

In the series S2 the effective height was kept constant as D = 36 cm while the
shear span length a changed in the proportion 1:2:3 (Fig. 1b). Three geometries
were defined with the shear span a equal to 36 cm, 72 cm and 108 cm for the beam
denoted as S2D36a036, S2D36a072 and S2D36a108, respectively (in fact the
beam S2D36a108 was identical with the specimen S1D36a108). As a consequence,
the effective span length changed also. In this series only two specimens for each
geometry were tested.
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Fig. 1. Geometry and boundary conditions for the series S1 (a), series S2 (b) and cross
sections with reinforcement information (c).

The reinforcement ratio was the same for all geometries, ̺l = 1.4%. Ribbed
bars of diameter 20 mm were used. The number of bars depended on the effective
depth D. Two bars were placed in the beam S1D18a108, four bars – in the
beams S1D36a108, S2D36a72 and S2D36a72, and eight bars (in two rows) in
the beam S1D72a108. Details of the reinforcement arrangement can be seen in
Fig. 1c.
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2.2. Results

Several different failure mechanisms were observed in the experiments. The
beam S1D18a108 failed due to yielding of the longitudinal reinforcement. A sig-
nificant deflection was observed. The beam S1D36a108 failed in the so-called
diagonal shear-tension failure mode (dominant opening normal crack displace-
ments). The brittle and sudden failure mechanism was observed. The highest
beam S1D72a108 collapsed due to so-called diagonal shear-compression failure
(significant both tangential and normal crack displacements). Again brittle and
sudden failure mechanism was observed. The beam S2D36a36 was destroyed by
combined shear and compression. Two failure mechanisms were observed for the
geometry S2D36a72: the diagonal shear-tension failure mode in the first spec-
imen and diagonal shear-compression failure in the second specimen. Figure 2
presents the obtained crack patterns for all geometries. In the series S1 the nom-
inal shear strength τc (calculated as Vmax/tD, Vmax – maximum reaction force)

Fig. 2. Experimental crack patterns for the beam S1D18a108 (a), beam S1D36a108 (b),
beam S1D72a108 (c), beam S2D36a72 (d) and beam S2D36a36 (e) (red colour – critical

diagonal cracks; beams are not proportionally scaled).
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increased with increasing the effective height D but it decreased with increasing
the span ratio ηa. In the series S2 the nominal shear strength τc decreased with
the increasing the span length a.

3. Constitutive laws

3.1. Isotropic damage mechanics

The first constitutive law is defined within continuum damage mechanics.
A formulation proposed by Pereira et al. [28, 29] with some small modifica-
tions is used here. Between stresses σ and strains ε the following relationship is
postulated:

(3.1) σ = (1 −D)De
ε

where D
e is the elasticity matrix and D stands for a degradation parameter.

The parameter D is calculated as:

(3.2) D = 1 − (1 −Dt)(1 −Dc)

with parameters Dt and Dc to evaluate degradation in tension and compression,
respectively. They depend on state variables κt and κc defined at time t as:

(3.3) κt(t) = max{κt(τ), rαε̃t}, κc(t) = max{κc(τ), (1 − r)αε̃c}

where α is a coefficient (default value α = 0.1) and r is a triaxiality factor [30]:

(3.4) r(σ) =

∑〈σi〉
∑ |σi|

(symbol 〈σi〉 stands for a positive value of a principal stress σi and symbol |σi|
denotes an absolute value of a principal stress σi). Equivalent strain measures ε̃t
(in tension) and ε̃c (in compression) are defined as (after [31, 32]):

(3.5) ε̃t =
1

2

Iε1
1 − 2υ

+
1

2

√

3Jε2
1 + υ

, ε̃c =
1

5

Iε1
1 − 2υ

+
6

5

√

3Jε2
1 + υ

,

where Iε1 and Jε2 are the first invariant of the strain tensor and the second invari-
ant of the deviatoric strain tensor, respectively, and υ denotes Poisson’s ratio.
The evolution of the degradation parameter Dt (Dc) is described with an expo-
nential formula (i = t, c):

(3.6) Di = 1 − κi0
κi

(

1 − αi + αi exp(−βi(κi − κi0))
)

with parameters κi0, αi and βi (two sets in total). This is the only deviation from
the original model (a much more complex relationship was used in [28, 29]).
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3.2. Elasto-plasticity

The second constitutive law is defined within elasto-plasticity. In tension the
Rankine criterion with isotropic softening defines yielding of the material:

(3.7) ft = max{σ1, σ2, σ3} − σt(κt)

where σi – the principal stress, σt(κt) – the tensile yield stress and κt – the
hardening/softening parameter equal to the maximum principal plastic strain εp1.
The associated flow rule is assumed. The tensile yield stress can be defined as a
linear function, bilinear relationship [33], standard exponential formula or as an
exponential function proposed by Hordijk [34].

In compression the linear Drucker–Prager criterion with isotropic hardening
and softening is used with the following yield function:

(3.8) fc = q + p · tanϕ−
(

1 − 1

3
· tanϕ

)

σc(κc),

where q – the Mises equivalent deviatoric stress, p – the mean stress, ϕ – the
internal friction angle, σc(κc) – the compression yield stress (tabular data), κc –
the hardening/softening parameter equal to the maximum plastic vertical normal
strain during uniaxial compression |εp11|. The flow potential is defined as:

(3.9) gc = q + p tanψ

with the dilatancy angle ψ. Invariants q and p are defined as (sij is a deviatoric
stress tensor):

(3.10) q =

√

3

2
sijsij and p =

1

3
σkk.

More information about the formulation can be found in [35, 36].

3.3. Coupled formulation

The next constitutive law couples continuum damage mechanics with elasto-
plasticity [37–39]. The idea follows the proposal by Pamin and de Borst [8]. It is
based on the strain equivalence hypothesis. Elasto-plasticity is defined in effective
stress space. Rankine and Drucker–Prager criteria described in Section 3.1 are
utilised. The only difference is the definition of the yield functions σt and σc.
A linear hardening with the modulus equal to E/2 (E – Young’s modulus) is
assumed here for both criteria.

The softening of the material is described via isotropic damage with an equiv-
alent strain measure ε̃ defined in total strains taken after Mazars [4]:

(3.11) ε̃ =
√

∑

〈εi〉2
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where εi is a principal strain. The state variable κ and two additional quantities
κt and κc to describe stiffness degradation in tension and softening, respectively,
are defined:

(3.12) κ = max
τ≤t

ε̃(τ), κt = rκ, κc = (1 − r)κ.

The degradation parameter D is described via the formula:

(3.13) D = 1 − (1 − scDt)(1 − stDc)

where sc and st are splitting functions. The degradation parameter in tension
Dt is defined with Eq (3.6), state variable κt and parameters κ0, α and β.
The degradation parameter in compression is calculated using the relationship
(after [40]):

(3.14) Dc = 1 −
(

1 − κ0

κc

)(

0.01
κ0

κc

)η1

−
(

κ0

κc

)η2

exp(−δc(κc − κ0))

with parameters η1, η2 and δc. Note that the same value of κ0 is used to calculate
both degradation parameters Dt and Dc. Full description and more details of
the performance of the model can be found in [39].

3.4. Concrete damaged plasticity

As the last alternative, a constitutive law implemented in commercial pro-
gram Abaqus [41] was chosen. It is based on the model proposed by Lubliner

et al. [42] and later improved by Lee and Fenves [30]. A single yield envelope is
defined within effective stresses. Two hardening/softening parameters govern the
softening and/or hardening of the material in tension and compression. A non-
circular shape of the yield function on the deviatoric plane can be obtained by
taking the parameter K smaller than one. A hyperbolic Drucker-Prager function
defines the flow potential with an eccentricity ǫ. In addition, damage degrada-
tion can be activated independently of tension and compression yielding. The
detailed description of the model (with equations) can be found in [41].

3.5. Regularisation

Numerical simulations with classical continuum constitutive laws with soft-
ening do not produce reliable results. Obtained outcomes are mesh dependent
because the boundary value problem is ill-posed. In order to restore the well-
posedness of the boundary value problem information about a characteristic
length of the microstructure has to be added. One of the possibilities comes
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with the integral non-local theory. It replaces a local value of the variable con-
trolling the softening of the material by its non-local counterpart, calculated as
an averaged quantity over neighbours.

In calculations with the isotropic damage constitutive law (Section 3.1) equiv-
alent strain measures are averaged according to the formula:

(3.15) ε̄(x) =

∫

V
w(‖x − ξ‖)ε̃(ξ)dξ

∫

V
w(‖x − ξ‖)dξ

where x – a considered point and ξ – neighbour points. As a weighting function
w the Gauss distribution function is used:

(3.16) w(r) =
1

lc
√
π

exp

(

−
(

r

lc

)2)

where lc denotes the characteristic length of the microstructure. It should be
noted that in practise the averaging is restricted to the small area around the
considered point (the influence of neighbour points at the distance of r = 3×lc is
only 0.01%). Equation (3.15) is applied independently to average strain measures
ε̃t and ε̃c.

In calculations with elasto-plastic constitutive law (Section 3.2) softening
parameters in the Drucker–Prager (κc) and Rankine (κt) criteria are defined as
non-local (κ̄c, κ̄t) following Brinkgreve [43]:

(3.17) κ̄i(x) = (1 −m)κi(x) +m

∫

V
w(‖x − ξ‖)κi(ξ)dξ
∫

V
w(‖x − ξ‖)dξ

where m – the additional non-locality parameter. The parameter m has to be
greater than one to obtain mesh insensitive results.

In calculations with a coupled law (Section 3.3) only damage part is “made
non-local” because its mechanism is responsible for material softening. The elas-
to-plastic part produces no softening because it includes only hardening.

In calculations with concrete damaged plasticity model (CDP) (Section 3.4)
non-local theory cannot be applied. The CDP model is a built-in feature of the
Abaqus program without any modifiable features. Therefore a simpler technique
is used here: fracture energy regularization [44]. It means the definition of the
material in the softening regime should be scaled with respect to the size of a fi-
nite element. Additionally, Abaqus allows activating viscoplastic regularization
according to the Devaut-Lions approach by defining relaxation time µ. Similar
regularisation technique was used in [45].

4. Results

Numerical calculations are executed in Abaqus Standard commercial code.
In all numerical calculations the following elastic parameters are assumed [39]:
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Young’s modulus E = 34 GPa and Poisson’s ratio υ = 0.2. The tensile strength
is taken as ft = 3.2 MPa and the compressive strength is equal to fc = 61 MPa.
Plane strain conditions are assumed. The characteristic length in all simulations
with non-local constitutive laws is set to lc = 5 mm. In the calculations with an
isotropic damage constitutive law by Pereira and Sluys (Section 3.1, [28, 29])
the following material parameters are assumed (Eq. (3.6)): κt0 = 9.5 · 10−5,
αt = 0.98 and βt = 50 in tension and κc0 = 1.8 · 10−3, αc = 0.98 and βc = 50
in compression. In the elasto-plastic constitutive law with Drucker–Prager and
Rankine criteria (Section 3.2) the non-locality parameter m is taken as 2. In the
Rankine criterion an exponential softening is assumed with the fracture energy
GF = 100 N/m. In the Drucker–Prager criterion the tabular definition with the
hardening phase followed by the linear softening is declared. The friction angle
is equal to ϕ = 15◦ and the dilatancy angle is taken as ψ = 8◦ In the elasto-
plastic constitutive law coupled with damage (Section 3.3) formulated in [39]
the initial stress in elasto-plasticity is set to 3.3 MPa and 60 MPa in tension
and compression, respectively. The friction angle is equal to ϕ = 14◦ and the
dilatancy angle is taken as ψ = 8◦. The following set of parameters describes
the behaviour of the material in damage: κ0 = 9.5 · 10−5, α = 0.95, β = 85,
η1 = 1.15, η2 = 0.15 and δc = 150. The following parameters of the concrete
damaged plasticity model from Abaqus (Section 3.4) are assumed. In tension
a bilinear softening is defined with the fracture energy GF = 100 N/m. In the
compression criterion the tabular definition with the hardening phase followed by
the linear softening is declared. In addition the stiffness degradation is declared
in compression. The dilatation angle is taken as ψ = 38◦ (its physical interpre-
tation differs from the quantity used in the linear Drucker–Prager criterion, see
Sections 4.2 and 4.3). The default values are taken to the remaining parameters.
To facilitate simulations the viscosity is included with the relaxation time equal
to µ = 10−4 (the total simulation time is assumed as 1.0). For all constitutive
laws the parameters in softening are chosen in such a way to obtain similar val-
ues of the fracture energy in tension and the crushing energy in compression.
The perfect equivalence is impossible due to different relationships assumed in
the analysed models.

The FE mesh consisted of diagonally crossed three node (constant strain)
triangular elements and the size of 5 mm. Reinforced bars are modelled as truss
elements. Between steel bars and concrete cohesive interface elements are in-
serted with the slip-bond law proposed by Dörr [21]. He assumed the following
relationship between shear stress τ and slip δ:

(4.1) τ(δ) =











ft

[

5

(

δ

δu

)

− 4.5

(

δ

δu

)2

+ 1.4

(

δ

δu

)3]

0 ≤ δ < δu,

1.9ft δ > δu,
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Fig. 3. Boundary conditions and FE mesh for RC beams (diameter of small yellow circle is
related to characteristic length lc and diameter of larger yellow circle is related to influence

range of non-locality 3 × lc).

Fig. 4. Force-displacement curves obtained with the: isotropic damage model (a),
elasto-plastic model (b), coupled model (c) and concrete damaged plasticity model (d) for the

beam S1D18a108.
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where δu is a critical slip equal to 0.06 mm. The assumed boundary conditions
and the part of the defined FE-mesh is shown in Fig. 3.

4.1. Beam S1D18a108

First, the simulations for the specimen S1D18a108 are executed. Figure 4
presents force-displacement diagrams, while smeared crack patterns are shown
in Fig. 5. The isotropic damage model is not able to capture the behaviour of
the beam properly. It fails to reproduce the reinforcement yielding (no plateau
on the force-displacement diagram, Fig. 4a). Due to the premature failure, the
crack pattern is not developed and improper inclined cracks in the bending zone
next to the axis of symmetry appear (Fig. 5a). The remaining constitutive laws
reflect the experimentally observed failure mechanisms (yielding of the reinforce-
ment, Figs. 4b–4d). Moreover, good agreement of cracks patterns is obtained
(Figs. 5b–5d). Only for the concrete damaged plasticity law the crack pattern is
influenced by the FE mesh definition (inclined, not vertical cracks in the bend-
ing zone next to the axis of symmetry, Fig. 5d). Moreover, much more cracks
are created comparing to the simulations with other constitutive laws (the same
dense FE mesh is used). This remark applies to all results with the concrete
damaged plasticity model.

Fig. 5. Smeared crack patterns obtained with the: isotropic damage model (a), elasto-plastic
model (b), coupled model (c) and concrete damaged plasticity model (d) for the beam

S1D18a108.

4.2. Beam S1D36a108

The results for the specimen D1D36a108 are shown in Figs. 6 and 7 (force-
displacement curves and smeared crack patterns). All constitutive laws are able
to capture the failure mechanism properly (shear failure of concrete with the so-
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Fig. 6. Force-displacement curves obtained with the: isotropic damage model (a),
elasto-plastic model (b), coupled model (c) and concrete damaged plasticity model (d) for the

beam S1D36a108.

Fig. 7. Smeared crack patterns obtained with the: isotropic damage model (a), elasto-plastic
model (b), coupled model (c) and concrete damaged plasticity model (d) for the beam

S1D36a108.
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called diagonal tension failure mode dominated), although some discrepancies
are observed (Fig. 6). The isotropic damage law overestimates and the elasto-
plasticity model slightly overestimates the peak value. The same conclusion ap-
plies to the concrete damaged plasticity law from Abaqus. Moreover, almost no
softening is present (Fig. 6d). With respect to the crack pattern, the best agree-
ment is achieved with the elasto-plasticity and coupled models (Figs. 7b and 7c).
The isotropic damage law gives generally the proper cracks map, but the criti-
cal cracks are too steep (Fig. 7a). In the concrete damaged plasticity model the
critical cracks are not fully developed (Fig. 7d).

4.3. Beam S1D72a108

Next, the simulations for the specimen S1D72a108 are performed. Figure 8
presents force-displacement diagrams, while smeared crack patterns are shown in
Fig. 9. The maximum force obtained with the isotropic damage model (Fig. 8a)

Fig. 8. Force-displacement curves obtained with the: isotropic damage model (a),
elasto-plastic model (b), coupled model (c) and concrete damaged plasticity model (d) for the

beam S1D72a108.
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Fig. 9. Smeared crack patterns obtained with the: isotropic damage model (a), elasto-plastic
model (b), coupled model (c) and concrete damaged plasticity model (d) for the beam

S1D72a108.

is close to the smaller experimental value and the softening after the peak
is captured, but the curve is too stiff. There is no peak point on the force-
displacement diagram obtained with the elasto-plastic law (Fig. 8b). Only the
coupled model produces the force-displacement curve closed to the experimental
one (Fig. 8c). The concrete damaged model gives the too stiff response and it
overestimates the peak value (Fig. 8d), but the failure mechanism is properly
captured. All constitutive laws are able to properly reflect the experimental crack
pattern.
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4.4. Beam S2D36a72

The results for the specimen D2D36a36 are shown in Figs. 10 and 11
(force-displacement curves and smeared crack patterns). Although the peak
value obtained with the isotropic damage law is between experimental values
(Fig. 10a), the curve is significantly too stiff. The remaining models overestimate
the peak value, especially the elasto-plastic and concrete damaged plasticity ones
(Figs. 10b and 10d). Moreover these two laws give too stiff force-displacement
diagrams. The crack pattern for the isotropic model is not fully developed
(Fig. 11a). The elasto-plastic and coupled constitutive laws give results consis-
tent with experiment (critical cracks are clearly visible, Figs. 11b and 11c). The
calculated crack pattern with the concrete damaged plasticity model can be
accepted, however no dominant inclined localized zones are obtained (Fig. 11d).

Fig. 10. Force-displacement curves obtained with the: isotropic damage model (a),
elasto-plastic model (b), coupled model (c) and concrete damaged plasticity model (d) for the

beam S2D36a72.
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Fig. 11. Smeared crack patterns obtained with the: isotropic damage model (a),
elasto-plastic model (b), coupled model (c) and concrete damaged plasticity model (d) for the

beam S2D36a72.

4.5. Beam S2D36a36

Finally, simulations for the specimen S3D36a36 are performed. Figure 12
shows the force-displacement curves, while the crack patterns are depicted in
Fig. 13. The isotropic model underestimates the peak law and the curve is too
stiff. Also, too stiff response is obtained with the elasto-plastic law, but the peak
value is between the experimental values. Both coupled and concrete damaged
plasticity models return good force-displacement curves. Despite some discrep-
ancies on the force-displacement curves, all constitutive laws produce proper
crack patterns.

4.6. Other parameters

In addition, an influence of the mesh size on the results obtained with the
concrete damaged model (CDP) is investigated. Except for the fine mesh (FE size
5 mm) used in above-presented calculations, a coarse mesh is also defined with
the FE size equal to 1 cm. The FE size acts as a characteristic length, therefore
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Fig. 12. Force-displacement curves obtained with the: isotropic damage model (a),
elasto-plastic model (b), coupled model (c) and concrete damaged plasticity model (d) for the

beam S2D36a36.

the modification of the material definition is needed for CDP model. All softening
curves are scaled to keep the fracture energy in tension and the crushing energy
in compression unchanged. Obtained crack patterns are shown in Fig. 14. For
all specimens the same failure mechanism is obtained with both FE-meshes.
The coarse FE mesh gives wider cracks, but despite some minor differences, the
principal cracks are the same. The differences in maximum forces are smaller
than 5% for all beams, only for the specimen S1D36a108 larger discrepancy is
obtained (18%).

It should be also noted that the bond-slip law has a minor influence on the re-
sults when a realistic relationship between shear stress and relative displacement
along steel bars is assumed (especially its initial stiffness). Only when the initial
stiffness is unrealistically low, the smaller number of cracks is obtained [39].



Performance of isotropic constitutive laws. . . 211

Fig. 13. Smeared crack patterns obtained with the: isotropic damage model (a),
elasto-plastic model (b), coupled model (c) and concrete damaged plasticity model (d) for the

beam S2D36a36.

5. Conclusions

In the paper numerical simulations of the different failure mechanisms in
RC beams under four-point bending were presented. Four different constitutive
laws with isotropic softening were analysed: one defined within continuum dam-
age mechanics, an elasto-plastic with the Rankine criterion in tension and the
Drucker–Prager criterion in compression, a formulation coupling elasto-plasticity
and damage mechanics and the concrete damaged plasticity (CDP) model imple-
mented in Abaqus. Comparison of global quantities: force-displacement diagrams
and crack patterns was performed. Analysing the ability to properly capture the
failure mechanism the best results were obtained with both: the coupled elasto-
plastic model and the CDP model from Abaqus. The worst results were obtained
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Fig. 14. Smeared crack patterns obtained with the concrete damaged plasticity model with
dense (left hand side) and coarse (right hand side) mesh for beam: S1D18a108 (a),

S1D36a108 (b), S1D72a108 (c), S2D36a72 (d) and S2D36a36 (e).

with the isotropic damage model. However, the CDP model produced crack pat-
terns affected by the FE mesh definition, while the coupled model (especially)
and the elasto-plastic model gave more realistic maps.

These four constitutive laws share several components in their formulation
and it is desirable to identify the most critical ones. This is the topic of ongoing
research. The attention is focused on the analysis on the material point level
to get a better understanding of the performance of each constitutive law in
simulations of RC beams under mixed shear failure modes.
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