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A size-dependent Euler–Bernoulli beam model is derived within the frame-
work of the higher-order nonlocal strain gradient theory. Nonlocal equations of motion
are derived by applying Hamilton’s principle and solved with an analytical solution.
The solution is obtained using the Navier solution procedure. In the case of simply
supported boundary conditions, the analytical solutions of natural frequencies and
critical buckling temperature for free vibration problems are obtained. The paper
investigates the thermal effects on buckling and free vibrational characteristics of
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conditions. The obtained results are compared with previous research.
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1. Introduction

Functionally graded materials are a new class of composite materials,
which have recently been used in many studies. The properties of these materials
can vary along the beam length, when they are known as axially functionally
graded materials, or along the beam thickness. Material properties can also vary
in two directions, and such materials are known as bi–directional functionally
graded materials (BDFGM). The scientific community has been motivated to
conduct static and dynamic analysis of solid structural nanocomponents, such as
nanobeams, nanotubes, nanoplates or nanoshells. Nanostructures are commonly
used as components in electromechanical systems. The combination of those
fields is of particular interest.

There are various methods for static and dynamic analysis of nanostructures,
such as molecular dynamics simulations [1, 2] and non-classical continuum me-
chanics. Eringen’s nonlocal elasticity theory [3, 4] is one of the non-classical
continuum methods, which includes size-dependent effects, i.e. where stress at
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a reference point depends not only on the strain in this point but also on the
strain in other points in the nearby region. The gradient elasticity theories [5, 6]
are also examples of the non-classical continuum theories that can predict the
stiffness enhancement effect. Based on the gradient elasticity theories, materials
should be considered as atoms with a higher-order deformation mechanism at
a small scale.

Lim et al. [7] presented the higher-order nonlocal strain gradient theory start-
ing from the point of view that the length scale present in the nonlocal elasticity
and the strain gradient theory describe two entirely different physical character-
istics. The nonlocal elasticity theory does not include the nonlocality of a higher-
order stress. On the other hand, the strain gradient theory only considers local
higher-order strain gradients. The higher-order nonlocal strain theory is primar-
ily based on the nonlocal effects of the strain gradient field, i.e. nonlocal effects
in a global sense.

Thermal buckling of nanobeams has been the topic of many studies in the
past. Ebrahimi et al. [8] investigated the influence of thermal effect on free vi-
bration of functionally graded size-dependent nanobeams, using the differential
transform method (DTM). Ebrahimi et al. [9] showed the effect of buckling due
to the effect of a thermal load. An analytical solution was presented, where the
equation was given using Hamilton’s principle, based on the nonlocal third–order
shear deformation theory, with the material varying through the thickness of the
nanobeam. Also, the authors presented a different type of change in the critical
buckling load with the changes in the nonlocal parameter and the ratio of the
length and the thickness of the beam. Ebrahimi et al. [10] investigated thermal
buckling and free vibration of a Timoshenko, simply supported, FG nanobeam.
They used the classical nonlocal elasticity theory and obtained the solutions
analytically. This paper also provides the results on the change in the criti-
cal buckling load, with changes in temperature, material graduation and beam
thickness, as well as with a change in nonlocality parameters. The variation of
dimensionless frequencies with the variation of temperature and material grad-
uation was also considered. The consideration of the buckling characteristics of
an FG microbeam in thermal environment is given in the paper [11]. The beam
rested on a Pasternak type foundation, and apart from a thermal load, the beam
was also loaded with an axial load on both its left and right ends.

The influence of material porosity of a functionally graded beam, the ther-
mal effect and boundary conditions on the natural frequencies was investigated
by Ebrahimi et al. [12]. The governing equations of motions were derived by
applying Hamilton’s principle and the solution was obtained by the differen-
tial transform method (DTM). The dynamic behavior of smart nanostructures
was discussed by Ebrahimi and Barati [13]. They investigated the magneto–
electro–elastic effect on vibrations of an FG nanobeam, with various types of
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boundary conditions. Material properties were changed across the thickness of
the nanobeam. A refined shear deformation beam theory with the trigonometric
shear strain function was used.

Li et al. [14] studied the free vibration of the FG Timoshenko and Euler–
Bernoulli nanobeams based on the nonlocal strain gradient theory. Material
properties of the FG nanobeam depended on the through-thickness power-law
variation of the two materials. The authors investigated the effect of the power-
law and small length-scaled effect on natural frequencies of a simply supported
FG nanobeam. In this paper, comparisons of the natural frequencies of Timo-
shenko and Euler beams were performed. Khaniki et al. [15] considered the flex-
ural vibration of an Euler–Bernoulli nanobeam model, with the nonlocal strain
gradient theory. They investigated three different types of nonuniformity of the
nanobeam with variations in width and thickness. The results were obtained by
using the generalized differential quadrature method (GDQM). The influence of
dynamic instability of a Timoshenko FG nanobeam, with thermal and magnetic
loads, is given in the paper by Jalaei et al. [16]. Equations were derived by using
Hamilton’s principle, within the nonlocal strain gradient theory. Lu et al. [17]
studied the free vibration of the sinusoidal shear deformation of a nanobeam
model based on the nonlocal strain gradient theory. Navier’s method was uti-
lized to obtain analytical solutions for natural frequencies of simply supported
nanobeams.

Barati et al. [18] studied wave propagation of a porous double-nanobeam
system on an elastic substrate. They developed a general bi–Helmholtz nonlocal
strain–gradient elasticity model, where the equations were derived using Hamil-
ton’s principle, while the results were obtained analytically.

Based on the nonlocal strain gradient theory and various higher-order shear
deformation theories, Al-Shuajiri et al. [19] studied the buckling and free vibra-
tion of functionally graded sandwich micro-beams resting on an elastic founda-
tion. The authors reported on the effects of the nonlocal parameter, length scale
parameter, gradient index, different cross-section shapes, temperature change
and stiffnesses of Winkler and shear layer springs on the dimensionless critical
buckling load and dimensionless frequencies.

Within the framework of the nonlocal strain gradient theory, Čana–dija

et al. [20] investigated longitudinal and transversal displacement of a nanobeam
model, with a slope for different values of nonlocal parameters, with clamped
ends and in an inhomogeneous temperature field. The static problems of a nano-
beam model, for different boundary conditions, were investigated in Apuzzo

et al. [21]. They provided values of the maximum nondimensional deflection
for different values of nanoscale parameters. Barretta et al. [22] presented
a stress-driven nonlocal model for the structural analysis of a nanobeam model,
with reference to thermoelastic behavior. They presented a graph view of the to-
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tal axial deformation, for different values of the nonlocal parameter with uniform
and non-uniform temperature loads, for a beam with clamped ends.

Pavlović et al. [23, 24] studied a stability and instability problem of a nano-
beam subjected to a compressive axial load based on the higher-order nonlocal
strain gradient theory. According to the direct Lyapunov method, the authors
obtained the bounds of the almost sure asymptotic stability and instability, which
were verified by numerical results using the Monte Carlo simulation method.

In this paper, size-dependent Euler–Bernoulli nanobeam models, which ac-
count for through-thickness power-law variation of two-constituent FG materials,
are deduced within the framework of the higher-order nonlocal strain gradient
theory (HONSGT). This theory is employed to study the effects of buckling and
vibrational behavior of nanobeams in different thermal environments. Equations
of motion are derived using Hamilton’s principle. By employing an analytical
solution procedure, the closed-form critical buckling temperature and frequency
are obtained for simply supported boundary conditions. The obtained results
are compared with the literature to confirm the validity of the solution. The
influence of higher-order and lower-order nonlocal parameters and strain gradi-
ent scale on buckling and vibration are investigated. Finally, certain important
conclusions are summarized.

2. Mathematical model. Problem description

Consider a nanobeam of functionally graded material, where the graded prop-
erties are assumed to be in the through-thickness direction. The system of in-
terest is a rectangular functionally graded nanobeam of length L, width b and
thickness h (Fig. 1). The beam is subjected to an in-plane thermal loading,
where, according to the rule of mixture, the effective material properties Pf are
distributed as follows [25]

(2.1) Pf (T, z) = Pc(T )Vc(z) + Pm(T )Vm(z),

where the volume fraction of the ceramic Vc(z) and the volume fraction of the
metal Vm(z) constituents of the beam may be expressed using the power-law

Fig. 1. Geometry and coordinates of the functionally graded beam.
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distribution

(2.2) Vc(z) =

(

1

2
+
z

h

)p

, Vm(z) = 1 − Vc(z), −h
2
≤ z ≤ h

2
.

The temperature-dependent material properties (such as Young’s modulus
E, thermal expansion coefficient α, mass density ρ and thermal conductivity κ)
can be written as follows [26]

(2.3) P (T ) = P0(P−1T
−1 + 1 + P1T + P2T

2 + P3T
3),

where P0, P−1, P1, P2 and P3 are the coefficients that can be seen in the table
of material properties for Si3N4 and SUS304 (Table 1).

Table 1. Temperature-dependent coefficient of Young’s modulus E, thermal
expansion coefficient α, mass density ρ and thermal conductivity κ for Si3N4

and SUS304.

Material Properties P0 P−1 P1 P2 P3

Si3N4 E [Pa] 348.43e+9 0 −3.010e-4 2.160e-7 −8.946e-11

α [K−1] 5.8723e-6 0 9.095ee-4 0 0

ρ [kg/m3] 2370 0 0 0 0

κ [W/mK] 13.723 0 −1.032e-3 5.466e-7 −7.876e-11

SUS304 E [Pa] 201.04e+9 0 3.079e-4 −6.534e-7 0

α [K−1] 12.330e-6 0 8.086e-4 0 0

ρ [kg/m3] 8166 0 0 0 0

κ [W/mK] 15.379 0 −1.264e-3 2.092e-6 −7.223e-10

For the power-law distribution (2.2), the effective material properties are

(2.4) P (z, T ) = (Pc(T ) − Pm(T ))

(

z

h
+

1

2

)p

+ Pm(T ).

The bottom surface (z = −h/2) of the FG beam is pure metal (SUS304) and the
top surface (z = h/2) is pure ceramic (Si3N4).

3. The higher-order nonlocal strain gradient model for the FG

nanobeam

Based on the higher-order nonlocal strain gradient theory [7], the nonlocal
stress in a reference point x depends not only on the strain at that location but
also on the strains in all other points in the nearby region. According to this
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theory, the internal strain energy density function can be expressed as

U0 =
1

2
Cijklεij

∫

V

α0(|x− x′|, e0a)ε′kl dV
′(3.1)

+
l2

2
Cijklεij,m

∫

V

α1(|x− x′|, e1a)ε′kl,m dV ′,

where Cijkl is the elastic modulus tensor of classical elasticity, εij and ε′ij are the
Cartesian components of the strain tensor in points x and x′; α0 and α1 are the
kernel function related to the nonlocal effects with respect to the strain field and
the first order strain gradient field; e0and e1 are the nonlocal material constants,
ais the internal characteristic length and l is the strain gradient length scale
parameter.

By using Eq. (3.1), the classical stress tensor σ, the higher-order stress tensor
σ(1) and the total stress t can be written as follows

(3.2)

σ =

∫

V

α0(|x− x′|, e0a)C : ε′dV ′,

σ
(1) = l2

∫

V

α1(|x− x′|, e0a)C : ∇ε
′dV ′, t = σ −∇σ

(1).

In Eq. (3.2) the symbol “:” is used to denote the double-dot product. For an
elastic material in the one-dimensional case, the generalized nonlocal constitutive
relations in a differential form based on the higher-order nonlocal strain gradient
theory may be simplified as

(3.3)

(

1 − µ1
∂2

∂x2

)(

1 − µ0
∂2

∂x2

)

txx

= E

[(

1 − µ1
∂2

∂x2

)

− l2
(

1 − µ0
∂2

∂x2

)

∂2

∂x2

]

εxx,

where µ0 = (e0a)
2 and µ1 = (e1a)

2. The normal of the total stress tensor of the
nonlocal strain gradient theory are defined as

(3.4) txx = σxx − ∂σ
(1)
xx

∂x
,

where σxx is the classical normal stress component, σ(1)
xx is the higher-order nor-

mal stress component, εxx is the normal strain, E is Young’s modulus.
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It is worth mentioning that the integral formulation of the fully nonlocal
elasticity theory leads to problems. Romano et al. [27] showed that the inte-
gral presentation of the nonlocal elasticity theory has a unique solution only if
constitutive boundary conditions are satisfied. They also presented a paradox
of the transformation from the integral to the differential form of the nonlocal
model, for beam bending problems, where the solution of the bending moment
within the differential form framework should be checked in the integral formu-
lation. Barretta and Sciarra [28] applied constitutive boundary conditions
for a cantilever nanobeam, subjected to end-point loading. It should be noted
that a differential formulation of the nonlocal elasticity theory was used in that
paper.

4. Kinematic relations

The displacement components of any material point in the x, y and z direction
can be written as

qx = u(x, t) − z
∂w

∂x
,(4.1)

qz = w(x, t),(4.2)

where u and w are the displacement components of the mid-plane in the x and
z direction. Using Eqs. (4.1) and (4.2), the nonzero component of the beam is
obtained as

(4.3) εxx =
∂u

∂x
− z

∂2w

∂x2
,

The governing equations of motion are obtained based on Hamilton’s princi-
ple, which is expressed as

(4.4)

t2
∫

t1

(δU + δV − δK)dt = 0,

in a time interval t1 < t < t2. δU is the virtual strain energy

δU =

∫

v

(

σxxδεxx + σ(1)
xx

∂(δεxx)

∂x

)

dv(4.5)

=

∫

L

(

Nδ
∂u

∂x
−Mδ

∂2w

∂x2

)

dx+

[

N (1)δ
∂u

∂x
−M (1)δ

∂2w

∂x2

]L

0

.
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Here we consider the following stress resultant:

(4.6) N =

∫

A

txxdA, M =

∫

A

ztxxdA, N
(1) =

∫

A

σ(1)
xx dA, M

(1) =

∫

A

zσ(1)
xx dA,

variation of the work δV by thermal expansion

δV = −
∫

v

E(T, z)α(T, z)(T − T0)
∂w

∂x

∂

∂x
(δw)dv(4.7)

= −
L

∫

0

(

NT ∂w

∂x

∂

∂x
(δw)

)

dx,

where NT is the thermal resultant

(4.8) NT =

h/2
∫

−h/2

E(T, z)α(T, z)(T − T0)bdz,

and T0 = 300 K is the reference temperature.
δK is the virtual kinetic energy

δK =
1

2

∫

v

ρ(T, z)δ

((

∂qx
∂t

)2

+

(

∂qz
∂t

)2)

dv(4.9)

=

L
∫

0

(

I0

(

∂u

∂t
δ

(

∂u

∂t

)

+
∂w

∂t
δ

(

∂w

∂t

))

− I1

(

∂u

∂t
δ

(

∂2w

∂x∂t

)

+
∂2w

∂x∂t
δ

(

∂u

∂t

))

+ I2
∂2w

∂x∂t
δ

(

∂2w

∂x∂t

))

dx,

where the mass moments of inertia are defined as follows

(4.10) (I0, I1, I2) =

∫

A

(1, z, z2)ρ(z, T ) dA.

By substituting Eqs. (4.5), (4.7) and (4.9) into Eq. (4.4), using integration by
parts and setting the coefficients of δu and δw to zero, one obtains the following
governing equations of motion based on the Euler–Bernoulli beam theory

δu :
∂N

∂x
= I0

∂2u

∂t2
− I1

∂3w

∂x∂t2
,(4.11)

δw :
∂2M

∂x2
−NT ∂

2w

∂x2
= I0

∂2w

∂t2
+ I1

∂3u

∂x∂t2
− I2

∂4w

∂x2∂t2
,(4.12)
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with the classical boundary conditions (at x = 0 or x = L)

N = 0 or u = 0,(4.13)

∂M

∂x
− I1

∂2u

∂t2
+ I2

∂3u

∂x∂t2
= 0 or w = 0,(4.14)

M = 0 or
∂w

∂x
= 0,(4.15)

and the non-classical boundary conditions (at x = 0 or x = L)

N (1) = 0 or
∂u

∂x
= 0,(4.16)

M (1) = 0 or
∂2w

∂x2
= 0.(4.17)

Considering the above and integrating Eq. (3.3) over the beam’s cross-section,
the force-strain and moment-strain relation can be obtained as follows

(

1 − µ0
∂2

∂x2

)(

1 − µ1
∂2

∂x2

)

N(4.18)

= Axx

[(

1 − µ1
∂2

∂x2

)

− l2
(

1 − µ0
∂2

∂x2

)

∂2

∂x2

]

∂u

∂x

−Bxx

[(

1 − µ1
∂2

∂x2

)

− l2
(

1 − µ0
∂2

∂x2

)

∂2

∂x2

]

∂2w

∂x2
,

(

1 − µ0
∂2

∂x2

)(

1 − µ1
∂2

∂x2

)

M(4.19)

= Bxx

[(

1 − µ1
∂2

∂x2

)

− l2
(

1 − µ0
∂2

∂x2

)

∂2

∂x2

]

∂u

∂x

− Cxx

[(

1 − µ1
∂2

∂x2

)

− l2
(

1 − µ0
∂2

∂x2

)

∂2

∂x2

]

∂2w

∂x2
,

in which the cross-sectional rigidities are

(4.20) (Axx, Bxx, Cxx) =

∫

A

(1, z, z2)E(z, T ) dA.

We introduce the following dimensionless parameters

(4.21) ξ =
x

L
, U(ξ, τ) =

u(x, t)

L
, W (ξ, τ) =

w(x, t)

L
, τ =

t

L2

√

Ec(Tc)I

ρc(Tc)A
,

where Ec(Tc) and ρc(Tc) are Young’s modulus and the mass density of ceramic
Si3N4 at the temperature Tc, I = bh3/12 is the moment of inertia of the rectan-
gular cross-section of the beam and A = bh. The explicit relation of the nonlocal
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normal force and bending moment can be derived by substituting the second and
fourth derivatives of these values from Eqs. (4.11)–(4.12) into Eqs. (4.18)–(4.19)
as follows

N = Axx

{

L(3)

[

∂u

∂x
+ kB

∂2w

∂x2

]

+ kIL(2)

[

kI0
∂3u

∂x∂t2
− kI1

∂4w

∂x2∂t2

]}

,(4.22)

M = AxxL

{

L(3)

[

kB
∂u

∂x
− kC

∂2w

∂x2

]

(4.23)

+ L(2)

[

kN
∂2w

∂x2
+ kIkI0

∂2w

∂t2
+ kIkI1

∂3u

∂x∂t2
− kIkI2

∂4w

∂x2∂t2

]}

where the linear differential operators are

(4.24)
∇ =

∂

∂ξ
, L(0) = 1 − kµ0∇2, L(1) = 1 − kµ1∇2,

L(2) = kµ0 + kµ1 − kµ0kµ1∇2, L(3) = L(1) − klL(0)∇2

and the marks are

(4.25)

kB =
Bxx

AxxL
, kC =

Cxx

AxxL2
, kN =

NT

Axx
, kl =

l2

L2
, kµ0 =

µ0

L2
,

kµ1 =
µ1

L2
, kI =

I

AL2
, kI0 =

Ec(Tc)I0
ρc(Tc)Axx

,

kI1 =
Ec(Tc)I1
ρc(Tc)AxxL

, kI2 =
Ec(Tc)I2

ρc(Tc)AxxL2
.

Substituting the derivative for N and M from Eqs. (4.22)–(4.23) into Eqs.
(4.11)–(4.12), the nonlocal governing equations of the Timoshenko FG nanobeam
can be derived as follows

L(3)

[

∂2U

∂ξ2
− kB

∂3W

∂ξ3

]

− kIL(4)

[

kI0
∂2U

∂τ2
− kI1

∂3W

∂ξ∂τ2

]

= 0,(4.26)

L(3)

[

kB
∂3U

∂ξ3
− kC

∂4W

∂ξ4

]

(4.27)

− L(4)

[

kN
∂2W

∂ξ2
+ kI

(

kI0
∂2W

∂τ2
+ kI1

∂3U

∂ξ∂τ2
− kI2

∂4W

∂ξ2∂τ2

)]

= 0,

where L(4) = L(0)L(1) = 1 − L(2)∇2 = 1 − (kµ1 + kl)∇2 + kµ0kl∇4.

5. Temperature rise

In the case of a uniform temperature rise (UTR), the temperature of the FG
beam uniformly rises by ∆T . Since the temperature is constant in the z-direction,
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then

(5.1) T (z) = T0 + ∆T = const.

In the case of a linear temperature rise (LTR), the temperature of the FG
beam varies linearly along the thickness of the beam

(5.2) T (z) = Tm + ∆T

(

1

2
+
z

h

)

,

where the temperature of the top and the bottom surface of the nanobeam is,
respectively,

(5.3) Tc = T

(

h

2

)

, Tm = T

(

−h
2

)

,

where ∆T = Tc − Tm. In this paper, it is assumed that the temperature of the
bottom surface is Tm = T0 + 5 = 305 K.

In the case of heat conduction across the thickness, the temperature of the
FG nanobeam varies nonlinearly (NLTR) along the thickness of the beam. The
one-dimensional steady state heat conduction problem can be formulated by
a differential equation [29]

(5.4)
d

dz

(

κ(z, T )
dT (z)

dz

)

= 0,

where the known temperature boundary conditions on the bottom and the top
surface are given as in (5.3). In order to present an analytical solution for
Eq. (5.4), it is common to assume that thermal conductivity κ = κ(z) is in-
dependent of temperature. Taking this into account, the solution of Eq. (5.4)
can be obtained in a power series as follows

(5.5) T (z) = Tm +
∆T

λ

n
∑

i=0

1

ki+ 1

(

1

2
+
z

h

)ki+1(κm − κc

κm

)i

,

where

(5.6) λ =

n
∑

i=0

1

ki+ 1

(

κm − κc

κm

)i

.

6. Solution procedures

This section presents the analytical solutions for the vibration problem de-
scribed by Eqs. (4.26) and (4.27). The Navier solution approach is used to de-
termine the analytical solutions of vibration frequencies and critical buckling
temperature for simply supported boundary conditions.
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The displacement functions can be assumed to be periodic in time in the
form

U(ξ, τ) =

∞
∑

n=1

Un cos(nπξ)eiωnτ ,(6.1)

W (ξ, τ) =
∞

∑

n=1

Wn sin(nπξ)eiωnτ ,(6.2)

where i =
√
−1, Uj , Wj (j = 1, 2, . . . , n) are the unknown Fourier coefficients to

be determined for each n value and ωn is the frequency of vibration. It can be
checked that the series solution (6.1) and (6.2) satisfies the classical boundary
conditions (4.13)–(4.15) and non-classical boundary conditions (4.16) and (4.17).

Eliminating U from Eqs. (4.26)–(4.27), the governing differential equation
becomes

(6.3)

(

L(5)
∂4

∂τ4
+ L(6)

∂2

∂τ2
+ L(7)

)

W = 0,

where the linear differential operators are

L(5) = k2
I (β1∇2 − k2

I0)L2
(4),(6.4)

L(6) = kIL(4)(kI0L(3)∇2 − kNkI0L(4)∇2 − β2L(3)∇4),(6.5)

L(7) = L(3)(β3L(3)∇6 + kNL(4)∇4),(6.6)

and

(6.7) β1 = kI0kI2 − k2
I1, β2 = kI2 − 2kBkI1 + kCkI0, β3 = kC − k2

B.

Substituting Eq. (6.2) into Eq. (6.3), we get the following characteristic equa-
tion

(6.8) Aωω
4
n +Bωω

2
n + Cω = 0,

where

(6.9)

Aω = −α2
4k

2
I [β1n

2π2 + k2
I0],

Bω = α4kI [α3kI0n
2π2 + β2α3n

4π4 − kNkI0α4n
2π2],

Cω = α3n
4π4(kNα4 − α3β3n

2π2),

α0 = 1 + kµ0n
2π2, α1 = 1 + kµ1n

2π2, α2 = kµ0 + kµ1 + kµ0kµ1n
2π2,

α3 = α1 + klα0n
2π2, α4 = 1 + α2n

2π2.
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The smaller root (the eigenvalue λn = ω2
n) of Eq. (6.8) is

(6.10) ω2
n =

−Bω +
√

B2
ω − 4AωCω

2Aω
.

By setting the fundamental frequency ω1 to zero, we find the critical buckling
temperature ∆Tcr (for n = 1). This condition is satisfied if the coefficient Cω = 0.
After a simple transformation, we come to a relation among the parameters of
the system that meets the required condition

(6.11) kl =
1 + kµ1n

2π2

1 + kµ0n2π2

kN (1 + kµ0n
2π2) − β3n

2π2

β3n4π4
.

It is interesting that the parameters of the system (6.9) can be simplified to
certain interesting cases:

A. (Eringen’s nonlocal continuum theory – ENCT). In the case where the
strain gradient length scale (l = 0) and the nonlocal parameter (µ1 = 0) are zero
the parameters of system (55) are

(6.12)

Aω = − k2
I (1 + kµ0n

2π2)2[(kI0kI2 − k2
I1)n

2π2 + k2
I0],

Bω = kIn
2π2(1 + kµ0n

2π2)

× [(kI2 − 2kBkI1 + kDkI0)n
2π2 − kNkI0(1 + kµ0n

2π2) + kI0],

Cω = n4π4[kN (1 + kµ0n
2π2) − (kC − k2

B)n2π2].

By setting the strain gradient length scale (l = 0) and the nonlocal parameter
(µ1 = 0) to zero we can find the critical temperature ∆Tcr from Eq. (6.11) as
follows

(6.13) kµ0 =
n2π2(kC − k2

B) − kN

kNn2π2
.

In a special case of the homogenous beam

(6.14) kI0 = 1, kI1 = 0, kI2 = kC = kI , kB = 0,

where the smaller root is

(6.15) ω2
n =

1

1 + kµ0n2π2

n2π2
(

n2π2 − kN
AL2

I

)

1 + n2π2 I
AL2

.

B. (Classical continuum theory). In the case where the strain gradient length
scale (l = 0) and the nonlocal parameters (µ0 = 0, µ1 = 0) are zero the param-
eters of the system are

(6.16)

Aω = −k2
I [(kI0kI2 − k2

I1)n
2π2 + k2

I0],

Bω = kIn
2π2[(kI2 − 2kBkI1 + kCkI0)n

2π2 − kNkI0 + kI0],

Cω = n4π4[kN − (kC − k2
B)n2π2].
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By setting ω1 = 0, the critical buckling temperature ∆Tcr can be found if
the coefficient Cω = 0. In this case

(6.17) kN = n2π2(kC − k2
B).

In a special case of the homogenous beam, based on expressions (4.10), (4.20)
and (4.25), one can obtain,

(6.18) kI0 = 1, kI1 = 0, kI2 = kC = kI , kB = 0,

and the frequencies of the beam can be derived as follows

(6.19) ω2
n =

n2π2
(

n2π2 − kN
AL2

I

)

1 + n2π2 I
AL2

.

In a special case without thermal environment (kN = 0), it gets

(6.20) ω2
n =

n4π4

1 + n2π2 I
AL2

.

C. In the case where the strain gradient length scale (l=0) is zero the param-
eters of the system are

(6.21)

Aω = −k2
I (1 + kµ0n

2π2)2(1 + kµ1n
2π2)2[(kI0kI2 − k2

I1)n
2π2 + k2

I0],

Bω = kIn
2π2(1 + kµ0n

2π2)(1 + kµ1n
2π2)2

× [(kI2 − 2kBkI1 + kCkI0)n
2π2 − kNkI0(1 + kµ0n

2π2) + kI0],

Cω = n4π4(1 + kµ1n
2π2)2[kN (1 + kµ0n

2π2) − (kC − k2
B)n2π2].

It is noticeable that in this case the natural frequency does not depend on the
nonlocal parameters µ1, but only on the parameter µ0. By setting the strain
gradient length scale (l = 0) to zero we can find the critical temperature ∆Tcr

from Eq. (6.11) as follows

(6.22) kµ0 =
n2π2(kC − k2

B) − kN

kNn2π2
.

It is noticeable that in this case the critical temperature ∆Tcr does not depend
on the nonlocal parameters µ1, but only on the parameter µ0, and is the same
as the one we can determine from conditions (6.13) in case A.

D. (Lower-order nonlocal strain gradient theory – LONSGT). In the case
where the nonlocal parameters are equal (µ1 = µ0) the parameters of the system



G. Janevski, N. Despenić, I. Pavlović 153

are

(6.23)

Aω = −k2
I (1 + kµ0n

2π2)4[(kI0kI2 − k2
I1)n

2π2 + k2
I0],

Bω = kIn
2π2(1 + kµ0n

2π2)3[(kI2 − 2kBkI1 + kCkI0)(1 + kln
2π2)n2π2

− kNkI0(1 + kµ0n
2π2) + kI0(1 + kln

2π2)],

Cω = n4π4(1 + kµ0n
2π2)2(1 + kln

2π2)

× [kN (1 + kµ0n
2π2) − (kC − k2

B)(1 + kln
2π2)n2π2].

By setting µ1 = µ0we can find the critical temperature ∆Tcr from Eq. (6.11)
as follows

(6.24) kl =
kN (1 + kµ0n

2π2) − β3n
2π2

β3n4π4
.

In this case, when the ratio is lµ = l2/µ0 = l2/µ1 = 1, the parameters of the
system are

(6.25)

Aω = −k2
I (1+kµ0n

2π2)4[(kI0kI2−k2
I1)n

2π2+k2
I0],

Bω = kIn
2π2(1+kµ0n

2π2)4[(kI2−2kBkI1+kCkI0)n
2π2−kNkI0+kI0],

Cω = n4π4(1+kµ0n
2π2)4[kN−(kC−k2

B)n2π2],

and the natural frequency does not depend on the nonlocal parameters µ0 and
µ1, but also not on the strain gradient length scale l. The natural frequencies of
the system are equal to the frequencies for the case of the classical continuum
theory.

E. (Strain gradient theory). In the case where the nonlocal parameters are
zero (µ1 = µ0 = 0) the parameters of the system are

(6.26)

Aω = −k2
I [(kI0kI2 − k2

I1)n
2π2 + k2

I0],

Bω = kIn
2π2[(kI2 − 2kBkI1 + kCkI0)(1 + kln

2π2)n2π2

− kNkI0 + kI0(1 + kln
2π2)],

Cω = n4π4(1 + kln
2π2)[kN − (kC − k2

B)(1 + kln
2π2)n2π2].

By setting µ1 = µ0 = 0 we can find the critical temperature ∆Tcr from Eq.
(6.11) as follows

(6.27) kl =
kN − β3n

2π2

β3n4π4
.
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7. Results and discussion

This section examines the influence of temperature change, FG distribu-
tion and small-scale effect on the nondimensional natural frequencies. Varying
amounts of small-scale parameters are observed and the variations of the critical
buckling temperature and nondimensional natural frequencies with respect to
the variations of small-scale parameters are discussed. The functionally graded
nanobeam is composed of metal (SUS304) and ceramic (Si3N4), where its bottom
surface is pure metal and top surface is pure ceramic Nitride. The considered
beam has the following dimensions: length L = 10 nm, width b = 1 nm and
thickness h varies.

The validity of the proposed method is confirmed by comparing the obtained
results with the results from the literature [30]. A comparison of the dimension-
less natural frequencies for the SS nanobeam is shown in Table 2 for different
values of kµ0 = 0, 0.01, 0.02, temperature ∆T = 0, 20, 40 and for different values
of the gradient index p = 0.2, 1, 5.

Table 2. Comparison with [30] of the nondimensional fundamental frequency for
a SS FG nanobeam with various nonlocal parameters µ0, temperature and p.

kµ0
∆T [K]

p=0.2 p=1 p=5

[30] Present [30] Present [30] Present

0 0 8.6845 8.6846 7.0638 7.0638 6.0496 6.0497

20 8.3092 8.3151 6.6661 6.6708 5.6474 5.6514

40 7.9105 7.9157 6.2332 6.2374 5.2019 5.2054

0.01 0 8.2853 8.2853 6.7390 6.7391 5.7715 5.7716

20 7.8910 7.8966 6.3209 6.3254 5.3484 5.3522

40 7.4700 7.4750 5.8629 5.8668 4.8759 4.8792

0.02 0 7.9365 7.9365 6.4553 6.4554 5.5286 5.5286

20 7.5239 7.5292 6.0175 6.0218 5.0853 5.0889

40 7.0812 7.0859 5.5346 5.5382 4.5859 4.5890

The validation results of the present work are given in Table 2, which contains
the comparison with the results from paper [30]. The results are obtained from
Eq. (6.13), considering l = 0 and µ1 = 0. Papers, Ebrahimi et al. [8] and
Ebrahimi et al. [10], give the results that were solved for the case of variation
gradient indices p and nonlocal parameter µ0 on the critical buckling temperature
∆Tcr and dimensionless natural frequencies for a simply supported beam. This
paper shows the influence of the higher order nonlocal parameter µ1 and the
strain gradient length scale l.

The results presented in Tables 3–6. are the critical buckling temperature of
the simply supported FG nanobeam, with the results being presented through
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the variation of the nonlocal parameters and strain gradient scale (µ0 = 0, 1, 2, 3;
µ1 = 0, 1, 2, 3; l2 = 0, 1, 2, 3), with two different temperature rises: linear (LTR)
and nonlinear (NLTR). The results in the mentioned Tables show that an increase
in the strain gradient length scale influences an increase in the critical buckling
temperature.
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Fig. 2. Variation of the critical buckling temperature of the SS FG nanobeam with respect
to the nonlocal parameter µ0 for different values of the nonlocal parameter µ1, the strain

length scale l and LNR (p = 1, L/h = 50).

Figure 2 shows the dependence of the critical buckling temperature on the
nonlocal parameter µ0, for different values of the higher order nonlocal parameter
µ1 and the strain gradient length scale l and LONGST. It can also be concluded
that with an increase in the nonlocal parameter µ0, the critical buckling load
decreases. Figure 3 shows the dependence of the critical buckling temperature
on the nonlocal parameter µ1 for different values of the higher order nonlocal
parameter µ0 and LONGST. It can also be concluded that with an increase in
the nonlocal parameter µ1, the critical buckling load decreases. To have a better
understanding of this issue, variations of the critical buckling temperature of the
FG nanobeam are plotted in Fig. 4 with respect to increasing the strain length
scale and different values of the nonlocal parameters µ0 and µ1. Observing the
same figure, it can be noticed that the results are presented for different combi-
nations of the values of the nonlocal parameters µ0 and µ1. It can be concluded
that the highest value of the critical buckling force was obtained for the lowest
values of the nonlocal parameter (µ0 = 0, µ1 = 0), with the increasing strain
gradient length scale. It should also be noted that the results from Figs. 2–4
are obtained for the gradient index p = 1. For the same reason, Fig. 4 presents
the variations in the critical buckling temperature ∆Tcr with respect to the new



156 G. Janevski, N. Despenić, I. Pavlović

scale factor

(7.1) lµ =
l2

µ
,

for different values of the nonlocal parameter where µ = µ0 = µ1. It can be
concluded that the critical buckling temperature is smaller than the result of
the classical solution when the nonlocal parameter is smaller than the strain
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Fig. 3. Variation of the critical buckling temperature of the SS FG nanobeam with respect
to the nonlocal parameter µ1 for different values of nonlocal parameter µ0 and LNR (l2 = 2

nm2, p = 1, L/h = 50).
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to the strain length scale l for different values of the nonlocal parameter µ0, nonlocal

parameter µ1 and LNR (p = 1, L/h = 50).
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length scale (lµ < 1); the critical buckling temperature is larger than the result
of the classical solution when the nonlocal parameter is larger than the strain
gradient length scale (lµ > 1). When the nonlocal parameter is equal to the
strain gradient length scale lµ = 1, the critical buckling temperature is equal to
that of the classical solution. Also, when lµ = 0, the results are equal to those
from the nonlocal elasticity theory.
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Fig. 5. Variation of the critical buckling temperature of the SS FG nanobeam with respect
to ratio lµ, strain length scale for different values of the nonlocal parameters and LNR

(p = 1, L/h = 50, µ0 = µ1 = µ ).

Also, from Tables 3–6 it can be concluded that the critical buckling tempera-
ture decreases with an increase in the strain gradient length scale and the higher
order nonlocal parameter µ1. In the case where the strain gradient length scale is
zero, the higher order parameter does not have an effect on the critical buckling
temperature ∆Tcr.

As it can be seen, Tables 7–14 present the results of the nondimensional nat-
ural frequencies of the simply supported FG nanobeam, with Tables 7–10 pre-
senting the results with the linear temperature rise (LTR), while Tables 11–14
contain the results with the nonlinear temperature rise (NLTR). As was the case
with the critical buckling force, here presented is the dependence of the nondi-
mensional frequency change on the nonlocal parameters µ0 and µ1 as well as
the strain gradient length scale l. It should be noted that all results from the
tables are the results of the first natural frequencies, with a different gradient
index (p = 0.1, 1), and with different values of temperature (∆T = 20, 60 [K]).
It can be concluded that an increase in the strain gradient length scale l leads
to an increase in the nondimensional natural frequencies. Also, for small values
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Table 3. Nonlocality parameters and strain gradient length scale effects on the
critical buckling temperature ∆Tcr [K] of the SS FG nanobeam in the LTR case

when p = 0.1 and L/h = 50.

µ0 [nm2] µ1 [nm2]
l2 [nm2]

0 1 2 3

0

0 68.9262 76.4676 83.9636 91.4150

1 68.9262 75.7920 82.6202 89.4112

2 68.9262 75.2276 81.4971 87.7354

3 68.9262 74.7488 80.5443 86.3130

1

0 62.0220 69.6055 77.1428 84.6348

1 62.0220 68.9262 75.792 82.6202

2 62.0220 68.3586 74.6628 80.9352

3 62.0220 67.8772 73.7048 79.5051

2

0 56.2260 63.8453 71.4177 78.9441

1 56.2260 63.1628 70.0607 76.9203

2 56.2260 62.5925 68.9262 75.2276

3 56.2206 62.1089 67.9637 73.7908

3

0 51.2912 58.9412 66.5437 74.0996

1 51.2912 58.2559 65.1813 72.0679

2 51.2912 57.6834 64.0423 70.3686

3 51.2912 57.1978 63.0760 68.9262

Table 4. Nonlocality parameters and strain gradient length scale effects on the
critical buckling temperature ∆Tcr [K] of the SS FG nanobeam in the LTR case

when p = 1 and L/h = 50.

µ0 [nm2] µ1 [nm2]
l2 [nm2]

0 1 2 3

0

0 49.1109 54.8391 60.5418 66.2192

1 49.1109 54.3256 59.5191 64.6917

2 49.1109 53.8966 58.6644 63.4145

3 49.1109 53.5328 57.9394 62.3309

1

0 43.8746 49.6265 55.3524 61.0528

1 43.8746 49.1109 54.3256 59.5191

2 43.8746 48.6801 53.4674 58.2368

3 43.8746 48.3148 52.7395 57.1488

2

0 39.4848 45.2567 51.0024 56.7221

1 39.4848 44.7393 49.9720 55.1832

2 39.4848 44.3070 49.1109 53.8966

3 39.4848 43.9404 48.3804 52.8049

3

0 35.7514 41.5405 47.3031 53.0395

1 35.7514 41.0216 46.2697 51.4961

2 35.7514 40.5880 45.4060 50.2057

3 35.7514 40.2204 44.6735 49.1109
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Table 5. Nonlocality parameters and strain gradient length scale effects on the
critical buckling temperature ∆Tcr [K] of the SS FG nanobeam in the NLTR case

when p = 0.1 and L/h = 50.

µ0 [nm2] µ1 [nm2]
l2 [nm2]

0 1 2 3

0

0 69.8527 77.5239 85.1543 92.7448

1 69.8527 76.8365 83.7864 90.7032

2 69.8527 76.2621 82.643 88.9959

3 69.8527 75.775 81.673 87.547

1

0 62.8347 70.5435 78.211 85.8378

1 62.8347 69.8527 76.8365 83.7864

2 62.8347 69.2756 75.6875 82.071

3 62.8347 68.7861 74.7128 80.6152

2

0 56.9468 64.6876 72.3865 80.0441

1 56.9468 63.994 71.0064 77.9845

2 56.9468 63.4145 69.8527 76.2621

3 56.9468 62.923 68.8741 74.8004

3

0 51.9362 59.7046 67.4304 75.1145

1 51.9362 59.0085 66.0455 73.0478

2 51.9362 58.4269 64.8878 71.3195

3 51.9362 57.9337 63.9058 69.8527

Table 6. Nonlocality parameters and strain gradient length scale effects on the
critical buckling temperature ∆Tcr [K] of the SS FG nanobeam in the NLTR case

when p = 1 and L/h = 50.

µ0 [nm2] µ1 [nm2]
l2 [nm2]

0 1 2 3

0

0 51.4254 57.4813 63.5221 69.5481

1 51.4254 56.9379 62.4380 67.9256

2 51.4254 56.4800 61.5321 66.5698

3 51.4254 56.0992 60.7640 65.4198

1

0 45.9001 51.9700 58.0246 64.0641

1 45.9001 51.4254 56.9379 62.4380

2 45.9001 50.9704 56.0301 61.0791

3 45.9001 50.5847 55.2602 59.9266

2

0 41.2757 47.3575 53.4237 59.4747

1 41.2757 46.8118 52.3350 57.8455

2 41.2757 46.3560 51.4254 56.4840

3 41.2757 45.9695 50.6540 55.3293

3

0 37.3485 43.4404 49.5167 55.5774

1 37.3485 42.8938 48.4261 53.9456

2 37.3485 42.4373 47.5150 52.5820

3 37.3485 42.0501 46.7424 51.4254
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Table 7. Nonlocality parameters and strain gradient length scale effects on the
first nondimensional frequency ω1 in the LTR case when p = 0.1, L/h = 20,

∆T = 20 [K]. (Data [8]).

µ0 [nm2] µ1 [nm2]
l2 [nm2]

0 1 2 3

0

0 8.4722 (8.4634) 8.9058 9.3193 9.7152

1 8.4722 8.8678 9.2464 9.6101

2 8.4722 8.8358 9.1851 9.5215

3 8.4722 8.8087 9.1327 9.4457

1

0 8.0573 (8.0488) 8.5121 8.9438 9.3556

1 8.0573 8.4722 8.8678 9.2464

2 8.0573 8.4388 8.8038 9.1542

3 8.0573 8.4103 8.7492 9.0754

2

0 7.6936 (7.6854) 8.1687 8.6176 9.0443

1 7.6936 8.1272 8.5387 8.9313

2 7.6936 8.0923 8.4722 8.8358

3 7.6936 8.0626 8.4155 8.7541

3

0 7.4699 (7.3633) 7.8659 8.3311 8.7717

1 7.4699 7.8227 8.2495 8.6552

2 7.4699 7.7865 8.1806 8.5567

3 7.4699 7.7557 8.1219 8.4722

Table 8. Nonlocality parameters and strain gradient length scale effects on the
first nondimensional frequency ω1 in the LTR case when p = 1, L/h = 20,

∆T = 20 [K]. (Data [8]).

µ0 [nm2] µ1 [nm2]
l2 [nm2]

0 1 2 3

0

0 5.7117 (5.7114) 6.0106 6.2953 6.5676

1 5.7117 5.9844 6.2451 6.4953

2 5.7117 5.9624 6.2028 6.4344

3 5.7117 5.9436 6.1668 6.3822

1

0 5.4254 (5.4251) 5.7392 6.0367 6.3202

1 5.4254 5.7117 5.9844 6.2451

2 5.4254 5.6887 5.9403 6.1816

3 5.4254 5.6691 5.9026 6.1273

2

0 5.1742 (5.1737) 5.5024 5.8120 6.1059

1 5.1742 5.4737 5.7576 6.0281

2 5.1742 5.4496 5.7117 5.9624

3 5.1742 5.4291 5.6726 5.9060

3

0 4.9514 (4.9508) 5.2933 5.6144 5.9182

1 4.9514 5.2635 5.5581 5.8379

2 4.9514 5.2384 5.5106 5.7699

3 4.9514 5.2171 5.4701 5.7117
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Table 9. Nonlocality parameters and strain gradient length scale effects on the
first nondimensional frequency ω1 in the LTR case when p = 0.1, L/h = 20,

∆T = 60 [K].

µ0 [nm2] µ1 [nm2]
l2 [nm2]

0 1 2 3

0

0 8.1133 8.5669 8.9978 9.4089

1 8.1133 8.5272 8.9219 9.2999

2 8.1133 8.4938 8.8580 9.2078

3 8.1133 8.4655 8.8035 9.1291

1

0 7.6771 8.1551 8.6065 9.0354

1 7.6771 8.1133 8.5272 8.9219

2 7.6771 8.0782 8.4604 8.8259

3 7.6771 8.0484 8.4033 8.7438

2

0 7.2929 7.7945 8.2656 8.7113

1 7.2929 7.7507 8.1830 8.5935

2 7.2929 7.7140 8.1133 8.4938

3 7.2929 7.6828 8.0538 8.4084

3

0 6.9506 7.4751 7.9652 8.4268

1 6.9506 7.4295 7.8794 8.3050

2 6.9506 7.3912 7.8070 8.2018

3 6.9506 7.3586 7.7452 8.1133

Table 10. Nonlocality parameters and strain gradient length scale effects on the
first nondimensional frequency ω1 in the LTR case when p = 1, L/h = 20,

∆T = 60 [K].

µ0 [nm2] µ1 [nm2]
l2 [nm2]

0 1 2 3

0

0 5.3737 5.6917 5.9929 6.2796

1 5.3737 5.6639 5.9399 6.2037

2 5.3737 5.6405 5.8953 6.1395

3 5.3737 5.6207 5.8572 6.0846

1

0 5.0670 5.4031 5.7194 6.0192

1 5.0670 5.3737 5.6639 5.9399

2 5.0670 5.3491 5.6171 5.8729

3 5.0670 5.3281 5.5771 5.8154

2

0 4.7958 5.1496 5.4806 5.7928

1 4.7958 5.1188 5.4226 5.7103

2 4.7958 5.0929 5.3737 5.6405

3 4.7958 5.0709 5.3319 5.5807

3

0 4.5532 4.9245 5.2697 5.5936

1 4.5532 4.8923 5.2094 5.5082

2 4.5532 4.8652 5.1584 5.4358

3 4.5532 4.8422 5.1149 5.3737
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Table 11. Nonlocality parameters and strain gradient length scale effects on the
first nondimensional frequency ω1 in the NLTR case when p = 0.1, L/h = 20,

∆T = 20 [K]. (Data [8]).

µ0 [nm2] µ1 [nm2]
l2 [nm2]

0 1 2 3

0

0 8.4743 (8.4674) 8.9078 9.3212 9.7170

1 8.4743 8.8697 9.2483 9.4119

2 8.4743 8.8378 9.1869 9.5233

3 8.4743 8.8106 9.1346 9.4475

1

0 8.0594 (8.0532) 8.5141 8.9457 9.3574

1 8.0594 8.4743 8.8697 9.2483

2 8.0594 8.4408 8.8057 9.1561

3 8.0594 8.4124 8.7512 9.0773

2

0 7.6959 (7.6902) 8.1708 8.6196 9.0462

1 7.6959 8.1293 8.5407 8.9332

2 7.6959 8.0944 8.4743 8.8378

3 7.6959 8.0648 8.4175 8.7561

3

0 7.3736 (7.3685) 7.8681 8.3332 8.7737

1 7.3736 7.8250 8.2516 8.6572

2 7.3736 7.7887 8.1828 8.5587

3 7.3736 7.7579 8.1240 8.4743

Table 12. Nonlocality parameters and strain gradient length scale effects on the
first nondimensional frequency ω1 in the NLTR case when p = 1, L/h = 20,

∆T = 20 [K]. (Data [8]).

µ0 [nm2] µ1 [nm2]
l2 [nm2]

0 1 2 3

0

0 5.7185 (5.7124) 6.0170 6.3014 6.5735

1 5.7185 5.9908 6.2513 6.5013

2 5.7185 5.9689 6.2091 6.4404

3 5.7185 5.9502 6.1731 6.3883

1

0 5.4326 (5.4269) 5.7460 6.0431 6.3263

1 5.4326 5.7185 5.9908 6.2513

2 5.4326 5.6955 5.9468 6.1879

3 5.4326 5.6795 5.9092 6.1337

2

0 5.1817 (5.1764) 5.5094 5.8186 6.1123

1 5.1817 5.4807 5.7643 6.0345

2 5.1817 5.4567 5.7185 5.9689

3 5.1817 5.4363 5.6794 5.9126

3

0 4.9591 (4.9541) 5.3006 5.6213 5.9247

1 4.9591 5.2708 5.5650 5.8445

2 4.9591 5.2458 5.5176 5.7767

3 4.9591 5.2245 5.4771 5.7185
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Table 13. Nonlocality parameters and strain gradient length scale effects on the
first nondimensional frequency ω1 in the NLTR case when p = 0.1, L/h = 20,

∆T = 60 [K].

µ0 [nm2] µ1 [nm2]
l2 [nm2]

0 1 2 3

0

0 8.1210 8.5743 9.0048 9.4156

1 8.1210 8.5346 8.9289 9.3066

2 8.1210 8.5012 8.8651 9.2147

3 8.1210 8.4729 8.8107 9.1360

1

0 7.6853 8.1628 8.6138 9.0424

1 7.6853 8.1210 8.5345 8.9289

2 7.6853 8.0860 8.4678 8.8331

3 7.6853 8.0562 8.4107 8.7510

2

0 7.3015 7.8025 8.2732 8.7186

1 7.3015 7.7588 8.1906 8.6008

2 7.3015 7.7221 8.1210 8.5012

3 7.3015 7.6909 8.0615 8.4159

3

0 6.9595 7.4835 7.9731 8.4343

1 6.9595 7.4379 7.8873 8.3125

2 6.9595 7.3997 7.8151 8.2094

3 6.9595 7.3671 7.7532 8.1210

Table 14. Nonlocality parameters and strain gradient length scale effects on the
first nondimensional frequency ω1 in the NLTR case when p = 1, L/h = 20,

∆T = 60 [K].

µ0 [nm2] µ1 [nm2]
l2 [nm2]

0 1 2 3

0

0 5.3996 5.7162 6.0162 6.3019

1 5.3996 5.6885 5.9634 6.2262

2 5.3996 5.6652 5.9190 6.1622

3 5.3996 5.6454 5.8810 6.1075

1

0 5.0943 5.4288 5.7438 6.0424

1 5.0943 5.3996 5.6885 5.9634

2 5.0943 5.3751 5.6419 5.8966

3 5.0943 5.3542 5.6021 5.8394

2

0 4.8246 5.1765 5.5060 5.8168

1 4.8246 5.1459 5.4483 5.7347

2 4.8246 5.1202 5.3996 5.6652

3 4.8246 5.0983 5.3580 5.6057

3

0 4.5836 4.9527 5.3961 5.6185

1 4.5836 4.9206 5.2360 5.5335

2 4.5836 4.8937 5.1854 5.4614

3 4.5836 4.8708 5.1420 5.3996
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of the strain gradient scale, increasing the higher order nonlocal parameter µ1

has no effect on the change in the natural frequencies, contrary to the nonlo-
cal parameter µ0, as can be seen for the values of the strain gradient length
scale l = 0. Increasing the nonlocal parameter µ0 with the strain gradient length
scale l, leads to a decrease in the nondimensional natural frequencies. Also, an
increase in the strain gradient scale l and a higher order nonlocal parameter
µ1, have more influence on a decrease in the nondimensional natural frequen-
cies. To have a better understanding of this issue, variations of the frequency
ratio

(7.2) kωn =
ωn

ωnc
,

are plotted in Figs. 6–8 with respect to the nonlocal scale parameters µ0 for
different values of the strain length scale l and the nonlocal parameter µ1, where
ωn is the nondimensional frequency calculated using the nonlocal theory (for the
parameters of system (6.9)) and ωnc is the nondimensional frequency calculated
using the classical local theory (for the parameters of system (6.16)). This fre-
quency ratio can be used as an indicator that serves to quantitatively estimate
the effects of the nonlocal parameters µ0 and µ1 as well as the strain length scale
l on the vibration solution. From Figs. 6–8 it can be seen that the frequency ra-
tio is lower when l = 0 regardless of the values of the nonlocal parameters µ0

and µ1. Furthermore, the frequency ratio has higher values for higher frequen-
cies. It is also obvious that the frequency ratio decreases with an increase in the
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Fig. 6. Variation of the frequency ratio for the first nondimensional frequency of the SS FG
nanobeam with respect to the nonlocal parameter µ0 for different values of µ1 and l2 and

LNR (p = 1, L/h = 20).
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Fig. 8. Variation of the frequency ratio for the third nondimensional frequency of the SS FG
nanobeam with respect to the nonlocal parameter µ0 for different values of µ1 and l2 and

LNR (p = 1, L/h = 20).

nonlocal parameters and a decrease in the strain gradient length scale. In the
cases when the strain gradient length scale is zero, changing the values of the
higher order µ1 has no effect on the change in the frequency, as shown in the
tables.
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8. Conclusions

This paper investigates the thermal buckling and vibration of the FG nano-
beam subjected to different temperature distributions in the through-thickness
direction (LNR and NLTR). By using the variational approach, the equations
of motion are obtained based on the Euler–Bernoulli beam theory within the
framework of the higher-order nonlocal strain gradient theory. The effect of the
nonlocal parameters and strain gradient length scale on the critical buckling tem-
perature and nondimensional frequency is observed. Numerical results are pre-
sented for certain characteristics of the rectangular cross-section of the beam.
It is concluded that an increase in the nonlocal parameters will decrease the
critical buckling temperature and nondimensional frequency, while a decrease
in the strain gradient length scale will lead to a decrease in the critical buck-
ling temperature and nondimensional natural frequency. For small values of the
strain gradient scale, the dominant influence is exerted by the nonlocal parame-
ter, while for higher values, the dominant influence is shown by the higher-order
nonlocal parameter. If the nonlocal parameters are equal, then for the values of
the strain gradient scale that are smaller than the nonlocal parameter, the crit-
ical buckling temperature and nondimensional frequency are lower than in the
classical solution, and for the values of the strain gradient scale that are higher
than the nonlocal parameter, the critical buckling temperature and nondimen-
sional frequency are higher than in the classical solution. In the case when the
strain gradient length scale is zero, the higher-order nonlocal parameters prac-
tically have no effect on the critical buckling temperature and nondimensional
frequency.
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