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As a combination of the traditional finite element method and boundary
element method, the n-sided polygonal hybrid finite element method with funda-
mental solution kernels, named as HFS-FEM, is thoroughly studied in this work for
two-dimensional heat conduction in fully anisotropic media. In this approach, the
unknown temperature field within the polygon is represented by the linear combina-
tion of anisotropic fundamental solutions of problem to achieve the local satisfaction
of the related governing equations, but not the specific boundary conditions and
the continuity conditions across the element boundary. To tackle such a shortcom-
ing, the frame temperature field is independently defined on the entire boundary of
the polygonal element by means of the conventional one-dimensional shape function
interpolation. Subsequently, by the hybrid functional with the assumed intra- and
inter-element temperature fields, the stiffness equation can be obtained including the
line integrals along the element boundary only, whose dimension is reduced by one
compared to the domain integrals in the traditional finite elements. This means that
the higher computing efficiency is expected. Moreover, any shaped polygonal elements
can be constructed in a unified form with the same fundamental solution kernels, in-
cluding convex and non-convex polygonal elements, to provide greater flexibility in
meshing effort for complex geometries. Besides, the element boundary integrals en-
dow the method higher versatility with a non-conforming mesh in the pre-processing
stage of the analysis over the traditional FEM. No modification to the HFS-FEM
formulation is needed for the non-conforming mesh and the element containing hang-
ing nodes is treated normally as the one with more nodes. Finally, the accuracy,
convergence, computing efficiency, stability of non-convex element, and straightfor-
ward treatment of non-conforming discretization are discussed for the present n-sided
polygonal hybrid finite elements by a few applications in the context of anisotropic
heat conduction.
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1. Introduction

Heat conduction in fully anisotropic materials has received much more
attention in engineering, especially for the extensive applications of composite
materials, which generally consist of fillers and matrix materials and involve
complex microstructures. Although many attempts have been made in solving
anisotropic heat conduction by the theoretical methods [1–3], it is difficult to
deal with anisotropic structures with complex material definitions, boundary
shapes or boundary conditions. Accordingly, various numerical methods have
been resorted to for serving this purpose, including finite element method (FEM)
[4, 5], boundary element method (BEM) [6–9], meshless method [10–12], hy-
brid Trefftz element method (HT-FEM) [13, 14], scaled boundary finite element
method [15], etc.

Among various numerical methods, the FEM and BEM are the ubiquitous
choice to solve such boundary-value problems in anisotropic solids. For the FEM,
the unitary polynomial interpolation of temperature variable is introduced over
the entire element level, instead of the whole solution domain, so that it can
be applied for multi-material issues flexibly. However, to meet the conforming
requirements, the construction of shape functions becomes tedious and generally
different types of elements require different forms of shape functions. Besides, the
time-consuming domain integration is unavoidable. Moreover, the model having
local holes, cracks, or concentrated heat sources needs mesh refinement, which
leads to a significant increase in the amount of calculation of the model. Such
limitations are encountered to the recently developed polygonal finite elements
too [16–18]. For the BEM, the complex theory background such as the derivation
of boundary integral equation from Green’s second identity is required. More-
over, it easily encounters difficulties in dealing with singular and super singular
integrals. Besides, the final solution matrix is full, so the computational efficiency
issue becomes considerable for problems with a large amount of local defects or
multiple material constituents.

Typically, as a hybrid method combining the advantages of FEM and BEM,
the hybrid finite element formulation with approximating kernels of fundamen-
tal solutions of a problem, named as HFS-FEM in literature [19], has been ex-
tensively developed for isotropic thermal and elastic analyses [20–27]. In the
HFS-FEM, the fundamental solutions at different source points are employed
as kernel functions for approximating the element interior field, which exactly
satisfies the corresponding governing equations, but not the specific boundary
conditions and the interfacial continuity conditions across the element boundary.
To enforce them, a conforming approximation with conventional shape functions
is independently defined along the element boundary. The substitution of them
into the hybrid functional in a weak form leads to the element stiffness equation,



n-sided polygonal hybrid finite elements. . . 111

which includes element boundary integrals only in computation. Obviously, the
integration dimension is reduced by one compared to the domain integrals in the
traditional finite elements. More importantly, the element boundary integration
strategy makes that hybrid element with any numbers of sides (n-sided polyg-
onal element) can be constructed in a unified form with the same fundamental
solution kernels, including convex and non-convex polygonal elements, to provide
great flexibility in automatic meshing manipulation to complex geometries. Be-
sides, the element boundary integrals endow the method higher versatility with
non-conforming mesh in the pre-processing stage of analysis, compared to the
FEM. This appealing feature is beneficial to adaptive mesh refinement, where
a straightforward subdivision of individual polygonal element usually results in
hanging nodes, as displayed in Fig. 1. A non-conforming mesh containing hang-
ing nodes can be handled in the HFS-FEM in a straightforward way, because the
HFS-FEM simply interprets a hanging node in a non-conforming mesh as a divi-
sion of an edge, and as a result, the number of edges in the element sharing this
node increase by one. This operation requires no modification to the HFS-FEM
formulation and the element is treated normally. More important, the special
fundamental solutions satisfying the local constraints can be used to construct
specially-purposed elements, i.e. special hole element, special inclusion element,
as illustrated in [20, 22, 23, 25], which can extremely reduce the meshing and
computing effort around the local defects.

Fig. 1. Schematic of subdivision of a polygonal element with hanging nodes.

It is worth pointing out that the HFS-FEM formulation is different from
the HT-FEM, which uses a series of T-complete solutions satisfying the gov-
erning equation of the problem to represent the interior approximation [28–33].
However, it is observed that the required T-complete solutions are difficult to
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be derived for most of physical problems. Moreover, T-complete functions typi-
cally are power functions of the distance variable r, so the exponential growth of
T-complete functions will commonly give an ill-conditioned system of equations.

In this paper, a two-dimensional steady-state heat conduction in fully aniso-
tropic solids is extendedly studied using the n-sided polygonal hybrid finite ele-
ment method with flexible conforming or non-conforming, convex or non-convex
polygon discretization. The main novelty of this work comes from the employ-
ment of the anisotropic fundamental solutions to achieve the exact satisfaction of
the anisotropic governing equations of heat conduction, and then the one-dimen-
sional line integrals over the element boundary for the computation of element
stiffness matrix, which greatly serve the construction of arbitrarily shaped polyg-
onal element and the improvement of computational efficiency. Also, the role of
polygon-shaped hybrid finite elements would be strengthened in the analysis by
the simple and straightforward refinement manipulation, as shown in Fig. 1. Be-
sides, it is worth noting that the present method can be easily adapted for the
three-dimensional problems in the same theoretical framework given that the
three-dimensional fundamental solutions and the two-dimensional shape func-
tions are introduced for approximating the intra- and inter-element fields, re-
spectively. As a result, the two-dimensional area integrals along the element
boundary are involved for computing the element stiffness matrix.

The paper is organized as follows: in Section 2, the basic equations of aniso-
tropic heat conduction including the governing equations and the fundamental
solutions are briefly reviewed, and then the n-sided element construction over
arbitrary polygons is described in Section 3. In Section 4, three examples are
numerically solved by the present element to address the computing properties
of the present element. Finally, some conclusions are presented in Section 5.

2. Basic equations of anisotropic heat conduction

2.1. Governing equations

Consider a bounded domain Ω with boundary Γ in two-dimensional space
R

2 with refer to a Cartesian coordinate system ox1x2, as shown in Fig. 2. The
generalized partial differential equation governing steady-state heat conduction
behavior at arbitrary point x = (x1, x2) ∈ Ω in homogeneous anisotropic solids
is expressed as

(2.1) k11
∂2T (x)

∂x2
1

+ 2k12
∂2T (x)

∂x1∂x2
+ k22

∂2T (x)

∂x2
2

= 0

where T is the unknown temperature variable. kij > 0 denote the general
anisotropic thermal conductivities satisfying the Onsager symmetry relation
k12 = k21 and the positive definite condition Λ = k11k22 − k2

12 > 0.
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To keep the problem solvable, the following boundary conditions are consid-
ered

(2.2)











T = T̄ on ΓT ,

qn = q̄ on Γq,

qn = hc(T − Tc) on Γc

where qn denotes the normal heat flux defined on the boundary. T̄ and q̄ are spec-
ified values given on the temperature boundary ΓT and the heat flux boundary
Γq, respectively. Γc is the convection boundary part, and hc denotes the con-
vection coefficient, Tc is the surrounding temperature. ΓT ∪ Γq ∪ Γc = Γ and
ΓT ∩ Γq = ∅, Γq ∩ Γc = ∅, ΓT ∩ Γc = ∅.

Based on Fourier’s law, the heat flux components qi (i = 1, 2) at the arbitrary
point x can be defined as

(2.3)

{

q1(x)
q2(x)

}

= −
[

k11 k12

k12 k22

]















∂T (x)

∂x1

∂T (x)

∂x2















,

so that the normal heat flux can be given by

(2.4) qn(x) ≡ q1(x)n1 + q2(x)n2 = −{n1 n2}
[

k11 k12

k12 k22

]















∂T (x)

∂x1

∂T (x)

∂x2















where ni are components of the unit outward normal vector n to the boundary,
as indicated in Fig. 2.

Fig. 2. Schematic of anisotropic heat condition in a bounden domain.
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Particularly, for orthotropic materials with two principal directions, which
have a ply angle θ to the global x1-axis, as depicted in Fig 2, the relation be-
tween the orthotropic parameters ki (i = 1, 2) and the generalized anisotropic
parameters kij (i, j = 1, 2) can be given by [34]

(2.5)

[

k11 k12

k12 k22

]

=

[

cos θ sin θ
− sin θ cos θ

]T [

k1 0
0 k2

] [

cos θ sin θ
− sin θ cos θ

]

or

(2.6)

[

k1 0
0 k2

]

=

[

cos θ sin θ
− sin θ cos θ

] [

k11 k12

k12 k22

] [

cos θ sin θ
− sin θ cos θ

]T

.

2.2. Anisotropic fundamental solutions

For two-dimensional heat conduction in a fully anisotropic material with
thermal conductivities kij (i, j = 1, 2), the temperature fundamental solution of
the problem is defined as the induced temperature response at arbitrary field
point x in an infinite two-dimensional space R

2 when a unit point heat source is
applied at a source point y ∈ R

2. This means that the caused temperature distri-
bution represented as T ∗(x,y) is the solution of the following partial differential
equation

(2.7) k11
∂2T ∗(x,y)

∂x2
1

+ 2k12
∂2T ∗(x,y)

∂x1∂x2

+ k22
∂2T ∗(x,y)

∂x2
2

+ δ(x,y) = 0, x,y ∈ R
2

where δ(x,y) is Dirac’s delta function satisfying the following property

(2.8)
∫

Ω

h(x)δ(x,y)dΩ =

{

h(y) for y ∈ Ω,

0 for y /∈ Ω.

Obviously, the temperature solution of Eq. (2.7) is defined everywhere except
when the source point y coincides with the field point x, where it is singular.
Thus the source point y is sometimes called the singularity. In order to obtain
this solution, the Fourier transform or Radon transform can be applied on both
sides of Eq. (2.7), and the concentrated excitation is reproduced by the contour
integral in the neighborhood of the source point y [35, 36]. As a result, the
temperature fundamental solution can be written as

(2.9) T ∗(x,y) = − 1

2π
√

Λ
lnR
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in which R is the geodesic distance between x and y

(2.10) R =
√

k22r21 − 2k12r1r2 + k11r22

with ri = xi − yi (i = 1, 2) and y = (y1, y2).
Subsequently, the derivatives of the induced temperature field can be given

by

(2.11)

∂T ∗(x,y)

∂x1
= − 1

2π
√

Λ

k22r1 − k12r2
R2

,

∂T ∗(x,y)

∂x2
= − 1

2π
√

Λ

k11r2 − k12r1
R2

,

from which the induced heat flux components can be written as

(2.12)

{

q∗1(x,y)
q∗2(x,y)

}

= −
[

k11 k12

k12 k22

]















∂T ∗(x,y)

∂x1

∂T ∗(x,y)

∂x2















=

√
Λ

2πR2

{

r1
r2

}

.

Particularly, the temperature fundamental solution (2.9) can reduce to the
orthotropic and isotropic cases by simply setting k11 6= k22, k12 = 0 and k11 =
k22, k12 = 0, respectively.

3. Hybrid finite element formulation

In this section, the n-sided polygonal element (n ≥ 4) is first used to solve
the general anisotropic heat conduction problem. To achieve polygonal mesh di-
vision of a given domain, the Voronoi diagram can be employed. The Voronoi
diagram is a fundamental polygonal geometrical subdivision of a given region,
where the point set with more nearest neighbors can make up the vertices of the
diagram [37, 38]. The quality of the generated polygonal mesh strongly depends
on the distribution of scattered seeding points. In order to improve the quality
of polygonal mesh to increase the accuracy of the solution, the centroidal Vornoi
technique [39, 40] can be used, in which the seed point generating each Voronoi
cell can be used as its center of mass. Figure 3 displays a polygonal mesh gen-
erated by the centroidal Vornoi technique in a complex L-shaped domain. For
a particular polygonal element e displayed in Fig. 3, we need separately define
an internal temperature field, a frame temperature field and a hybrid variation
functional at element level.
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Fig. 3. Temperature approximations for a hybrid finite element.

3.1. Internal temperature field

The internal temperature field, also named as intra-element temperature field
defined inside the element e, can be approximated by the linear combination of
fundamental solutions with different source points yi (i = 1, . . . ,m), that is

(3.1) T (x) =
m

∑

i=1

ciT
∗(x,yi) = N(x)ce, x ∈ Ωe/Γe, yi /∈ Ωe

where m is the number of source points locating outside the element domain,
ci presents an unknown coefficient, T ∗(x,yi) is the temperature fundamental
solution, and

(3.2) N(x) = {T ∗(x,y1) T
∗(x,y2) . . . T

∗(x,ym)}, ce = {c1 c2 . . . cm}T.

Next, differentiating the temperate field in Eq. (3.1) yields the following
expression of the normal heat flux

(3.3) qn(x) = Q(x)ce
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where

(3.4) Q(x) = −{n1 n2}
[

k11 k12

k21 k22

]









∂N(x)

∂x1

∂N(x)

∂x2









with

(3.5)
∂N(x)

∂xi
=

{

∂T ∗(x,y1)

∂xi

∂T ∗(x,y2)

∂xi
. . .

∂T ∗(x,ym)

∂xi

}

, (i = 1, 2).

3.2. Frame temperature field

It is observed that the internal temperature approximation (3.1) is chosen
so as to a priori satisfy the governing partial differential Eq. (2.1) inside the
element domain. However, it is non-conforming across the inter-element bound-
ary. To overcome this drawback, in this study, the hybrid technique is employed.
In this technique, the element e is linked to adjacent elements through an aux-
iliary conforming frame field independently defined on the element boundary
which has the same form as in the conventional FEM and BEM. Here, the frame
temperature field T̃ is given by

(3.6) T̃ (x) = Ñ(ξ)de, x ∈ Γe

where Ñ(x) = [Ñ1(ξ) Ñ2(ξ) . . . Ñp(ξ)] is the shape function vector, de =
[T1 T2 . . . Tp]

T is the nodal temperature vector, p represents the number of
nodes for the polygonal element, and −1 ≤ ξ ≤ 1 is the local natural coordinate,
which is related to the global coordinate x on the element edge by the following
expression in matrix form

(3.7) x(ξ) = Ñ(ξ)xe, x ∈ Γe

where xe is the nodal coordinate matrix

(3.8) xe =











xT
1

xT
2
...

xT
p











=











x11 x12

x21 x22
...

...
xp1 xp2











and x = [x1 x2]
T, xi = [xi1 xi2]

T.
For the n-sided polygonal element with n edges and p nodes, if there are two

nodes on each edge, we have p = n. For such a case, the linear interpolation
scheme is employed. For example, when the boundary point x locates on the ith
edge (i = 1, . . . , n− 1),

(3.9) Ñi(ξ) = Ñ1(ξ), Ñi+1(ξ) = Ñ2(ξ), Ñj(ξ) = 0 (j 6= i, i+ 1)
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when the boundary point x locates on the nth edge,

(3.10) Ñn(ξ) = Ñ1(ξ), Ñ1(ξ) = Ñ2(ξ), Ñj(ξ) = 0 (j 6= n, 1)

where Ñi (i = 1, 2) stand for the conventional one-dimensional shape functions
expressed in terms of the local natural coordinate ξ, that is

(3.11) Ñ1(ξ) =
1 − ξ

2
, Ñ2(ξ) =

1 + ξ

2
(−1 ≤ ξ ≤ 1).

Certainly, a more accurate approximation of the frame temperature solution
can be taken in Eq. (3.6) by quadratic shape functions on each element edge [19].

3.3. Element stiffness equation

To enforce the inter-element continuity, the following double-variable hybrid
functional for the element e is defined by an integral form

(3.12) Πe = −1

2

∫

Ωe

[

k11

(

∂T

∂x1

)2

+ 2k12
∂T

∂x1

∂T

∂x2
+ k22

(

∂T

∂x2

)2]

dΩ

−
∫

Γqe

q̄T̃dΓ +

∫

Γe

qn(T̃ − T )dΓ − 1

2

∫

Γce

h∞(T̃ − T∞)2dΓ

where Γqe = Γq ∩ Γe and Γce = Γc ∩ Γe are element segments related to the
normal heat flux and convection.

With the Gauss divergence theorem

(3.13)
∫

Ω

∂f

∂xi
dΩ =

∫

Γ

fnidΓ (i = 1, 2)

for any smoothed function f , the hybrid functional (3.12) can be simplified as

(3.14) Πe =
1

2

∫

Ωe

(

k11
∂2T

∂x2
1

+ 2k12
∂2T

∂x1∂x2
+ k22

∂2T

∂x2
2

)

TdΩ

−
∫

Γqe

q̄T̃dΓ − 1

2

∫

Γe

qnTdΓ +

∫

Γe

qnT̃dΓ − 1

2

∫

Γce

h∞(T̃ − T∞)2dΓ

which can be reduced to

(3.15) Πe = −1

2

∫

Γe

qnTdΓ −
∫

Γqe

q̄T̃dΓ +

∫

Γe

qnT̃dΓ − 1

2

∫

Γce

h∞(T̃ − T∞)2dΓ
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by considering the fact that the approximated internal temperature field priori

satisfies the governing equation.
Then, the substitution of Eqs. (3.1) and (3.6) into Eq. (3.15) yields

(3.16) Πe = −1

2
cT

e Hece − dT
e ge + cT

e Gede −
1

2
dT

e Fede + dT
e fe − ae

with

(3.17)

He =

∫

Γe

QTNdΓ, Ge =

∫

Γe

QTÑdΓ, ge =

∫

Γqe

ÑTq̄dΓ

Fe =

∫

Γce

h∞ÑTÑdΓ, fe =

∫

Γce

h∞T∞ÑTdΓ, ae =

∫

Γce

h∞T
2
∞

2
dΓ

which can be evaluated by the standard one-dimensional Gaussian quadrature
rules along the element boundary.

The minimization of the hybrid functional Πe with respect to ce and de

respectively leads to

(3.18)

∂Πe

∂cT
e

= −Hece + Gede = 0,

∂Πe

∂dT
e

= GT
e ce − ge − Fede + fe = 0

from which one obtains the optional relationship between ce and de for the
enforcement of inter-element continuity on the common element boundary

(3.19) ce= H−1
e Gede

and the element stiffness equations

(3.20) kede= ge − fe

where ke= GT
e H−1

e Ge − Fe is the symmetric element stiffness matrix.
Assembling the element stiffness equation (3.20) can give the final global

stiffness equation with symmetric and sparse coefficient matrix, which can be
solved for determining the nodal temperature vector de after the specific nodal
temperature constraint is introduced. Furthermore, the unknown coefficients ce

can be obtained using Eq. (3.19).

3.4. Recovery of constant temperature mode

However, it is noticed that the constant temperature mode associated with a
vanishing heat flux is fully discarded from the fundamental solution so that the
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matrix He is of full rank and keeps invertible [37]. Therefore, the temperature at
any point inside the element e cannot be evaluated directly by Eq. (3.1). Here,
to recover the discarded term in each element, Eq. (3.1) is modified as by adding
a constant term c0

(3.21) T (x) = N(x)ce + c0

Following the general treatment in [41], the least square matching of T and
T̃ at n element nodes gives

(3.22)
n

∑

i=1

(Nce + c0 − T̃ )2
∣

∣

node i
= min

from which the stability term c0 can be determined as

(3.23) c0 =
1

n

n
∑

i=1

(T̃ − Nce)
∣

∣

node i
.

3.5. Generation of source points

From Eq. (3.20), it is observed that the inverse of the matrix He has to
be evaluated in the computation of the elementary stiffness matrix Ke, The
necessary condition for the matrix He to be of full rank is that the number of
approximating kernels in Eq. (3.1) should satisfy the following condition

(3.24) m ≥ ndof − 1

where ndof is the total number of degrees of freedom of the polygonal element,
which is specially equal to the number of nodes p of the element for the heat
conduction problem.

Practically, an optimal number of source points are chosen based on the
number of nodes p of the polygonal element, that is m = p, so that the rank
condition (3.24) can be automatically achieved for the heat conduction problem.
For such a typical case, as indicated in Fig. 4, the simplest way to generate these
source points is

(3.25) yi = xb
i + γ(xb

i − xc), i = 1, . . . , p

where xb
i is the coordinates of the boundary node i and xc is the coordinates

of the central point of the element. Here, a dimensionless positive parameter γ
is introduced to control the distance between the source point and the element
boundary. For the polygonal element of interest, the location of centroid xc can
be evaluated using

(3.26) xc =
1

p

p
∑

i=1

xb
i .
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Fig. 4. Schematic of the generation of source points by element nodes.

4. Numerical examples

In this section, some examples are solved to demonstrate the efficiency, ac-
curacy and convergence properties of the present algorithm using n-sided hybrid
finite elements. All physical quantities used have consistent units, i.e. the units
of geometrical length, thermal conductivity, convection coefficient, temperature,
heat flux, are m, W/(m · ◦C), W/(m2 · ◦C), ◦C, W/m2, respectively. In order to
properly assess the numerical results, the error norm or average relative error
(Arerr) on an arbitrary smooth variable f is defined as

(4.1) Arerr(f) =

√

∑m
i=1 (fh − fe)2i
∑m

i=1 (fe)2i
,

where m is the number of test points in the computing domain, fh the hybrid
finite element solution, and fe the exact solution.

4.1. Anisotropic heat conduction in circular plate

In the first example, the anisotropic heat transfer in a unit circle is considered
to test the accuracy, convergence and computing efficiency of the present method.
The thermal conductivities of the anisotropic material are k11 = 1, k22 = 5,
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k12 = 2. Correspondingly, the exact solution of the problem is given by

(4.2) T (x1, x2) = 3x2
1 − x2

2 + x1x2

which is also used to apply the temperature boundary condition on the circular
boundary, as shown in Fig. 5.

Fig. 5. The unit circular computing domain and the applied boundary conditions.

The circular region is modeled with 4-sided hybrid finite element firstly for
the purpose of comparison to the conventional quadrilateral finite element. The
number of 4-sided hybrid elements are 21, 46 and 150, which correspond to 28,
57 and 169 nodes, respectively, as indicated in Fig. 6. In the present hybrid el-
ement, one of open issues is the position of source points located outside the
element. Figure 7 gives the variations of temperature norm at all nodes to the
dimensionless parameter γ controlling the distance of source points to the ele-
ment boundary, and it is observed that there are plateau stages to achieve steady
results for all meshing schemes. In practical computation, the value of the dimen-
sionless parameter γ can be taken to be 20 for the quadrilateral hybrid element.

Fig. 6. Different divisions using quadrilateral hybrid elements for the circular region.
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Fig. 7. Effect of the dimensionless parameter for quadrilateral hybrid elements.

Additionally, a good convergence is demonstrated in Fig. 7 as the error norm in
temperature decreases with the increase of number of nodes. Subsequently, the
results of temperature and heat flux components are tabulated in Table 1, from
which it is indicated that the present hybrid finite element can produce better
results of heat flux than the conventional finite element.

Table 1. Comparison of results from the quadrilateral finite element and hybrid
element.

Elements
finite element hybrid element

Arerr(T ) Arerr(q1) Arerr(q2) Arerr(T ) Arerr(q1) Arerr(q2)

21 3.89E-2 2.13E-1 2.14E-1 4.18E-2 1.25E-1 1.28E-1

46 1.41E-2 1.18E-1 1.20E-1 1.69E-2 7.14E-2 7.40E-2

150 4.82E-3 5.92E-2 5.85E-2 5.00E-3 3.95E-2 4.11E-2

Apart from the quadrilateral hybrid element, another interesting issue of
the present hybrid method is that the construction of polygonal element with
arbitrary numbers of sides can be flexibly implemented without any difficulty. To
illustrate this feature, the circular region is modeled using polygonal elements,
as shown in Fig. 8. The number of nodes involved are 38, 90, 164 for the cases
of 20, 46, 83 polygonal elements, respectively. Correspondingly, the variations of
temperature norm are displayed in Fig. 9, from which it is seen that relatively
steady results can be achieved when the value of the parameter γ exceeds 5.
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Fig. 8. Different divisions using polygonal hybrid elements for the circular region.

Moreover, a good convergence is observed in Fig. 9 with the increase of the
number of elements. For performing more detailed investigation of convergence
and computing efficiency, Figs. 10 and 11 displays the variations of error norm
in temperature and heat flux component q1 against the total degrees of freedom
(tdofs) of meshing. In Figs. 10 and 11, both the quadrilateral hybrid element
and the polygonal hybrid element show good convergence in temperature and
heat flux. Typically, in Fig. 10, the polygonal hybrid element shows slightly
lower accuracy than the quadrilateral hybrid element. This can be attributed

Fig. 9. Effect of the dimensionless parameter for polygonal hybrid elements.
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Fig. 10. Convergence results of the error norm in temperature for the present hybrid
elements.

Fig. 11. Convergence results of the error norm in heat flux component for the present hybrid
elements.
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to the fact that the polygonal mesh possessing multiple-node connection feature
includes less boundary nodes than the quadrilateral mesh when the same number
of nodes are involved, so the variation of boundary conditions may not be fully
captured for the polygonal mesh. For instance, the ratio of boundary nodes to
all nodes, respectively, is 0.3158, 0.2111, 0.1829 only for the three polygonal
meshes in Fig. 8, while it is 0.4286, 0.3509, 0.2130 for the quadrilateral meshes
in Fig. 6. On the other hand, the quadrilateral and polygonal meshes in Fig. 10
have similar convergence rate (the average slope), which corresponds to 2.23,
and 2.51, respectively. Comparatively, the convergence rate for the heat flux
component in Fig. 11 is 1.28 and 1.79 for the quadrilateral and polygonal hybrid
elements, respectively.

Fig. 12. Comparison of computing efficiency for finite element and hybrid element.

For the computing efficiency, which is illustrated by recording the computing
time of the generation of global stiffness matrix, it is found in Fig. 12 that both
the polygonal ad quadrilateral hybrid elements are remarkably faster than the
conventional finite element. This can be attributed to the element boundary in-
tegration scheme in the present method. Finally, the distributions of the temper-
ature T and the heat flux component q1 are plotted in Fig. 13 when 83 polygonal
hybrid finite elements are used. From Fig. 13, the very good agreements for tem-
perature and heat flux distributions are observed between the numerical results
and the exact solutions.
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Fig. 13. Distributions of temperature and heat flux component in the circular region.

4.2. Anisotropic heat conduction in square plate

The second example is designed to investigate the capability of the present
method over the non-convex elements and the non-conforming discretization
in a unit square domain. Under the given anisotropic thermal conductivities
k11 = 1, k22 = 2, k12 = 0 and the specified temperature and heat flux boundary
conditions (see Fig. 14), the solution of the problem is

(4.3) T (x1, x2) = 2x2
1 − x2

2

which produces exact distribution of temperature in the square domain.
We now study a quantitative test where a non-convex polygon discretization

in Fig. 15 is made in the square domain. The discretization includes four 8-sided
polygons with 21 nodes. The parameter d is used to control the shape of non-
convex polygons and the parameter a denotes the side length of a regular element.
Typically, the polygons become regular when d/a = 0. Here, the result from the
regular elements is taken as reference value. Correspondingly, the average relative
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Fig. 14. The anisotropic square plate under specified boundary conditions.

Fig. 15. Non-convex polygon discretization in the square.

error of temperature variabe for various d is listed in Table 2, from which very
small deviations to the reference result are observed for all cases of non-convex
polygones. Therefore, the present method can effectively handle the non-convex
behavior of polygonal elements.

Table 2. Comparision of non-convex and normal polygonal elements.

d/a 0.0 0.2 0.4 0.6

Arerr(T ) 0.01976 0.01996 0.01991 0.01974

Next the numerical convergence of the relative error in temperature norm
is investigated by comparing the results from three mesh divisions, as shown in
Fig. 16. Total 22, 42 and 62 nodes are involved for the three meshing config-
urations, including 12, 17 and 21 boundary nodes, respectively. The results of
temperature in Fig. 17 show that relatively steady results can be achieved when
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the value of the parameter γ exceeds 5. Moreover, it is seen from Fig. 17 that the
numerical results from the present method converge to the exact solutions as the
mesh is refined. To clearly demonstrate the rate of convergence in temperature,
the logarithm relation of the total degrees of freedom (tdofs) of hybrid mesh and
the relative error norm Arerr(T ) is plotted in Fig. 18, from which the average
slope of the convergence line is evaluated as 1.71.

10 elements 20 elements 30 elements

Fig. 16. Three divisions using polygonal hybrid elements for the square region.

Fig. 17. Effect of the dimensionless parameter for polygonal hybrid elements.

Subsequently, an assessment of non-conforming discretization is carried out
in the implementation of the present method, which has a clear edge over the
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Fig. 18. Rate of convergence in temperature for the present polygonal hybrid element in
Example 2.

conventional FEM in this aspect. Figure 19 shows a non-conforming discretiza-
tion generated by applying the polytree rule [42] to the initial polygonal mesh
including 20 elements and 42 nodes, in which a father element with n nodes
is subdivided into n + 1 children elements, and then each new element can be
divided again to generate other children elements. In Fig. 19, the blue points
denote the newly generated interior and hanging nodes and the hanging nodes
are defined at the intersection between element edges. For such a non-conforming
mesh, the HFS-FEM employs a more straightforward and normal way to han-
dle the elements containing hanging nodes. In the HFS-FEM, a hanging node
is simply understood as a subdivision of an edge, and as a result, the element
including m hanging nodes and n nodes is regarded as a normal element with
(n+m) nodes, and the element boundary integrals in the element stiffness matrix
are normally evaluated edge by edge without any special treatment. With the
locally refined mesh in Fig. 19, the model is solved with γ = 15 and the relative
error norms of temperature T and heat flus component q1 are 0.0101 and 0.0648,
respectively, which are smaller than the reference results 0.0110 and 0.0919 from
the initial mesh, as expected. Finally, the temperature distribution in the square
domain is plotted in Fig. 20 with 30 polygonal elements in Fig. 16, and it is found
that the numerical results show a great agreement with the exact solutions. Also,
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Fig. 19. Non-conforming polzgon discretiyation in the square.

in order to demonstrate the applicability of the present method for treating the
convection condition, the left side of the square is changed into a convective side
with a convection coefficient 50 and an environmental temperature 25. With
the locally refined mesh division developed based on the 30 polygonal elements
given in Fig. 16, the temperature distribution is plotted in Fig. 21, from which
it is observed that the simulated results from the HFS-FEM show good com-
pliance with the reference results from ABAQUS with 400 linear quadrilateral
elements.

Fig. 20. Temperature distributions from the numerical (left) and exact (right) results in the
square.
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Fig. 21. Temperature distributions from the simulated (left) and reference (right) results in
the square with applied convection condition.

4.3. Anisotropic heat conduction in plane hook domain

As a final example, a relatively complex anisotropic hook plate is modelled
to validate the capability of the HFS-FEM to handle a complex structure with

Fig. 22. Anisotropic plane hook domain.
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n-sided polygonal elements. As shown in Fig. 22, the temperature boundary
condition is assumed as T = 0 on the outer face and T = 3 on the inner face,

Fig. 23. The caused temperature distributions in the hook region for different ply angles.
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respectively. The given orthotropic material parameters are k1 = 1 and k2 = 5,
thus the anisotropy of model can be represented by the ply angle θ in Eq. (2.5).
In this calculation, the hook domain is modeled with 500 polygonal elements and
1026 nodes. Moreover, the finite element solutions from ABAQUS are provided
for comparison, in which the hook region is discretized with 600 quadrilateral
elements and 1028 nodes. The color maps of temperature distribution are shown
in Fig. 23 for different ply angles and it is observed that the numerical results
from the HFS-FEM show a good compliance with the FEM results.

5. Conclusions

In this manuscript, the properties of accuracy, convergence, computational
efficiency and easiness for treating non-convex and non-conforming mesh are
studied for the present polygonal hybrid finite element method in the context
of two-dimensional anisotropic heat conduction. In this method, the anisotropic
fundamental solutions of the problem are employed for approximating an element
interior temperature field in order to exactly satisfy the governing equation of
problem, while one-dimensional linear shape functions are used for approximat-
ing element frame temperature field to enforce the continuity across the element
boundary and the specified boundary conditions. As a result, this method in-
volving element boundary integrals only permits to construct arbitrary polygonal
elements with more sides to discretize complex computing domain, regardless of
the types of polygonal elements, i.e. those with non-convex shapes and/or non-
conforming connections. Numerical experiments demonstrate such features of
this polygonal-mesh based technique.

It can be concluded that (1) The HFS-FEM with polygon discretization is
practically applicable for two-dimensional anisotropic heat conduction; (2) Com-
pared to the conventional FEM, the HFS-FEM has higher accuracy for heat flux
component; (3) Both the quadrilateral hybrid elements and the polygonal hy-
brid elements exhibit better computing efficiency than the conventional finite
element; (4) The method shows certain insensitivity to non-convex mesh; (5)
The method exhibits great capability to exploit non-conforming mesh to reduce
remeshing effort, which is typically important for crack propagation.

However, compared to the mostly known FEM, we have to point out that the
present method is strongly dependent of fundamental solutions of problem, so it
is not applicable to those without explicit expressions of fundamental solutions.
Also, special treatment is typically required for inhomogeneous heat transfer
problems, i.e. transient heat transfer and/or coupled thermo-mechanical pro-
cesses, by introducing radial basis functions at element level for inhomogeneous
term. This will be extendedly studied in the future. Actually, we think that
the most appealing feature of the present method is the applicability of special
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polygonal element for homogeneous problems, as demonstrated in [20–23, 25],
rather than for inhomogeneous problems.
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