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In recent years, artificial neural networks have been proposed for engi-
neering applications, such as predicting stresses and strains in structural elements.
However, the question arises, how many complex influences can be included in an
artificial neural network (ANN) and how accurate these predictions are in compar-
ison to classical finite element solutions. A weakness of finite element predictions is
that they can behave sensitive and unstable to changes in material parameters. An
ANN does not need an underlying model with parameters and uses input variables,
only. In the present study the stability of numerical results obtained by ANN and
FEM are compared to each other for a problem in structural dynamics. The result
gives new insight about the possibilities to predict accurately structural deformations
by means of ANNs. As an example for highly complex geometrically and physically
nonlinear structural deformations, the response of circular metal plates subjected to
shock waves is investigated.
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1. Introduction

The present study focuses on predictions of structural behaviour

by means of ANNs, taking the sensitivity with respect to changes in input vari-
ables into account. In literature, ANNs for engineering applications were pro-
posed for stress-strain curves in [1] at high temperatures. For the design of struc-
tures, artificial intelligence was applied on steel materials also in the nonlinear
range [2]. In manufacturing processes and reliability studies of structures, the
application of an ANN was proposed in [3, 4] and influences of parameters in
final results were discussed. Even for nuclear reactors an ANN is proposed for
the embrittlement of steel pressure vessels [5]. The purpose of the development
of an ANN can be to replace a continuum mechanical model completely. The
ANN must be trained by any data in order to adapt it to the particular ap-
plication [6]. For this reason, one method, reported in literature, is to train an
ANN by measurements only and to create in this way a numerical code, based on
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examples and experience [1, 7, 8]. This motivation is supported by the fact, that
an ANN is theoretically able to approximate any arbitrary function [9]. However,
the approach to determine a function by means of ANNs can be mathematically
nonconstructive, leading to the problem, that internal variables of the ANN, e.g
the number of hidden layers, have to be proposed by the user. In the same way
the number of weights between the layers and biases are concerned [8, 10] and
have to be defined by an iterative process, based on an optimum criterion, e.g.
the least-square method. If the ANN is finally trained by experimental data, it
can very precisely recalculate the measured output values. However, it is docu-
mented in literature that even well-trained ANNs can cause inaccurate results, if
the input data differs from the trained set of values, [11, 12, 13]. For this reason,
the aim of the present study is to investigate the stability of ANN predictions,
if changes in input parameters occur. This problem can be caused by scattering
of measurements and are intensified, if complex short time processes are con-
cerned. Here, complex nonlinear structural deformations under high strain rates
after shock-wave loading are studied. All experiments were carried out in a shock
tube, where fast plate deflections and pressure changes were recorded by means
of short-time measurement techniques. In order to predict these structural de-
formations by means of a classical FEM approach in a previous work [14], it
was necessary to use a geometrically nonlinear structural model taking first-
order shear deformations into account. After an enhancement of this shell model
with viscoplastic theories, a finite element code was adopted, which was able
to predict the plate specimens behaviour. Research on the structural response
including viscoplastic material behaviour is still of current interest, e.g. [15, 16].
However, the effort to identify material parameters can be circumstantial and
can lead to scattering of parameters. In contrast to the FEM, an ANN generates
synapse matrices, including weights of given input neurons, leading to an alge-
braic system of equations with components, which can hardly be interpreted,
see [17, 18]. This effect remains the same, independently if the ANN replaces an
entire structure or only a material law as it is done e.g. with neural network con-
stitutive equations [17, 19, 20]. However, due to the reduction of a complicated
structural or material model to synapse matrix multiplication with an ANN, the
advantage of an ANN can be the rapid calculation of a complex boundary value
problem in comparison to a finite element simulation. In the present study, an
additional advantage is investigated, namely the stability of the trained network,
if changes in input neurons occur. This leads to a new perception of the use of
trained ANNs. Instead of using already trained neural networks for predicting
new output signals with changed input data, the study will show the stability of
an ANN even if input parameters change. Here, ANNs with various hidden layers
are proposed, trained with experimental data, and, finally, the accuracy of the
trained network is investigated by additional experiments. The study deals with
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metal structures subjected to impulsive loadings in a shock tube. Networks with
more than one hidden layer can be regarded in literature [21] as a step towards
deep learning. The already trained network is fed with additional input data,
which varies from the measurements used for training. Differences in output re-
sults are a criterion for the accuracy of the ANN. Regardless of the complexity
of the in-house experiments, the sample rate used in the measurements is suf-
ficient for the required number of data points to feed an ANN. Simultaneously,
finite element simulations of the structural deformations are carried out with
variations in material parameters leading to changes in numerical results. Due
to the fact, that material parameters do not occur in the ANN, its sensitivity is
studied with respect to variations in input data.

2. Experiment

In order to train the neural network, experiments with a shock tube are con-
ducted, see Fig. 1. Based on experiences from former studies [14], measurements
of structural deformations and pressures during shock wave loadings are carried
out. Here, circular metal plates with 138 mm diameter and 2 mm thickness are
used. In the present study, steel plates were subjected to shock waves, however,
it is possible to insert aluminum and copper plates as well. The pressure load is
caused by separating two chambers, high (HPC) and low (LPC) pressure cham-
ber, with different pressures and gases from each other by a membrane. If the
membrane bursts, then a shock wave is striking the plate specimen at the end of
the LPC leading to elastic-viscoplastic deformations of the plate specimen. By
means of short time measurement techniques, the pressure acting on the plate
and the mid-point displacement of the plate are measured during the impulse
duration.

PlateMembrane

He N2

HPC LPC

Pump

Fig. 1. Principle of the shock tube.

In previous studies, these experiments were conducted to validate structural
models and material laws. Material parameters were determined by separate ten-
sion tests. All plate and tensile specimens are cut out of the same metal sheets.
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This ensures that the material properties hardly vary between experiments with
different specimens. This was investigated by repeating the same tension tests
several times. All experiments were carried out with the same boundary condi-
tions. In Fig. 2 the middle point displacement of a shock-wave loaded plate is
shown together with pressure acting on it with respect to the time. This defor-
mation is simulated with the FEM and the ANN in the following sections.
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Fig. 2. Measured plate deflection and pressure.

3. Structural model and finite element approach

The structural model used in the present study is based on a layered geomet-
rically nonlinear first-order shear deformation shell theory, which is combined
with a physically nonlinear viscoplastic constitutive law. Details about the shell
model can be found in [22]. The present study focuses on the finite element im-
plementation versus the new ANN approach.
In the finite element mesh of the plate nine-node isoparametric shell elements
are used in an in-house code. The entire displacement field of an element can be
expressed by

(3.1) v = Nq,

with N as the matrix of shape functions, which can be found in [23]. The vector
q includes all nodal displacements and rotations. The stress resultants in the
shell are written as

(3.2) RT =

[

0
N

1
N

2
N

0
Q

1
Q

]
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with

(3.3)
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denoting section forces and moments of orders belonging to the geometrically
nonlinear shell theory. Due to the development of strain-displacement relations
higher order terms are obtained in strains and generalized forces. The depen-
dency between strain vector and vector of nodal displacements and rotations is
expressed by a nonlinear transformation matrix B

(3.4) ε =
[

0
ε

1
ε

2
ε

0
γ

1
γ

]T
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2ε23
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]

.

The matrix B̃ is divided into a linear and nonlinear part B̃L and B̃NL. The
nonlinear term can be represented as the product of two matrices G and A in
the form B̃NL = A(q)G where G depends on the element geometry only, and
A is a function of the geometry and of the nodal displacements and rotations.
The virtual strains are expressed by

(3.6) δε = δ(Bq) = (B̃LN +A(q)GN)δq = B̄δq.

Details of the components of the matrices B̃L, A, G are reported in [23]. Ex-
ternal loads are covered by a vector F (k) for each layer k and surface loads are
denoted by p. The vector of the resulting forces and moments at the boundary in
each layer k is summarized with ∗L(k). The vector of inertia forces and moments
in each layer k can be written as

(3.7) I(k) = i(k)v̈ = i(k)Nq̈

and analogously the vector of the damping forces is expressed by

(3.8) D(k) = d(k)v̇ = d(k)Nq̇.

By means of these quantities the principle of virtual work for the finite element
implementation can be written in a discrete form:

∫

M

RT δ
n
ε dM = δqT

∫

M

B̄
T
RdM = δqTQ,(3.9)



100 M. Stoffel, F. Bamer, B. Markert

−
∫
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This leads to the principle of virtual work in the form

(3.15) δqT (Q−R1 −R2 −R3 +Mq̈ +Cq̇) = 0.

Consequently, the term in brackets leads to the system of equations of motion

(3.16) Mq̈ +Cq̇ +Q = R

with R = R1 +R2 +R3. For solving this system of differential equations the
central difference method is applied. Considering a time increment ∆t, this leads
for time t to

q̈t =
1

∆t2
(

qt−∆t − 2qt + qt+∆t

)

,(3.17)

q̇t =
1

2∆t

(

−qt−∆t + qt+∆t

)

.(3.18)

The vector of generalized nodal displacements at time t + ∆t is then expressed
by

(3.19) qt+∆t =
Rt −Qt − 1

∆t2
M

(

qt−∆t − 2qt

)

+ 1
2∆tCqt−∆t

1
∆t2
M + 1

2∆tC
.

For the viscoplastic material behaviour the constitutive law of Lemaitre–Cha-
boche [24] with kinematic hardening is implemented [14]. The plastic strain rate
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tensor is expressed as

˙εp
ij =

3

2
ṗ

σ
′

ij − X
′
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rs)
,(3.20)
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,(3.21)

σv = J2(σ
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ij) − k,(3.22)

Ẋij =
2

3
aε̇p

ij − sXij ṗ.(3.23)

Here, εp
ij , σij , Xij , k, p, σv denote plastic strain tensor, stress tensor, backstress

tensor, yield limit, equivalent plastic strain, overstress, and a, s, v, K are mate-
rial parameters. The second invariant of a tensor is abbreviated with J2(). The
deviatoric part of a tensor is denoted by ()

′

, (̇) stands for the time derivative.
All material parameters are identified by tension tests.
These physically nonlinear constitutive equations are integrated by the trape-
zoidal rule. Following this approach the increment of the plastic strains and of
the hardening parameters at each time step are calculated as:

∆εp
t =

1

2
∆t

(

ε̇
p
t−∆t + ε̇p,i

t

)

,(3.24)

∆Xt =
1

2
∆t

(

Ẋt−∆t + Ẋ
i
t

)

.(3.25)

The current values are obtained by

(3.26) ε
p
t = ε

p,i
t = ε

p
t−∆t + ∆εp

t , Xt = Xi
t = Xt−∆t + ∆Xt.

Here, i denotes the number of iterations.
This complex nonlinear system of equations is the basis for the finite element

simulations in this study. The calculated results, and especially their sensitivity
to changes in material parameters, are compared to results based on the ANN
described in the next section.

4. Artificial neural network

In order to replace the above described complex nonlinear structural and
material model, an efficient alternative is proposed. Due to the fact, that an
artificial neural network is based on a self-learning algorithm, material parame-
ters as in the present finite element study, do not occur. The proposed network
learns by experiences from experimental data. From the variety of ANNs, the
well-established type of a feed-forward ANN [25] is chosen for the present type of
structural deformation. During the training procedure, additional hidden layers
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Fig. 3. Feed forward artificial neural network.

are added iteratively by the user and the accuracy is investigated in the follow-
ing section. Four input variables, such as time, pressure, stiffness relation and
wave propagation velocity, are applied. Several different materials can be used
for the plate specimen. In order to account in the ANN for this effect, a stiff-
ness relation between the Young’s moduli of the used materials is introduced.
If only steel material is used as in the following examples, then the third input
parameter is constant throughout the training and behaves like a bias. The wave
propagation velocity depends on the gas used in the shock tube. This neuron
is important in this study to provide unique input data. The wave propagation
speed depends on the used gas in the HPC. If different gases are used in two ex-
periments, then two measured pressures at one instance of time could be equal
but the plate displacements are different. This is due to different strain rates
caused by different wave propagation speeds. In order to keep unique ordered
pairs of values, the wave propagation is taken into account. The output layer
contains one neuron for the mid-point displacement of the plate. The number of
neurons in up to four hidden layers changes between eight and ten, depending
on the achieved accuracy during the training procedure. Here, the criterion for
an optimal training is the minimised difference between measured and trained
mid-point displacement, obtained by the least square method. In Fig. 3, the
feed-forward neural network with the gradient descent algorithm for the error
back propagation is shown. Normalised values of all variables are introduced due
to better convergence [1, 26]. This is carried out for input and output values xi

by

(4.1) Xi = 0.1 + 0.8 ·
(

xi − xmin

xmax − xmin

)
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leading to unified values Xi and with xmin and xmax as minimum and maximum
values of each input and output value, respectively. The propagation function
includes the weights wij , which have to be determined iteratively in the ANN,

(4.2) pj =
n

∑

i=1

Xiwij ,

where n is the number of inputs. In this neural network, the number of hidden
layers and neurons in the hidden layers can vary. According to a number of m
layers including input and output layers, (m − 1) matrices are obtained. In the
activation function Fj for one neuron j, the sigmoid function is implemented:

(4.3) Fj =
1

1 + e−pj
.

In the training procedure the number of hidden layers is increased in several cal-
culations iteratively by the user in order to avoid overfitting; or in other words,
only as many hidden layers are applied as necessary to account for the oscillat-
ing output signal. The problem of overfitting is addressed in the next section,
where the accuracy of the trained network is studied. Following this method, an
additional regularisation method was not necessary. The entire algorithm was
implemented in python. As a stopping criterion a maximum number of 600000
epochs is defined in this study. Thereby, convergence was reached in all shown
examples. As a criterion for the stability of the ANN predictions the difference
between measured and calculated first lower amplitude is introduced. In prelim-
inary studies [14] it was shown that this difference is the most affected value
immediately after the shock wave load during the considered viscoplastic vibra-
tions. The simulated upper amplitudes are closer to the measurement as the
lower ones. In Table 1 in the following section, these quantities are described.

5. Results and discussion

In Fig. 2, a typical pressure evolution is shown, which occurs on the plate
specimen, when the shock wave reaches the plate. Corresponding to this pressure
load, the mid-point displacement of the plate is indicated in the diagram.

In Fig. 4, two examples of finite element simulations are presented and are
compared to the measured mid-point displacement in 2. Changes in the viscous
material properties are indicated in the legend. The calculated results correspond
to the measurement, however, a sensitivity especially of the lower amplitudes
is observed depending on changes in the material parameters. The differences
between the simulated first lower amplitude and the measured one are +5.9% and
+34.9% for FE-Simulation 1 and 2, respectively. Details about these sensitivity
investigations can be found in [14].
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Fig. 4. Simulated plate deflections with material parameter variations.

Due to the fact, that strain rates between 100s−1 and 300s−1 occur in the
shock tube experiments, it is difficult to identify viscous parameters by mate-
rial testing machines and, hence, scattering of these parameters occurs. Conse-
quently, uncertainties are involved in the finite element simulations, because the
viscosity significantly influences the predicted result. For this reason, an alterna-
tive approach is chosen with an ANN, which does not need a material law and,
hence, does not depend on material parameter variations. However, changes in
input parameters can still cause variations in output results.
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Fig. 5. Measurement and ANN simulation.

In Fig. 5, the measured mid-point deflection and the pressure, which is also
presented in Fig. 2, is shown in normalised form with respect to the number
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of data points. Here, 170 data points, consisting of 170 values for each time,
pressure, stiffness, and velocity are used for each measurement and calculation.
Equivalently 170 mid-point displacement values are used for the output neuron.
The graphs are plotted continuously over the number of data points. The time
increment between two values is 3.4 ·10−5s, which is small compared to a period
of oscillation in Fig. 2.

In Fig. 6 it is investigated how many hidden layers can be used to increase the
accuracy of the trained network. As indicated in the legend, it was determined by
means of the RMSE, that three hidden layers lead to the most accurate results.

In order to introduce scattering of input values, an additional shock tube
experiment with similar pressure evolution is carried out and shown in Fig. 7.
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Fig. 6. Measurement and ANN simulation with different number of hidden layers.
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The measured mid-point deflection changes due to small pressure variations.
Consequently, it is investigated which variation in the calculated results by means
of the ANN occurs. Firstly, the ANN is trained with measurement 1 in Fig. 5. The
pressure evolution from Fig. 4 is normalised and shown in Fig. 5 for this purpose.
As a result, the ANN predicts nearly identical the measurement from 1 until to
70 data points. After these data points, the ANN calculates an average between
the amplitudes. Secondly, a varied pressure evolution (measured pressure 2), see
Fig. 7, corresponding to measurement 2 is inserted into the already trained ANN,
expecting a prediction of its mid-point displacement. But the result is nearly the
same mid-point deflection as for the measurement 1, which is shown in Fig. 7.

Table 1. Variation of first lower amplitudes in ANN predictions.

Measure- ANN1 ANN2 ANN3 ANN4 ANN5 ANN5
ment ∆pmax= + 1.8% ∆pmax= − 9.5% ∆pmax=30.5% ∆pmax=14.5%

1 +1.5% +2.2% ∅ -10.3%

2 +37.2%

3 -1.5% +5.4% ∅ ∅

4 +22.2%

Obviously, the once trained network behaves very stable with respect to vari-
ations in input parameters. The defined criterion for quantifying the stability of
the ANN calculation is the difference between measured and calculated first lower
amplitude, which is indicated in Table 1. The pressure difference until to the first
lower amplitude in the two ANN predictions ANN1 and ANN2 in Figs. 5, 7 is
∆pmax = +1.8%. The difference of the first lower amplitude between measured
displacement and calculated displacement by means of the training with ANN1
is only +1.5%. The trained network predicts the measurement 1 even stable, if
the measured pressure 2 is used as input. This turns out in the difference of 2.2%
between the measured and predicted first lower amplitude with ANN2. This re-
veals the stability of the trained network. Compared to the measurement 2 the
difference is 37.2%. The stable results in Table 1 are marked in bold, also for the
next example.

As mentioned in the introduction, in the literature, the effect is often de-
scribed that ANN predictions can be uncertain, since input data is used which
differs from the trained data set. In the present study, it can be confirmed that
input data, which does not match the trained data, does not lead to the mea-
sured output data. However, in the present study, the ANN simulation leads
to the trained output even if input data changes. This phenomenon makes the
ANN model very accurate und insensitive to changes in input parameters. All
ANN calculations in Fig. 5, 7 were carried out with three hidden layers and eight
neurons in each layer.
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In Figs. 8, 9 two additional experiments and ANN predictions with a steel
plate are presented. Here, four hidden layers with 10 neurons in each layer are
applied to obtain the accuracy between the measurement 3 and the trained ANN
as shown in Fig. 8. Due to the indicated different pressure evolutions (measured
pressures 3 and 4) the mid-point displacement of the measurement 4 is different
from the measurement 3 in the experiments. However, if pressure 4 is inserted in
the trained ANN, nearly the same mid-point displacement is obtained as with
measured pressure 3. Again, the trained ANN behaves very insensitive to changes
in their input parameters.
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Fig. 8. Additional measurement and ANN simulation.
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Fig. 9. Additional measurement and ANN simulation with input parameter variation.



108 M. Stoffel, F. Bamer, B. Markert

In Table 1, the differences of the measured pressures 3 and 4 (∆pmax =
−9.5%) together with the deviations of the first lower amplitudes are shown.
The trained network has only a slight difference of −1.5% to the measured dis-
placement 3. If the measured pressure 4 is inserted in this trained ANN a dif-
ference of +5.4% is obtained, which again confirms the stable simulation of the
measurement 3 even if differences in the input pressure occurs. The difference of
ANN4 to the measurement 4 is +22.2%.
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Fig. 10. Study of range of input data for stable ANN simulations.

In order to search for the limits of the stability of the trained ANN, in Fig. 10
an example with extreme different pressure evolutions is given. The measured
mid-point displacement 1 and pressure 1 from Fig. 5 is shown in the diagram.
Additionally, the displacement and pressure of the measurement 3 from Fig. 8
are used here. The measured pressure 3 is inserted into the already trained net-
work (with the measurement 1), which physically does not belong to the training
data. However, the ANN tries to force a correlation with the trained mid-point
displacement (see ANN with the measurement 3). At the beginning of the cal-
culation until 20 data points, the ANN predicts a displacement similar to the
measurement 3. Then this prediction changes suddenly to a displacement simi-
lar to the trained data of the ANN, and finally, the calculation differs from the
trained data after 100 data points. It seems that the ANN calculation tends
towards its trained data since the input data remains in a special range, which
is similar to the once trained data set. In the present example, this would be
the pressure range ∆p∗ indicated in Fig. 10. In this range, the difference of the
input data is small enough to predict the output data of the trained data set.
This observation is also visible in Table 1. During a large pressure difference
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between the measured pressure 3 and 4 at the beginning of the shock wave load
of 30.5% the measured displacement 1 is not predicted with ANN5 at all (empty
set in Table 1). After the pressure difference decreased down to 14.5% the mea-
sured displacement 1 is calculated with a difference in the first lower amplitude
of −10.3%. That means, even though the pressure 3 physically does not belong to
the measurement 1, the simulation ANN5 calculates the measured displacement
with round about 10% difference. Again the trained network behaves stable in
that sense.

6. Conclusions

In the present study about shock-wave loaded structures, it was shown that
an ANN can behave very accurately and stable even if variations in input pa-
rameters occur. This observation reveals ANN predictions in a different light.
A once trained ANN is not used for predicting structural deformations with
additional loading data, but it was shown that the trained ANN behaves very
stable, if input parameters change. Even if the input data is beyond a physi-
cal admissible scattering, the ANN tends to the once trained output data. This
makes the simulation of structural deformation accurate. However, this works
only inside certain ranges of input values, which can be the contents of further
studies. Uncertainties, as they are observed in finite element simulations due to
material parameter variations, do not occur, since the ANN works without any
material data. Moreover, it was possible to replace a geometrically and physically
nonlinear structural model by an artificial neural network.
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