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A mixed finite element formulation is developed for the general 2D plane strain,
linear isotropic gradient elasticity problem. Form II of the dipolar strain gradient
theory for micro-structured solids is considered. The main variables are the double
stress tensor µ and the displacement field vector u . Standard C0−continuous, high
polynomial order hierarchical basis functions are employed for the finite element
solution spaces (p-extension). The formulation is numerically validated against the
standard axial tension patch test and the Mode I crack problem. The theoretical
convergence rates of the uniform h- and p-extensions are confirmed using a benchmark
problem where only double stresses appear. Results for the crack problem demonstrate
that proper mesh refinement at areas of steep gradients ensures reproduction of the
exact solution behaviour at different length scales. More specifically, the asymptotic
exponents of the crack face opening displacement and the crack head true stress
solutions of the Mode I crack problem are recovered. Finally, the upper bound of
the true tensile normal stress near the crack tip is estimated. This upper bound is of
major importance since the nature of the exact solution may change radically as we
proceed from the macro- to micro-scale.
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1. Introduction

As the dimensions of structures are scaled down to the micro- and
nano-scales, e.g., in Micro-Electro-Mechanical Systems (MEMS) and Nano-Elec-

tro-Mechanical Systems (NEMS), the mechanical behaviour of materials becomes
strongly size dependent [1–6]. In this case the classical elasticity theory is not
able to predict phenomena like, hardening or softening behaviour [7–9], shift in
resonance frequencies [10], wave dispersion [11], etc.
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When the characteristic length scale of the structural component is compa-
rable to the intrinsic length of the microstructure, strong size effects are present
(e.g., in the bending of ultra-thin beams and plates, as well as, in the axial defor-
mation of bars and membranes [3, 12–16]). Even for large scale structures, near
high strain gradient areas (like corners, cracks, point loads [17], loading discon-
tinuities [18], material properties variations [19], etc.), the strain gradient effect
may be important in evaluating the local stress state, as well as, the fatigue and
fracture behaviour of the material.

Analytical methods for crack problems in the framework of strain gradient
elasticity can provide the asymptotic behaviour of the fields at the vicinity of
the crack tip. Such results are presented e.g. in [20–22]. Closed form solutions for
crack problems in a couple stress theory are also contained in [23–26]. Analytical
solutions for various strain gradient elasticity problems have been obtained by
several authors [17, 18, 27, 28] . However, for more complex domains and loading
conditions numerical methods become a necessity. The Finite and Boundary
Element methods have been employed to this end.

One of the major challenges in developing numerical methods for strain gra-
dient elasticity problems is the order of the derivatives (typically 4th order) that
appear in the differential operators present. Boundary element techniques are
developed in [29, 30]. Conforming isogeometric formulations for shells and point
loads for large scale structures are addressed in [31]. Cp−1 (p > 2) and Cp−1

(p ≥ 3) continuous isogeometric finite elements for plane strain/stress gradient
elasticity and gradient elastic Kirchhoff plates are developed in [32] and [33],
respectively. It is noted that at least, C2-continuity is required for problems
of plates [33], shells [31] and higher order gradient elasticity formulations [34],
while C1-continuity is required for problems of gradient elastic bars and plane
(strain or stress) gradient elasticity [32]. Isogeometric analysis for the Mode I
crack problem in focus is developed in [35].

Four node quadrilateral elements, based on the Hermite type shape functions
are introduced in [36]. Higher order C1-continuous elements are employed in
[37, 38]. Mixed finite element methods can be used to supress the increased
regularity needed in the finite element interpolation schemes. Various mixed
formulations for gradient elasticity or couple stress theory problems have been
developed [39–44]. Other finite element methods, which aim at bypassing the
C1-continuity requirements, may be found in [45–47].

Two dimensional strain gradient elasticity solutions, based on linear and non-
linear constitutive relations are given in [48]. A general construction process of
second-order isotropic moduli for 2D strain gradient elasticity is developed in
[49]. A procedure for the identification of the constitutive parameters of a strain
gradient elasticity model, along with criteria to assess its validity range are given
in [50]. The apparent elastic properties of nano-objects, based on second strain
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gradient elasticity theory are evaluated in [51]. Lagrangian Mechanics based
variational formulations of higher order strain gradient elasticity theories are
presented in [52].

In this study, a mixed finite element is proposed for the general 2D plane
strain, linear isotropic gradient elasticity problem (Form II dipolar strain gradi-
ent theory for micro-structured solids [53]). It is noted that in the dipolar strain
gradient theory, the strain energy density assumes the form of a positive-definite
function of the strain tensor (as in classical elasticity) and the gradient of the
strain tensor [7, 21, 48, 54–56]. As a result of that (in addition to the standard
monopolar tractions and stresses), dipolar tractions are introduced in the formu-
lation, resulting in dipolar (or double) stresses [53, 57, 58]. The theory is a useful
limiting case of the more general theory developed in [53].

The main variables of the mixed formulation are the double stress tensor (µ)
and the displacement field vector (u). The current µ-u formulation is embedded
in the general category of mixed methods developed in [59] (see also [40, 60,
61]). High order, C0-continuous, conforming basis functions are employed in the
form of the p-version or p-extension [62, 63]. The resulting weak forms, as well
as the stiffness matrices of the discrete approximations, exhibit the standard
(symmetric) mixed structure [64–66].

The advantage of the current mixed formulation is that it avoids the re-
quirement of C1-continuity where both the values and the derivatives of the
main variables must be continuous across inter-element boundaries. In addition
to that, the true stress function, which includes third order derivatives of the
displacement field, can be computed (post-processed) based on the first order
derivatives of the main variables µ and u . Finally, all the non-standard bound-
ary conditions (including the jump conditions at the corners [55, 57, 59]) are
embedded formally and straightforwardly, either in the weak formulation or in
the solution spaces as essential conditions. This study extends previous results
for anti-plane shear [40] gradient elasticity problems to the plane strain case. In
this setting several problems (see for examples in [1–4, 21]) can be effectively
treated with the proposed finite element scheme. To the best of the authors’
knowledge, this is the first p-extension based mixed finite element formulation
for plane strain gradient elasticity. In addition, the present study verifies the
theoretically predicted convergence and asymptotic rates through applications
in computationally demanding problems (e.g. crack opening).

The paper is organized as follows: the governing equations of the 2D plane
strain gradient elasticity problem are summarized in Section 2. The current
mixed finite element formulation is developed in Section 3. Numerical experi-
mentations are presented in Section 4, including Mode I crack stress analysis (in
plane strain conditions). The final section, Section 5, contains closing remarks,
conclusions and future research directions.
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2. Governing equations for 2D plane strain isotropic dipolar gradient

elasticity

Henceforth, isotropic material behaviour and plane strain conditions (in the
plane x, y or 1, 2) are assumed. The simple gradient elasticity model, with one
characteristic length constant associated with the microstructure is considered
[14, 21, 54].

Standard tensorial (or indicial) notation is employed in the current work
(the summation convention is employed for repeated indices). Let ui denote the
displacement components, τij the Cauchy stress, εij the standard strain, µijk

the double stress and κijk the strain gradient components (i, j = 1 or 2). Recall

furthermore that εij := 1
2(ui,j + uj,i), κijk := εjk,i (Form II) and (∗),i := ∂(∗)

∂xi

= ∂i(∗).
Regarding the standard plane strain problem (ε33 =ε13 =ε23 =0, ∂3(∗)=0),

the following relations can be derived (for details, see [7, 21, 36]).

Standard in plane strain – Cauchy stress relations:

(2.1)







ε11

ε22

ε12







=





C11 C12 0
C12 C22 0
0 0 C33











τ11

τ22

τ12







or εik = Cijτjk, i, j = 1, 2

where

(2.2) C11 = C22 =
(1 + ν)(1 − ν)

E
, C12 = −ν(1 + ν)

E
, C33 =

(1 + ν)

E

and E, ν are the Young’s modulus and Poisson’s ratio, respectively.

Double stress – Cauchy stress relations:

(2.3) µijk = g2τjk,i, i, j, k = 1, 2

where g > 0 is a (small) constant (with units of length), the so-called gradient

coefficient, which is associated with intrinsic material length(s) [20, 26] and (or)
to microarchitecture [67].

The strain gradient – double stress relations follow from Eqs. (2.1), (2.3),
using the definition of the strain gradient,

(2.4) κijk = εjk,i = Cjmτmk,i = g−2Cjmµimk.

The Form II formulation has been employed in the development of the above
equations (recall the symmetry µijk = µikj). The equilibrium equations of the
gradient elasticity theory are as follows [21, 53, 57, 59],

(2.5) ∂j(τjk − ∂iµijk) + fk = 0,

where fk denotes the body forces.
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Using (2.4) and (2.5), as well as, the definitions of strain and strain gradient,
a coupled system of two fourth-order partial differential equations is derived for
the two components, u1, u2 of the displacement field. However, the development
of the current mixed formulation is based on Eqs. (2.4) and (2.5).

The above equations are accompanied with suitable boundary conditions.
The structure of the boundary conditions, which depend on the particular appli-
cation, may be deduced by proper reduction from the general gradient elasticity
boundary conditions [21, 55, 57]. Assuming that the surface double traction, as
well as, the body double force are absent, the general theory boundary conditions
are stated as follows,

• traction boundary conditions:

(2.6a) nj(τjk − ∂iµijk) − Dj(niµijk) + (Dlnl)njniµijk = tk on Sk
N,t.

• moment boundary conditions:

(2.6b) ninjµijk = 0 on Sk
N,m.

• jump conditions:

(2.6c) [mjniµijk] = 0 on C

where:
nj – components of the outward unit vector normal to the surface,
τij – components of the (symmetric) Cauchy stress tensor,
µijk – components of the double stress tensor,
tk – components of the surface (true) traction (force per unit area),
Dj(∗) := (δjl − njnl)∂l(∗) – surface gradient operator.
δjl – components of the Kronecker delta operator,
C – boundary manifold(s), where the normal unit vectors exhibit jumps (i.e.,
corner points in 2D domain, surface edges in 3D domain),
[y] – the difference of the values of quantity y between both sides of the corner
point(s) or edge(s) C,
mj := elkjslnk, where sl denotes the components of the tangential vector of
curve C and elkj is the (well-known) alternating tensor.

Regarding the domain, Sk
N,t denotes the part of the boundary where the k

component of the right hand side of the traction condition Eq. (2.6a) is specified
(a given point of the boundary either belongs to Sk

N,t or the displacement field

uk must be specified on this point, i.e., Sk
N,t ∪ Sk

E,t = S, Sk
N,t ∩ Sk

E,t = ∅). Sk
N,m

is the part of the boundary where the k component of the right hand side of
the moment condition (2.6b) is specified (a given point of the boundary either
belongs to Sk

N,m or the normal derivative Duk := nl∂luk must be specified on

this point, i.e., Sk
N,m ∪ Sk

E,m = S, Sk
N,m ∩ Sk

E,m = ∅). It is noted that S := ∂Ω,
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Sk
E,t denotes the boundary part where uk is prescribed and Sk

E,m denotes the
part where Duk is specified.

In order to fully clarify the above nomenclature, a two dimensional domain
with straight line boundary curves, parallel to x or y axis (see Fig. 2) is consid-
ered. Using Eq. (2.6), several boundary condition cases that can be formulated
(the intermediate algebra is omitted and all indices span the values 1 and 2) are
included in Table 1.

Table 1. Boundary conditions for the plane strain gradient elasticity model.

Boundary Condition Type Boundary Condition Expression

Boundary curve (parallel to the y axis) which
is part of Sk

N,t with applied true traction tk

n1(τ1k − ∂1µ11k − ∂2µ21k − ∂2µ12k) = tk

Boundary curve (parallel to the x axis) which
is part of Sk

N,t with applied true traction tk

n2(τ2k − ∂1µ12k − ∂2µ22k − ∂1µ21k) = tk

Boundary curve (parallel to the y axis) which
is part of Sk

N,m

µ11k = 0

Boundary curve (parallel to the x axis) which
is part of Sk

N,m

µ22k = 0

Boundary curve (parallel to the x or y axis)
which is part of Sk

E,t

uk = 0

Boundary curve (parallel to the y axis) which
is part of Sk

E,m

∂uk

∂x
= uk,1 = 0

Boundary curve (parallel to the x axis) which
is part of Sk

E,m

∂uk

∂y
= uk,2 = 0

Jump conditions at the (right angle) corners,
see (2.6 c), s1 = s2 = 0, s3 = +1

µ121 + µ211 = 0, µ122 + µ212 = 0

Anti-symmetry conditions • If a parallel to x axis boundary line is an
axis of anti-symmetry:

µ221 = 0, u1 = 0, u2,2 = 0
• If a parallel to y axis boundary line is an
axis of anti-symmetry, then

µ112 = 0, u2 = 0, u1,1 = 0

Symmetry conditions • If a parallel to x axis boundary line is an
axis of symmetry:

µ211 = µ222 = 0, u2 = 0, u1,2 = 0
• If a parallel to y axis boundary line is an
axis of symmetry:

µ111 = µ122 = 0, u1 = 0, u2,1 = 0

For plane strain conditions, the non-zero double stress components are de-
picted in Fig. 1. The out-of-plane components, µi33 = g2τ33,i, i, j = 1, 2 do not
enter the formulation. These components may be post-computed, based on the
derivatives of the normal (out-of-plane) Cauchy stress τ33. The latter depends
only on the in-plane Cauchy stress components, τ11 and τ22 (through the Hooke’s
law).
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a)

b)

Fig. 1. Plane Strain conditions in xy plane – Non vanishing Double Stress Components –
2D strain gradient elasticity (FORM II) – Double Stress components of the form (a) µαkk,

α = 1, 2, k = 1, 2, 3, 12 components total, and (b) µαβγ , α, β, γ = 1, 2, β 6= γ , 8 components
total (components on both positive and negative faces are shown).

3. Development of the mixed finite element formulation

Let rijk be proper weighting functions associated with the double stress com-
ponents µijk. In all the following relations the indices take the values 1 and 2.
Then from (2.4) there follows,

(3.1)

∫

∂Ω

nirijk
1

2
(uj,k + uk,j)dS −

∫

Ω

rijk,i
1

2
(uj,k + uk,j)dΩ =

∫

Ω

Cjm

g2
rijkµimkdΩ.
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Using the symmetry rijk = rikj we finally get,

(3.2)

∫

Ω

Cjm

g2
rijkµimkdΩ +

∫

Ω

rijk,iuj,kdΩ =

∫

∂Ω

nirijkuj,kdS.

The standard decomposition is employed on the right hand side

(3.3) ∂juk = Djuk + njDuk

to get

(3.4)

∫

Ω

Cjm

g2
rijkµimkdΩ +

∫

Ω

rijk,iuj,kdΩ −
∫

∂Ω

nirijk(Djuk)dS

=

∫

∂Ω

nirijknjDukdS,

where Duk := nl∂luk is the normal derivative of uk.
Note that the double stress condition ninjµijk = 0, see Eq. (2.6b) is essential

for the current mixed formulation, whereas the conjugate condition Duk = 0
is natural. Moreover, the tangential derivatives of the displacement field on the
boundary contribute to the stiffness matrix (through the line integral).

Next, we multiply the equilibrium equation (2.5) by a proper weight function
sk, associated with the displacement field and integrate over the problem domain.

(3.5)

∫

Ω

sk∂j(τjk − ∂iµijk)dΩ +

∫

Ω

skfkdΩ = 0.

Application of the Gauss theorem and the traction boundary condition
Eq. (2.6a) results in the following equation,

(3.6)

∫

Ω

µijk,isk,jdΩ +

∫

∂Ω

Dj(niµijk)skdS

−
∫

∂Ω

(Dlnl)njniµijkskdS −
∫

Ω

τjksk,jdΩ = −
∫

Ω

skfkdΩ −
∫

∂Ω

tkskdS.

Using the identity,

(3.7)

∫

∂Ω

Dj(niµijk)skdS =

∫

∂Ω

Dj(niµijksk)dS −
∫

∂Ω

Dj(sk)niµijkdS,
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as well as, the surface divergence theorem, it follows,

(3.8)

∫

∂Ω

Dj(niµijk)skdS

=

∫

∂Ω

(Dlnl)njniµijkskdS +

∮

C

[mjniµijk]skdc −
∫

∂Ω

Dj(sk)niµijkdS.

Substituting (3.8) into (3.6) and assuming zero jump conditions, see Eq. (2.6c),
we get

(3.9)

∫

Ω

µijk,isk,jdΩ −
∫

∂Ω

Dj(sk)niµijkdS −
∫

Ω

τjksk,jdΩ

= −
∫

Ω

skfkdΩ −
∫

∂Ω

tkskdS.

Finally, we use the Cauchy stress-strain relation to get

(3.10)

∫

Ω

µijk,isk,jdΩ −
∫

∂Ω

Dj(sk)niµijkdS −
∫

Ω

C−1
jm

1

2
(um,k + uk,m)sk,jdΩ

= −
∫

Ω

skfkdΩ −
∫

∂Ω

tkskdS.

Using the standard nomenclature for Sobolev spaces [65, 66], Eqs. (3.4) and
(3.10) may be expressed in the following standard mixed formulation structure
[59, 64, 65],

Exact weak mixed formulation:

Find µ := (µ111, µ112, µ122, µ211, µ212, µ222) ∈ U and u := (u1, u2) ∈ Q such

that

A(µ, r) + B(r, u) = F (r), ∀r ∈ U,(3.11a)

B(µ, s) − C(u, s) = G(s), ∀s ∈ Q,(3.11b)

where r := (r111, r112, r122, r211, r212, r222) ∈ U , s := (s1, s2) ∈ Q, U ⊂ H1(Ω)6,
Q ⊂ H1(Ω)2 and

A(µ, r) :=

∫

Ω

Cjm

g2
rijkµimkdΩ,(3.12a)

B(r, u) :=

∫

Ω

rijk,iuj,kdΩ −
∫

∂Ω

nirijk(Djuk)dS,(3.12b)
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C(u, s) :=

∫

Ω

C−1
jm

1

2
(um,k + uk,m)sk,jdΩ,(3.12c)

F (r) :=

∫

∂Ω

nirijknjDukdS,(3.12d)

G(s) := −
∫

Ω

skfkdΩ −
∫

∂Ω

tkskdS.(3.12e)

The exact structure of subspaces U and Q depends on the specific boundary
conditions. More specifically, we have ninjµijk = ninjrijk = 0 on Sk

N,m and

uk = 0 on Sk
E,t. Both conditions are essential for the current formulation. Mixed

type conditions relating displacements and double forces, Robin type conditions,
as well as, inclined support conditions can be easily introduced in the given mixed
formulation.

Note that the bilinear form A(µ, r) is coercive (hence, positive definite) on
the space L2(Ω)6 and the bilinear form C(u, s) is coercive on Q (assuming non-
zero essential conditions for the displacement field, i.e., no rigid body motions).
Mathematical analysis regarding solution uniqueness and stability of the above
general mixed formulation may be found in [59].

The discretization of the above exact weak form proceeds as follows. Let
Up ⊂ U and Qp ⊂ Q be finite dimensional subspaces. The subspaces Up and Qp

are built with globally C0-continuous, hierarchical, piecewise polynomial basis
functions, defined on straight side quadrilateral (finite) elements, using bilinear
coordinate mapping (p-extension [62]). The hierarchical elemental shape func-
tions are based on (integrals of) the Legendre polynomials, see [63] for details.
The finite element formulation is stated as follows,

Find µp := (µp
111, µ

p
112, µ

p
122, µ

p
211, µ

p
212, µ

p
222) ∈ Up and up := (up

1, u
p
2) ∈ Qp

such that

A(µp, rp) + B(rp, up) = F (rp), ∀rp ∈ Up,(3.13a)

B(µp, sp) − C(up, sp) = G(sp), ∀sp ∈ Qp,(3.13b)

where rp := (rp
111, r

p
112, r

p
122, r

p
211, r

p
212, r

p
222) ∈ Up, sp := (sp

1, s
p
2) ∈ Qp.

Finite element interpolations of equal polynomial orders are used for all main
variables of the current mixed formulation. Let N1j , N2j , N3j , N4j , N5j , N6j and
N7j , N8j be the global basis (or local shape) functions associated with the dou-
ble stress µp

111, µ
p
112, µ

p
122, µ

p
211, µ

p
212, µ

p
222 and the displacement field components,

up
1, u

p
2, respectively. Then, for the typical main variable ρk (k = 1, . . . , 8) we

have,

(3.14) ρk =
M
∑

j=1

djNkj ,
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Table 2. Typical stiffness matrix block of the mixed finite element method.

µ111 (N1j) µ112 (N2j) µ122 (N3j) µ211 (N4j) µ212 (N5j) µ222 (N6j) u1 (N7j) u2 (N8j)

r111N1i

R

Ω

C11

N1iN1j

g2
dΩ 0

R

Ω

C12

N1iN3j

g2
dΩ 0 0 0

R

Ω

N1i,1N7j,1dΩ 0

r112N2i 0
R

Ω

2C33

N2iN2j

g2
dΩ 0 0 0 0

R

Ω

N2i,1N7j,2dΩ

−

R

S

N2iN7j,2n1dS

R

Ω

N2i,1N8j,1dΩ

r122N3i

R

Ω

C12

N3iN1j

g2
dΩ 0

R

Ω

C22

N3iN3j

g2
dΩ 0 0 0 0

R

Ω

N3i,1N8j,2dΩ

−

R

S

N3iN8j,2n1dS

r211N4i 0 0 0
R

Ω

C11

N4iN4j

g2
dΩ 0

R

Ω

C12

N4iN6j

g2
dΩ

R

Ω

N4i,2N7j,1dΩ

−

R

S

N4iN7j,1n2dS
0

r212N5i 0 0 0 0
R

Ω

2C33

N5iN5j

g2
dΩ 0

R

Ω

N5i,2N7j,2dΩ

R

Ω

N5i,2N8j,1dΩ

−

R

S

N5iN8j,1n2dS

r222N6i 0 0 0
R

Ω

C12

N6iN4j

g2
dΩ 0

R

Ω

C22

N6iN6j

g2
dΩ 0

R

Ω

N6i,2N8j,2dΩ

s1 N7i

R

Ω

N7i,1N1j,1dΩ

R

Ω

N7i,2N2j,1dΩ

−

R

S

N7i,2N2jn1dS
0

R

Ω

N7i,1N4j,2dΩ

−

R

S

N7i,1N4jn2dS

R

Ω

N7i,2N5j,2dΩ 0

−

R

Ω

E11N7i,1N7j,1dΩ

−

R

Ω

E33

2
N7i,2N7j,2dΩ

−

R

Ω

E12N7i,1N8j,2dΩ

−

R

Ω

E33

2
N7i,2N8j,1dΩ

s2 N8i 0
R

Ω

N8i,1N2j,1dΩ

R

Ω

N8i,2N3j,1dΩ

−

R

S

N8i,2N3jn1dS
0

R

Ω

N8i,1N5j,2dΩ

−

R

S

N8i,1N5jn2dS

R

Ω

N8i,2N6j,2dΩ

−

R

Ω

E12N8i,2N7j,1dΩ

−

R

Ω

E33

2
N8i,1N7j,2dΩ

−

R

Ω

E22N8i,2N8j,2dΩ

−

R

Ω

E33

2
N8i,1N8j,1dΩ



578 S. Markolefas et al.

where M is the total number of degrees of freedom (d.o.f.) per variable, at the
global level (or at the elemental level, if we refer to the elemental shape functions)
and dj are unknown parameters to be evaluated (note that dj = dj(k) depends
on k = 1, . . . , 8).

Table 3. Typical force vector block of the mixed finite element method.

r111(N1i)
R

S

N1i
∂u1

∂x1
n1dS

r112(N2i)
R

S

N2i
∂u2

∂x1
n1dS

r122(N3i) 0

r211(N4i) 0

r212(N5i)
R

S

N5i
∂u1

∂x2
n2dS

r222(N6i)
R

S

N6i
∂u2

∂x2
n2dS

s1(N7i) −
R

Ω

N7if1dΩ −
R

S

N7it1dS

s2(N8i) −
R

Ω

N8if2dΩ −
R

S

N8it2dS

The structure of the typical block of the (global or elemental) stiffness matrix
of the above mixed finite element formulation, for the case of boundary lines par-
allel to x and y axis, is depicted in great detail in Table 2. The respective typical
global (or elemental) force vector block is shown in Table 3. The generalization
for curved boundaries is straightforward (only the structure of the boundary line
integrals is affected).

When we refer to the local (elemental) level, the values i, j of indices ranging
from 1 to 4, correspond to the standard bilinear shape functions (of polynomial
order p = 1). The values i,j of indices greater than 4 are associated with the
higher order hierarchical shape functions (or higher order corrections), of poly-
nomial order p ≥ 2 (i.e., the side modes and internal or bubble modes for p ≥ 4
and certain values of i, j greater than 16). For more details, on the construction
of the hierarchical shape functions and the standard numbering at the elemental
level, see [63].

4. Numerical results

Three different model problems are considered. The first model example (sim-
ple axial tension of a rectangular domain) exhibits linear displacement field and
serves as a consistency test (or patch test). This example verifies that the pro-
posed mixed finite element formulation captures the linear exact solution for
arbitrary geometry quadrilateral elements, as well as, for arbitrarily varying el-
ement sizes.
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The second example is used to verify the standard rates of convergence of
the uniform h- and p- extensions. The forcing functionals and the boundary
conditions of the general mixed form (3.11) are set up so that the exact solution
includes only the double stress µ222 = sin(x) sin(y), defined on the square domain
Ω := (0, 2π)2 ⊂ R

2.
The third example refers to the Mode I crack problem in the framework

of isotropic dipolar plain strain gradient elasticity. The exact solution for the
true stress field is highly singular near the crack tip, varying as O(r−3/2) within
a neighborhood of O(g), c = g2 [21]. The last model problem verifies the ability
of the current mixed formulation to capture the exact solution behaviour at dif-
ferent length scales, provided that proper mesh refinement has been performed.

4.1. Model Problem 1 (Patch Test): linear displacement field (pure Cauchy axial
stress state)

The problem geometry and boundary conditions are shown in Fig. 2a. The
exact solution fields are given by,

(4.1) u1 = −ν
P

E
y, u2 =

P

E
y, µijk = 0,

where

t2 = P

[

Force

Length2

]

is the externally applied true traction along y axis.
Based on extensive numerical experimentation, for any rectangular domain

of area L×B, arbitrary material properties and general quadrilateral meshes of
arbitrary polynomial order, the finite element solution coincides with the exact
solution. Moreover, using the finite element mesh of Fig. 3 and the data of
Fig. 2b for any polynomial order p, the axial tension exact solution t2 = P = 10
is captured at all scales (mesh refinement levels).

4.2. Model Problem 2: benchmark problem with non-zero double stresses

The purpose of the current example is to test the standard rates of con-
vergence of the uniform h- and p-extensions. This provides an indication for
the quasi-optimality of the formulation. The forcing functionals of the mixed
weak form (3.11) are computed so that the exact solution of the problem is
µ222 = sin(x) sin(y) on the square domain Ω := (0, 2π)2 ⊂ R

2. The material
properties are the same as in model problem 1.

Figure 4a gives the h-extension convergence of the relative error in the H1

semi-norm, with respect to the inverse of the non-dimensional element size pa-
rameter (in a log-log scale). More specifically, 1/h = 2 means 2 × 2 elements
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a)

b)

Fig. 2. Upper right quarter of (a) a slab subjected to axial tension along y axis, and
(b) a cracked slab subjected to axial tension along y axis (Mode I). Problem geometry and
Boundary Conditions, based on symmetry and Plane Strain Gradient Elasticity Theory.

uniform mesh, 1/h = 4 means 4 × 4 elements uniform mesh etc. The relative
error is defined as

(4.2) Er1 := 100
|µ222 − µh

222|1
|µ222|1

,

where µh
222 denotes the h-extension finite element solution (with constant poly-
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a)

b)

c)

Fig. 3. Finite element mesh (a) global mesh, (b) refinement levels 1, 2, 3, and (c) refinement
levels 4, 5.



582 S. Markolefas et al.

a)

b)

c)

Fig. 4. Relative error in the (a) H1 semi-norm, Er1 (%) vs non-dimensional element size
parameter (h-extension), (b) H1 semi-norm, Er1 (%) vs the number of d.o.f. (h-extension),

(c) L2 norm, Er0 (%) vs non-dimensional element size parameter (h-extension).
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d)

e)

f)

Fig. 4. [cont.] (d) L2 norm,Er0 (%) vs the number of d.o.f. (h-extension), (e) H1 semi-norm,
Er1 (%) vs polynomial order (p-extension), (f) H1 semi-norm, Er1 (%) vs the number of

d.o.f. (p-extension).
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g)

h)

Fig. 4. [cont.] (g) L2 norm, Er0 (%) vs polynomial order (p-extension), and (h) L2 norm,
Er0 (%) vs the number of d.o.f. (p-extension).

nomial order and increasing the number of elements uniformly) and |y|1 :=
√

∫

Ω ((y,1)2 + (y,2)2)dΩ denotes the H1 semi-norm of a two-dimensional scalar

valued function y(x, y) [62,65].
Figure 4a confirms the standard rate Er1 = O(hp) [62], where p is the

interpolation polynomial order (for the h-extension, p = 1, 2 and 3 is used).
Figure 4b confirms the respective rates in terms of the number of d.o.f N ,
Er1 = O(N−p/2). Recall that asymptotically, the relation (for quasi-uniform
refinement) N ≈ O(h−2) is independent of whether all or only the active d.o.f.
are employed. Also, the relation N ≈ O(h−2) is independent of the number of the
main variables in the formulation (the constant is different but the asymptotic
behavior is the same).
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Figures 4c and 4d provide the respective rates of convergence of the relative
error in the L2 norm,

(4.3) Er0 := 100
‖µ222 − µh

222‖0

‖µ222‖0
.

where ‖y‖0 :
√

∫

Ω y2dΩ denotes the L2 norm of a two-dimensional scalar valued

function y(x, y) [62, 65].
The theoretical rates Er0 = O(hp+1) and Er0 = O(N−(p+1)/2) are verified

[62].
It is also noted that as the number of d.o.f. increases, the higher order el-

ements are more efficient in terms of the error reduction, as compared to the
lower order elements.

Figures 4e and 4f provide the p-extension convergence of the relative error
in the H1 semi-norm, with respect to the polynomial order and the number of
d.o.f.

Figures 4g and 4h provide the respective p-extension convergence of the rel-
ative error in the L2 norm. In all cases the exponential rate of convergence is
confirmed [62, 63].

4.3. Model Problem 3: Mode I crack problem in 2d isotropic strain gradient elas-
ticity

The problem geometry and boundary conditions are shown in Figure 2b. Due
to symmetry considerations, the upper right quarter of the total problem domain
is analyzed. The problem parameters are as follows: c = 0.00405 [Length2],
g =

√
c = 0.06364 [Length], t2 = P = 10 [ Force

Length2 ], E = 10 [ Force
Length2 ].

Based on the theoretical analysis, see [21], next to the crack tip, within
a neighborhood of radius O(g), the opening displacement field is O(r3/2), where
r is the distance from the crack tip. Away from this neighborhood, but still
far from the external boundaries, the exact solution displacements approach
the asymptotic behaviour O(r1/2) of the standard elasticity (asymptotic) solu-
tion.

Moreover, due to gradient effects, the true stress t2 (the y component of the
true traction on a section parallel to the x axis), near the crack tip (crack head)
has opposite sign from that of the elasticity solution and approaches infinity as
O(r−3/2). Far from the neighborhood of radius O(g), but still near the crack
tip, compared to the problem domain size, the exact true stress approaches the
asymptotic behaviour O(r−1/2) of the classical elasticity solution. Away from
the crack tip, the true stress approaches the exact stress field (far field solu-
tion), derived from the standard elasticity theory for the given configuration
and externally applied loads.
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Fig. 5. Crack face opening displacement, as viewed from the (a) macro-scale, (b) meso-scale,
and (c) micro-scale, for various FEM polynomial interpolation orders (x = 0 is at the crack

tip and 0 < x < 10 is the crack face).
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Fig. 6. Crack face opening displacement – Log–Log plot depicting the FEM Solution
asymptotic exponents, at various scales of the problem.
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Fig. 7. Crack head true stress t2 distribution, as viewed from the (a) macro-scale, and
(b) meso-scale, for various FEM polynomial interpolation orders.

All the above are verified by the following numerical results. The mesh em-
ployed in the finite element analysis is depicted in Fig. 3. Figure 5 depicts the
crack opening displacement field (crack face), at macro, meso and micro scales
of the problem. By meso-scale we mean the transition region where the nature of
the exact solution changes radically, from the asymptotics of the standard elas-
ticity solution O(r1/2) to the asymptotics of the strain gradient solution O(r3/2),
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Fig. 8. Crack head true stress t2 distribution – Log–Log plot depicting the FEM Solution
asymptotic exponents at various scales of the problem (note that, for compressive stresses

near the crack tip, absolute values have been used for the log-log plot).

see Fig. 6. Note that, in the vicinity of the crack tip (micro scale), the crack face
opening displacement exhibits a cleaving (cusp-like) behaviour, as opposed to
the classical elasticity displacement field which is more blunted.

Figures 7 depicts the distributions of the total (true) stress t2, ahead of the
crack tip, using the finite element values at the middle of the element boundary
edges. As predicted by the full field analysis [21], the true stress exhibits a local
maximum at the meso-scale, see Fig. 7b. Then it reduces, reverses sign (from
tensile to compressive) and becomes infinite, as O(r−3/2), within a small neigh-
borhood of the order O(g), see Fig. 8. Our numerical experimentations reveal
that the current finite element method captures the true stress local upper bound,
in the vicinity of crack head, as the polynomial order increases (it is noteworthy
that the convergence is not monotonic, for a fixed mesh configuration).

5. Closing discussion

A mixed formulation for the general 2D plane strain gradient elasticity prob-
lem has been developed and implemented. The current formulation employs the
double stress components and the displacement field as main variables (µ-u for-

mulation). Hierarchical, high order, C0-continuous, conforming basis functions
were used in the finite element approximation, with equal polynomial interpo-
lation order for all main variables. The uniform h- and p-extensions standard
asymptotic convergence rates are numerically verified.
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The results for the Mode I crack problem show that, with proper mesh re-
finement near the crack tip, the current mixed method is capable of capturing
the exact solution features at various length scales. The theoretical predictions
for the mode I crack problem are verified [21]. The true stress near the crack tip
exhibits a local maximum positive value and the crack face opening displacement
exhibits a cusp-like behaviour. The true stress upper bound is captured by the
finite element solution, as the polynomial order is enhanced.

The effectiveness of the approximate solutions can be improved dramatically
with proper selective polynomial refinement, based on a posteriori error esti-
mators and adaptive techniques. Past experience can be used, as regards the
development of p-adaptive degree-of-freedom error indicators (selective polyno-
mial refinement), for similar type one dimensional mixed formulations [68]. It
is noted that in [68] the error indicators are based on (local implicit residual)
a posteriori error estimators, using the full local Dirichlet problems (element-by-
element approximation of the mixed finite element error weak formulation).
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