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The present work is devoted to the free convection flow occurring
about a heated vertically stretching permeable surface placed in a porous medium
under the influence of a temperature dependent internal heat generation or absorp-
tion. There are volume radiative heat sources in the fluid and the system is permeated
by a uniform magnetic field. It is shown that the governing equations are reducible to
a self-similar nonlinear ordinary differential equation of third order whose solutions
are constructed analytically in the purely exponential series form. Under special cir-
cumstances, closed-form solutions are available which clearly indicate the existence
of dual natural convection solutions. Otherwise, analytical solutions are still possible
which are shown to be computed from an elegant algorithm without a need to invoke
any numerical means. Exact solutions demonstrate, in physical insight that, in the
presence of a heat sink absorbing the temperature from the porous medium increases
the rate of heat transfer from the wall, whereas a heat source mechanism will surely
overheat the system during the wall heating process, resulting in poor heat transfer
rates. The presented exact solutions are beneficial for investigation of free convec-
tion phenomena in different geometries taking into account more complex physical
features in higher dimensions.
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1. Introduction

It is well-known that the density variations due to the temperature
gradients in a fluid medium lead to a physical mechanism called free (natural)
convection. Such a physical operation is encountered in many real-life applica-
tions as far as the porous media is concerned, for example while cooling the
electronic equipment in computers, forming the clouds in atmosphere, interac-
tion of spices in chemical engineering, processes in biological systems, removing
heat from nuclear fuel debris, insulating the constructions, storing the energy
and foods and so on, refer to the comprehensive reviews [1, 2] and [3] for more
applications. The current investigation is also about the phenomenon of mag-
netohydrodynamics (MHD) natural convection in saturated porous media with
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heat generation/absorption and thermal radiation with an objective of gaining
closed-form solutions.

The heated vertical plate placed in a medium of porous feature received con-
siderable attention lately in order to explain the process of free convection. In the
absence of a source to cause a heat generation, several temperature conditions,
from a variable surface temperature to a variable heat flux were successfully an-
alyzed in [4]. Effects of porosity were numerically simulated in [5]. On the other
hand, the internal heat generation has an active role in the natural convection
heat transfer in many porous media problems. Due to its significance, [6] first
considered the internal heat generation term in the governing energy equation as
a fixed variable term for the problem of free convection from a vertical wall em-
bedded in a porous medium. Many researchers adhered to this plausible work, by
taking into account such an internal heat generation term. For instance, [7] ex-
tended the work of [6] to the non-Newtonian fluid case; [8] incorporated the
effects of mass injection/removal through the wall boundary; [9] discussed the
convective boundary condition associated with the temperature; [10] took into
account the double diffusive Soret and Dufour effects with a power-law fluid. The
radiation effects were included in the numerical investigation of [11]; [12] studied
the effects of viscous dissipation and magnetic field. The free convection problem
affected by the presence of a saturated nanofluid medium was the focus of the
study in [13]. The conditions of variable thermal diffusivity and mass diffusivity
in a non-Newtonian fluid were examined in [14], followed by the concentration
effects in [15].

The internal heat generation term introduced and employed in [6] to the
heated vertical wall was also considered in the following applications, such as
the natural convection phenomena in vertical cones, see [16] and [17], and in
the horizontal plates [18] and [19]. Very interesting applications of porous media
correlated with natural convection can be found in the recent papers [20–24].

The prime motivation for the current research is to substitute the fixed inter-
nal heat generation term as used in the above papers with that of a temperature
dependent heat flux term representing more realistic situations. Within this per-
spective, the effects of such a term are to be investigated on the free convection
taking place along a vertical plate embedded in a porous medium. The plate is
assumed to be heated permeable and radiative subjected to a uniform magnetic
field. The governing equations are reduced to a self-similar form whose solutions,
unlike the existing numerical literature, are presented in an elegant analytic form
which can be expressible in either closed-form or infinite series. The solutions
perfectly conform to those numerical ones for the particular parameters. In the
case of series, an algorithm is further introduced necessitating no numerical com-
putations. The engineering interest of the heat transfer rate can be easily derived
from the presented formulas.
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2. Physical problem and mathematical formulation

As depicted in Fig. 1, we consider the free convection phenomenon about
a flat plate heated with the wall temperature Tw(x) = T∞ + axΛ, with T∞
being the ambient temperature and (a, Λ) being positive temperature-related
constants. The flat body is embedded in a porous medium, taking into account
a heating/cooling heat flux term (heat generation rate) dependent on the tem-
perature in the manner q′′′ = Q̃(T − Tw) in place of a preassigned exponentially
decaying heat generation as introduced in [6], where Q̃ is the volume heating
generation/absorption rate. The advantage of the present thermal flux term is
that it enables us to gain the unknown internal heat generation as a solution
of the full energy equation, rather than prescribing it in the form of an expo-
nential function. The wall is assumed to be permeable with a wall transpiration

velocity Vw(x) = vwx
Λ−1

2 , such that the wall permeability parameter vw will
be apparent as a consequence of the following analysis. The thermal radiation
effect is accounted for with the Rosseland based radiation flux qr = −c(T 4)y
(c is constant), but linearized such that qr = dTy, where the constant d is owing
to the Taylor expansion of the quadruple temperature. A uniform magnetic field
further acts against the surface in the positive y direction to retard the motion
with a uniform magnetic field strength B0, refer to Fig. 1.
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Fig. 1. The schematic of the natural convection about a heated vertical flat surface
subjected to various physical phenomena.
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Having the practical engineering applications as aforementioned in the Intro-
duction, in the process of free convection about a vertical surface, the specific task
of flow through the porous medium along the heated plate under the imposed
physical mechanisms is to assess the temperature distribution and estimate the
resultant heat transfer rate from the surface of the wall, facilitating the cooling
process. The particular aim is to use a more realistic radiation term than it was
being done up to now in the literature on the topic. Therefore, in the subse-
quent analysis it is targeted to solve the governing nonlinear equations of porous
media and obtain exact representative formulae for the flow, temperature and
the Nusselt number. Following [6] and in view of the Boussinesq and boundary
layer approximations together with the Darcy porous model, the natural convec-
tion takes place according to the following governing equations and boundary
conditions [25]

ux + vy = 0,
(

1 +
σB2

0K

ν

)

u =
gKβm
ν

(T − T∞),

uTx + vTy =
k

ρcp
Tyy +

Q̃

ρcp
(T − T∞) +

d

ρcp
Tyy,

v = Vw(x), T = Tw(x) on y = 0,

u → 0, T → T∞ as y → ∞.(2.1)

In (2.1), (u, v) represents the two-dimensional velocity field along the coordi-
nates (x, y), T is the temperature field, σ is the electrical conductivity, K is the
porosity factor, ν is the kinematic viscosity, g is the gravitational acceleration,
βm is the thermal expansion parameter, k is the thermal conductivity and cp
is the specific heat. Provided that the magnetic Reynolds number is assumed
small, the magnetic term in the momentum equation in (2.1) can be represented
as a consequence of the magnetohydrodynamic (Lorentz) resistive force evaluated
from

σ
(

(u
−→
i + v

−→
j ) ×B0

−→
j ×B0

−→
j

)

= −σB2
0u

−→
i .(2.2)

With the help of the change of units

e =
gKβm

αmν(1 +M)
, αm =

k

ρcp
,(2.3)

the scaled boundary layer coordinate

(2.4) η =
√
aex

Λ−1
2 y,
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and the similarity transformations f and θ

u = αmaex
Λf ′(η),

v = −αm
√

ae

4
x

Λ−1
2 [(1 + Λ)f(η) + (Λ− 1)ηf ′(η)],

T = T∞ + axΛθ,(2.5)

system (2.1) is expressed in the reduced similarity form

f ′′′ + αff ′′ − βf ′2 +Qf ′ = 0,

f(0) = s, f ′(0) = 1, f ′(∞) = 0(2.6)

with f ′ = θ and αmaex
Λ = uw corresponding to the surface deformation. In (2.6),

defining the wall permeability in the form vw = −αm
√

ae
4 (Λ + 1)s leads to

the wall suction parameter s = f(0) > 0, and the wall injection when s < 0.
Moreover, the appearing parameters are

α =
1 + Λ

2(1 +Nr)
, β =

Λ

(1 +Nr)
,

with Nr = d/k being the thermal radiation parameter, Q = ˜̃Q/(kae(1 +Nr))

being the heat generation (> 0) or absorption (< 0) parameter ( ˜̃Q = Q̃x1−Λ)
and M = σB2

0K/ν being the magnetic interaction parameter. We should note
that replacing Qf ′ in (2.6) by the exponential function e−η and also accounting
for M = s = Nr = 0, (2.6) turns into the mathematical model given in [6].

In terms of an engineering viewpoint, we are mainly interested in the scaled
local rate of heat transfer, or the scaled local Nusselt number defined by

(2.7) Nu =
Nulocal
√
eax

Λ+1
2

= −θ′(0) = −f ′′(0),

where Nulocal is as a result of the local surface heat flux. Integrating (2.6) once
from the semi-infinite physical domain, we have

(2.8) f ′′ + αff ′ +Qf + (α+ β)

∞
∫

η

f ′2(η) dη = Qf∞,

where f∞ = f(∞) and so, from (2.7),

(2.9) Nu = (α+Q)s−Qf∞ + (α+ β)

∞
∫

0

f ′2(η) dη.

The result presented in (2.9) alone is successfully able to explain the effects of
s and Q, for preassigned values of α and β (preserving the effects of magnetic
field, temperature and radiation) on the heat transfer analysis of the considered
problem, having identified f from the system in (2.6).
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3. Analytical solution method

Dissimilar to the available numerical solutions in the literature obtained from
various numerical schemes, we plan to find out exact solutions representing the
flow and temperature fields. The following solution method stems from the study
published in [26], particularly valid when Q < 0 (in place of M in [26]). Taking
into account the asymptotic far field condition of the system (2.6), it is realistic
to search for solutions of the purely exponential serial form

(3.1) f(η) =
∞

∑

n=0

Ane
−nλη,

such that the exponent λ in (3.1) is a positive constant to match to the infinity
boundary condition and A0 = limη→∞ f(η) = f(∞) = f∞. Both A0 and λ are
to be found.

Injecting (3.1) into (2.6) results in

(3.2) − nλ(n2λ2 +Q)An + αn2λ2A0An

+
n−1
∑

k=0

kλ2[(α− β)k + β(2k − n)]AkAn−k = 0, n ≥ 0.

There are two subcases to be considered now, in accordance with the far field
behavior of the stream function f .

3.1. A0 = f(∞) = 0, A1 6= 0

In this case the parameter Q cannot be zero and we have

λ =
√

−Q

from (3.2) implying that (3.1) type solutions are available only when Q < 0
corresponding to the presence of heat absorption, and hence to a system cooling,
to be determined from the system

An =
1

λn(n2 − 1)

n−1
∑

k=0

k[(α− β)k + β(2k − n)]AkAn−k, n ≥ 2,

s =
∞

∑

n=1

An, 1 =
∞

∑

n=1

(−nλ)An.(3.3)

Making use of (3.3), for a given s, we can numerically determine the pair of
unknowns (λ,A1). On the other hand, to avoid the numerics, we propose the use
of new coefficients an from

An = λκnan,(3.4)
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with κ = A1/λ such that a1 = 1.
With the help of (3.4), (3.3) can be rewritten as

a0 = 0,

a1 = 1,

an =
1

n(n2 − 1)

n−1
∑

k=0

k[(α− β)k + β(2k − n)]akan−k, n ≥ 2,

s

λ
=

∞
∑

n=0

κnan,

1

λ2
= −

∞
∑

n=0

nκnan.(3.5)

Thus, for fixed values of α and β, since a′ns are all known, prescribing a value of
κ so that the sum’s in (3.5) are both convergent will produce λ and s from the
last two equations in (3.5) as

λ =

(

− 1
∑

∞

n=0 nκ
nan

)1/2

,

s = λ
∞

∑

n=0

κnan.(3.6)

It should be alerted that, if s is fixed in (3.5), then a numerical scheme must
be employed to get κ and λ, which is not what we want here. We emphasize that
expressions in (3.6) are exact formulas for the physical parameters as opposed
to the numerical values existing in the literature. The valid region of κ may be
obtained from a map by forcing the sums in (3.6) are convergent with simple
exercising. This can be achieved up to any required degree of accuracy by taking
as many terms as possible in the sum. In the more special values of α = β
corresponding to Λ = 1, a closed-form solution can be found from (3.5) and
(3.6) resulting in

f(η) = se
η
s ,(3.7)

valid for s < 0, λ = −1/s, Q = −1/s2, which indicates that Nu = −θ′(0) =
−f ′′(0) = −1/s is positive and hence an increased heat transfer from the wall
is attained for the stream function of the form (3.7). Obviously, as the injection
gets stronger, the rate of heat transfer will degrade.
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3.2. A0 = f(∞) 6= 0, A1 6= 0

In this case, from Eq. (3.2) we anticipate that

A0 =
λ2 +Q

αλ
,(3.8)

and the rest of the coefficients can be found from

An =
λ

n(n− 1)(nλ2 −Q)
(3.9)

×
n−1
∑

k=0

k[(α− β)k + β(2k − n)]AkAn−k, n ≥ 2.

With the help of the new scaled parameters Q = λ2Q̄, s = λs̄, An = A0κ
nan

with κ = A1/A0, (3.9) and the boundary conditions are no longer explicitly
relying upon the unknown coefficients λ and A1, and hence we have

a0 = 1,

a1 = 1,

an =
1 + Q̄

αn(n− 1)(n− Q̄)

n−1
∑

k=0

k[(α− β)k + β(2k − n)]akan−k, n ≥ 2,

s̄ =
1 + Q̄

α

∞
∑

n=0

κnan,

1 = −λ2

(

1 + Q̄

α

) ∞
∑

n=0

nκnan.(3.10)

From the last two equations in (3.10), λ and s̄ can be evaluated as

λ =

(

− α

(1 + Q̄)
∑

∞

n=0 nκ
nan

)1/2

,

s̄ =
1 + Q̄

α

∞
∑

n=0

κnan.(3.11)

Therefore, for preassigned values of κ (and fixed Q̄, α and β), s̄ and λ from
(3.11) can be found which are later on used to get s and Q and hence all the
physical quantities are known. It is also noteworthy to draw attention that when
α = β, the exponent λ can be exactly worked out from (3.10) and (3.11)

λ =
αs±

√

α2s2 + 4(α−Q)

2
,(3.12)
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implying the existence of dual solutions for the suction case and unique solution
for the injection, both depending on the heat generation/absorption parameter
Q and α.

4. Results and discussions

We should in prior mention that our model collapse onto the well-documented
one of [27], when α = Λ+1

2 and β = Λ in the absence of M , Nr, s and Q.
To further validate the extracted model in the present investigation, and to
justify the correctness of the exponential type solutions, Tables 1 and 2 are listed
comparing the present outcomes (15 terms in the series) with those available in
the open literature. Excellent agreement is anticipated in the Tables. We notice
that the present model also covers the physical situation valid for the natural
convection about a vertical cone formulated in [16], as inferred from Table 2.

Table 1. The heat transfer rates Nu at M = Nr = s = Q = 0 over a vertical plate.

[28] [6] [7] Present

(α = 1/2, β = 0.0) 0.4437 0.4440 0.443885 0.443833

(α = 2/3, β = 1/3) 0.6776 0.6788 0.677707 0.677648

Table 2. The heat transfer rates Nu at M = Nr = s = Q = 0 over a vertical cone.

[29] [16] Present

(α = 3/2, β = 0.0) 0.7685 0.7686 0.768742

(α = 7/4, β = 1/2) 0.9896 0.9897 0.989621

Present solutions are discussed next separately for A0 6= 0 and A0 = 0.

4.1. A0 6= 0

A few of the coefficients are displayed below from (3.10)

a0 = 1,

a1 = 1,

a2 = −(α−β)(1+Q̄)

2α(−2+Q̄)
,

a3 =
(5α−4β)(α−β)(1+Q̄)2

12α2(−3+Q̄)(−2+Q̄)
,

a4 = −(α−β)(1+Q̄)3(−68α2+106αβ−42β2+(31α2−47αβ+18β2)Q̄)

72α3(−2+Q̄)2(12−7Q̄+Q̄2)
.(4.1)
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When the infinity boundary condition is not vanishing, under the special cir-
cumstance α = β, from (3.12) exponential solutions are restricted to

Q ≤ 1

4
(4α+ s2α2).

Moreover, there exists a critical pair (Q,λ) for the appearance of dual solutions
which are computed as

(Q,λ) =

(

1

4
(4α+ s2α2),

sα

2

)

,(4.2)

which clearly points that in the presence of wall suction together with a positive
value of α, dual solutions exist as also evident from Fig. 2. Such solutions are
likely to appear only for the heat generation case. This scenario, of course may
change if negative values of α are taken into account, which is also possible by
the negative values of Λ.

3

2
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0-1

-2

s = 4

-4 -2 0 2 4
0

1

2

3

4

5

Q

Λ

Fig. 2. Domain of the existence of purely exponential solutions when α = β = 1.

Figures 3(a–c) reveal the effects of heat generation/absorption parameter Q̄
on the domains of λ, s̄ and κ as well as on the heat transfer rate Nu, when
α = 2/3 and β = 1/3. Hence, we can see that preassigning κ can produce all
other physical parameters as demonstrated in the figures. We can also see the
domain of the parameter κ yielding convergent series. A common observation
from the figures is that when κ is larger, the exponent λ, the suction/injection
parameter s̄ and the Nusselt number Nu are also larger, in compliance with the
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Fig. 3. The effects of Q̄ on the physical parameters λ, s̄, κ and Nusselt number.

physical expectations. From the figures it is easy to deduce the well-known result
that the suction cools down the porous medium whereas the injection heats it up
leading to poorer heat transfer rates. All these physical outcomes are connected
with the exponent λ. In addition to this, absorbing the heat from the system
with a negative Q̄ results in better heat transfer rates as compared to the positive

Table 3. The values of λ, s̄ and Nu at α = 2/3, β = 1/3 and κ = −1/2.

Q̄ = −1/2 Q̄ = 0 Q̄ = 1/2

1.6731748403 1.2246910238 1.0563777443

0.3840527014 0.7932861455 1.2473565111

1.5940722585 1.0889155503 0.8375230026
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values of Q̄, as approved from the figures. For future reference, Table 3 tabulates
some values of λ, s̄ and Nu for three values of Q̄ at the selected parameters
α = 2/3, β = 1/3 and κ = −1/2.

4.2. A0 = 0

A few of the coefficients are displayed below from (3.5)

a0 = 0,

a1 = 1,

a2 =
α−β

6
,

a) b)
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Fig. 4. The effects of κ on the physical parameters λ, s and Nusselt number.
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a3 =
1

144
(5α−4β)(α−β),

a4 =
(α−β)(33α2−51αβ+20β2)

4320
,

a5 =
(α−β)(443α3−1008α2β+774αβ2−200β3)

259200
,

a6 =
(α−β)(41861α4−125686α3β+142913α2β2−72800αβ3+14000β4)

108864000
.(4.3)

Figures 4(a-c) reveal the effects of κ on the domains of λ, s as well as on the heat
transfer rate Nu, when α = 2/3 and β = 1/3. Similar behaviors are exhibited in
Figs. 4(a-c). We should remark that Q = −λ2 in this case. For future reference,
Table 4 tabulates values of λ, s, Q and Nu at the selected parameters α = 2/3,
β = 1/3 for some κ.

Table 4. The values of λ, s and Nu at α = 2/3, β = 1/3 for some κ.

λ s Q Nu

κ = −2 0.7797878688 −1.4106793076 −0.6080691204 0.6450007908

κ = −1 1.0533632712 −0.9993075844 −1.1095741812 0.9507880027

κ = −1/2 1.4527010507 −0.7069776589 −2.1103403428 1.3772752129

κ = −1/4 2.0274923962 −0.4999765437 −4.1107254167 1.9730705227

Finally, certain velocity and temperature profiles corresponding to Table 4
are displayed in Fig. 5. The graphs in the figure clearly exhibit the influences
of physical parameters on the flow and temperature fields, in parallel to the
physical intuition.

Κ=-0.25, -0.5, -1, -2

Κ=-0.25, -0.5, -1, -2

0 2 4 6 8

-1.0

-0.5

0.0

0.5

1.0

Η

f
Θ

Fig. 5. Velocity and temperature distributions for some prescribed parameters, see Table 4
for the corresponding parameters.



62 M. Turkyilmazoglu

5. Concluding remarks

The free convection flow occurring about a heated permeable vertically
stretching surface placed in a porous medium is the main concern of the present
work. The originality stems from the use of a temperature dependent internal
heat generation or absorption flux, in place of the one which is preassigned in
the previous studies in the literature. The analysis is conducted in the presence
of volume radiative heat sources in the fluid while the system is permeated by
a uniform magnetic field.

The present work is also differentiated from the literature in that the reduced
nonlinear ordinary differential equation governing the physical phenomenon is
treated analytically here. As a result, either closed-form exact solutions are ob-
tained for some specific values of the physical parameters, otherwise solutions are
sought in the purely exponential series form. In this case, an elegant algorithm
is also proposed to determine the temperature distribution with an accuracy up
to the desired decimal place without resorting to any numerical schemes.

Exact solutions are found, which are shown to be either dual or unique,
depending on the governing parameters. To conclude, in the presence of a heat
sink absorbing the temperature from the medium increases the rate of heat
transfer from the wall, whereas a heat source will surely heat up the system
under consideration, resulting in poorer heat transfer rates.

Since the present work generalizes the internal heat generation term sug-
gested in [6], in future works, many publications pursuing that article may be
reconsidered within the context of the present model. Finally, the presented data
has the potentiality to be considered as a verification tool for the natural con-
vection processes about more complex surfaces in higher dimensions.
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