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A single layer shear deformation plate theory with superposed shape
functions for laminated composite plates has been proposed. Some of the previously
developed, five degrees of freedom shear deformation theories, including parabolic [1],
hyperbolic [2], exponential [3] and trigonometric [4] plate theories have been superposed
by applying different theories in the different in- plane directions of the composite
plate. Statics and dynamics of composite plate problems have been investigated. It was
obtained that using different shape functions in the different in-plane directions may
decrease the percentage error of stress and deflection. Present hyperbolic-exponential
and parabolic-exponential theories predict stiffer properties (give lower bending and
stress values, and higher frequency, and buckling loads when compared to the 3-D
elasticity). Some improvements were determined for y-z component of the transverse
shear stress using hyperbolic-exponential and parabolic-exponential theories for
symmetric cross-ply composite plates when compared to available single shape function
plate models. Global behaviours (vibration frequency and critical buckling loads) are
predicted within %5 accuracy similar to plate theories with single shape functions.
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1. Introduction

Laminated composite structures are preferred in many areas like
aerospace, automotive and submarine applications due to their low specific den-
sity and low specific modulus. These structures are used generally in rod, beam,
plate and shell forms depending on the needs. It is well known that basically two
different approaches are used in the modelling of laminated composite structures:
single layer theories and discrete layer theories. In the latter group, the number
of variables depends on the number of layers in the composite structure, so it is
relatively difficult to use them when modelling composite structures. Moreover,
in the former group, the whole laminated structure is considered as an equivalent
single layer in the analysis.

Displacement based single layer theories can be divided into two groups: The
classical laminated plate theory and shear deformation plate theories. In the
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classical plate theory, a plane stress assumption is assumed for the deformation,
whereas transverse shear deformations are also included in the shear deforma-
tion theories using different transverse shear strain assumptions. It was shown in
the many of the previous studies that the classical plate theory gives acceptable
results only for thin plates and it is not suitable especially for advanced com-
posite material plates and thick plates. In order to overcome the shortcomings
of the classical plate theory, similar to the Timoshenko beam theory, the first
order shear deformation theory is proposed by Mindlin [5] and Reissner [6].
A classical plate theory is the three-degrees of freedom theory, whereas the first
order shear deformation plate theory is the five degrees of freedom plate model.
In the application of this theory a shear correction coefficient is used in order
to satisfy the plate boundary conditions at the top and bottom surfaces of the
plate. According to the 3-D elasticity theory, the transverse shear stress distri-
bution in the thickness direction of plate is approximately parabolic. Different
shear deformation theories have been proposed during the last 6–7 decades, in-
cluding polynomial [1, 6, 7], trigonometric [2, 4, 8], exponential [3, 9, 10]. A gen-
eral shear deformable plate theory has been proposed and used by Timarci
and Soldatos [11] for dynamic analysis of laminated shells and Aydogdu and
Timarci [12], Timarci and Aydogdu [13], Aydogdu [14] for statics and dy-
namics of composite plates.

Later, some new functions were proposed by Reddy [1], Touratier [8],
Soldatos [2], Karama et al. [3]. Different shear deformation theories were
compared for dynamic and static analysis of laminated composites [14].

In addition to ESLT, the layer-wise theories and individual layer theories
have been proposed to predict composite behaviour on the ply level by Wu and
Chen [15] and Cho et al. [16]. These theories are often computationally more
expensive to obtain accurate results. Recently, Abrate and Di Sciuva [17] have
reviewed the single layer shear deformation theories. The following conditions are
satisfied by the shear deformation theories considered in the literature:

– transverse shear stresses are zero at the top and bottom surfaces and
nonzero elsewhere,

– approximately parabolic transverse shear stress distribution.
In the previous studies generally, the same shape function has been used in
the in-plane directions. The shape function may change depending on material
properties, boundary conditions and the aspect ratio of the plates.

The main novelty of the present study is to investigate the possibility of the
different shear deformation theories in the different in-plane directions. The mo-
tivation of the study comes from the different material properties in different
vertical planes in a laminated composite structure. Therefore, identical and dif-
ferent shear deformation theories will be used in the different in-plane direction
in order to obtain static and dynamic response of composite plates.
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In the present study, following additional assumptions are considered.
– 2-D results should be less than 3-D results,
– depending on the lamination configuration possibility of using different

shape functions in different in-plane directions.
Validity of superposed shape functions was checked by comparing obtained

results with existing 3-D and various 2-D results for bending, stress, vibration
and buckling of symmetric cross-ply composite plates. Combinations of four gen-
erally used shear deformation theories have been constructed. Parabolic, hyper-
bolic, exponential and inverse trigonometric theories were used. These theories
were denoted as R, S, E and T, respectively.

2. Laminated composite plates

Consider a rectangular plate with dimensions (a, b, h) where a and b are the
in-plane dimensions, and h is the thickness of the plate. The plate is assumed to
be constructed of linearly elastic orthotropic layers.

2.1. Displacement field

In this work, a displacement based equivalent single layer five degrees of
freedom shear deformation theory is used for laminated composite plates. The
following displacement field is generally used for a shear deformation plate theory
(a theory with the following kinematic assumption) [7, 9, 11–14]:

(2.1)

U(x, y, z; t) = u(x, y; t) − zw,x + f(z)u1(x, y; t),

V (x, y, z; t) = v(x, y; t) − zw,y + g(z)v1(x, y; t),

W (x, y, z; t) = w(x, y; t),

where U , V and W are the displacement components along the x, y and z di-
rections respectively, and u, v and w are the displacement of a point at the
mid-plane along the x, y and z directions, respectively. Here u1 and v1 are the
shear deformations measured at the mid-plane of the plate. f(z) and g(z) repre-
sent shape functions determining the distribution of the transverse shear strains
and stresses along the thickness of the plate. A detailed check of the previously
published papers showed that, generally the shear strain shape functions were
chosen as the same functions in x and y directions (i.e. f = g). Considering dif-
ferent material properties along the thickness direction of a laminated composite
plate in the x–z and y–z planes (Fig. 1), choosing different shape functions in
the x and y directions may increase the accuracy of the obtained results.

In the present study, different functions were chosen from the literature as
a shape function in order to represent the transverse shear stress distributions.
Most common used four shape functions are listed in Table 1.
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Fig. 1. 1-Composite plate cross-sections in x-z and y-z planes.

Table 1. Different transverse shear deformation functions.

Model Function

Reddy (1984) [1], Reddy Model f(z) = z

„

1 −
4z2

3h2

«

Soldatos (1992) [2] f(z) = h sinh

„

z

h

«

−z cosh

„

1

2

«

Karama et al. (1998) [3], KAM Model f(z) = ze−2(z/h)2

Thai et al. (2014) [4] f(z) = ha tan

„

2z

h

«

− z

These shape functions satisfy the zero stress boundary conditions at the top
and bottom surfaces of the plate and there is no need to use a shear correction
factor which is used in the first order shear deformation theories. Combinations
of these four functions were used in Eq. (2.1) as a shape function in this study.

2.2. Strain displacement relations

The displacement model given in Eq. (2.1) yields the following kinematic
relations:

(2.2)
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where a prime denotes the derivative with respect to z and “ ,x” and “ ,y” represent
partial derivatives with respect to x and y, respectively. The first two parenthesis
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on the right-hand side of Eq. (2.2) belong to the classical plate theory, and the
third one is due to the contribution of the transverse shear deformation.

2.3. Hooke’s law

Stress strain relations in the kth layer of the composite plate are given by
Hooke’s Law as follows. It should be noted that σz = 0 is assumed in the present
study:

(2.3)
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where Q̄
(k)
ij are the well-known reduced stiffnesses and k is the layer number [18].

Where the reduced stiffnesses are

(2.4)
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Qij ’ s is defined as:

(2.5)

Q11 =
E1

1 − ν12ν21
,

Q12 = Q21 =
ν12E2

1 − ν12ν21
,

Q22 =
E2

1 − ν12ν21
,

Q44 = G23,

Q55 = G13Q12,

where Ei, Gij and vij (i, j = 1, 2) are the elasticity modulus, the shear modulus
and the Poisson ratios.
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2.4. Hamilton’s principle

The strain energy, kinetic energy and work done by external in-plane loads
can be written in the following form [19–20]:

UG =
1

2

∫

V

(σxεx + σyεy + τxyγxy + τxzγxz + τyzγyz)dV,(2.6)
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2
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where ρ is the density of the plate, V and A are the volume and the area of
composite plate, respectively. “ ,t” is the partial derivative with respect to time.
Governing equations for bending, buckling and vibration can be found by apply-
ing Hamilton principles as follows [19]:

(2.9)

t
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Here δ is the variational symbol. After inserting Eq. (2.6) to Eq. (2.8) into
Eq. (2.9), the force and moment resultants are determined as:
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where N and M are the force and moment resultants, respectively. Q’s are
the shear force resultants, c and a denote the classical and additional (shear
components) components respectively. A prime denotes derivative with respect
to ‘z’ variable. By using Eqs. (2.3), (2.10) and (2.11) the following constitutive
equations are obtained:
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The extensional (Aij), coupling (Bij), bending (Dij) and transverse shear
(Fij , Hij , Eij) rigidities are defined as follows:

(2.14)
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2.5. Plate equations

Application of Hamilton’s principle leads to following governing equations:

(2.15)

N c
x,x + N c

xy,y = (ρ0u − ρ1w,x + ρ̄1
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Here q is a transverse load, N e
x, N e

y and N e
xy are the constant in-plane edge

loads. The inertias ρi and ρ̄m
i are defined by

(2.16)

ρi =

h/2
∫

−h/2

ρzidz, (i = 0, 1, 2),

ρ̄m
i =

h/2
∫

−h/2

ρzifmdz, (i = 0, 1; m = 1, 2)

where ρ is the mass of the composite plate per unit volume.

2.6. Boundary conditions

The following edge boundary conditions should be satisfied,

(2.17)
At x = 0, a at y = 0, b
either u or N c

x prescribed, either v or N c
y prescribed,

either v or N c
xy prescribed, either u or N c

xy prescribed,

either w or M c
x,x + 2M c

xy,y prescribed, either w or M c
y,y + 2M c

yx,x prescribed,

either w,x or M c
x prescribed, either w,y or M c

y prescribed,

either u1 or Ma
x prescribed, either u1 or Ma

yx prescribed,

either v1 or Ma
xy prescribed, either v1 or M c

y prescribed.

It should be noted that for the present bifurcation buckling problem the
boundary conditions are N c

x = 0, N c
y = 0 and N c

xy = 0.

3. Exact solutions for symmetric cross-ply plates

In this study, statics and dynamics of simply supported, symmetric cross-
ply rectangular composite plates were investigated as generally considered in
the open literature. The Navier solution method was used in the solution of the
problems. For symmetric cross-ply plates, the following plate stiffness compo-
nents (Eq. 2.14) are identically zero.

(3.1)
A16 = A26 = D16 = D26 = F16 = F26 = H16 = H26 = 0,

Bij = 0 and Eij = 0, ij = 1, 2.

Thus, the coupling between stretching and bending is zero. The following simply
supported boundary conditions are assumed.

(3.2)
w = M c

x = Ma
x = v1 = 0 at x = 0 and a,

w = M c
y = Ma

y = v1 = 0 at y = 0 and b.
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According to the Navier method following choice of the displacement components
satisfy the boundary conditions and the governing equations

(3.3)

w =
∞

∑

m,n=1

Wmn sin(αx) sin(βy) sin(ωt),

(au1) =
∞

∑

m,n=1

Xmn cos(αx) sin(βy) sin(ωt),

(bv1) =
∞

∑

m,n=1

Ymn sin(αx) cos(βy) sin(ωt),

where α = mπ/a, β = nπ/b and m and n are the half-wave numbers along the
x and y directions, respectively. For the static problems sinωt = 1 was used.

3.1. Bending analysis

The transverse load acting on the composite plate upper surface can be writ-
ten in the following double Fourier series form

(3.4) q =
∞

∑

m,n=1

Qmn sin(αx) sin(βy),

where Qmn is the amplitude of the force. Substituting Eqs. (3.3)–(3.4) into the
Eq. (2.15) and after some algebra, following equations are obtained for any fixed
values of m and n

(3.5)


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0
0



 .

The elements Lij of the coefficient matrix [L] are

(3.6)

L11 = D11α
4 + 2λ2(D12 + 2D66)α

2β2 + λ4D22β
4,

L12 = F11α
3 + λ2(F12 + 2F66)αβ2,

L13 = λ(F12 + 2F66)α
2β + λ3F22β

3,

L21 = L12,

L22 = H11α
2 + λ2H66β

2 − A55,

L23 = λ(H12 + H66)αβ,

L31 = L13, L32 = L23,

L33 = H66α
2 + λ2H22β

2 − A44,
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where λ = a/b. Solution of the Eq. (3.4) gives amplitudes of displacements. Using
Eq. (2.3) and Eq. (2.9) all stress components can be obtained. For a sinusoidal
distributed load the following relation can be written using Eq. (3.4)

(3.7) q(xy) = q0 sin
mπx

a
sin

nπy

b
,

where m = n = 1, and q0 = Q11.
In the present study, all of the stress components were computed from con-

stitutive equations. Transverse normal stress was not given in this study.

3.2. Buckling and vibration problem

The vibration frequency and critical buckling load of a uniformly in-plane
loaded cross-ply composite plate with all edges simply supported can be deter-
mined by using Eq. (2.15) and Eq. (3.3). For this case q = 0 and ρ = 0 were
used in Eq. (2.15). Substituting Eq. (3.3) into Eq. (2.15) and collecting the like
coefficients leads to the following eigenvalue equation for any fixed values of m
and n:

(3.8) ([K] − Ω2[M ]){∆} = {0}, {∆}T = {Wmn, Xmn, Ymn}.

Here [K] is the stiffness matrix and [M ] is the mass matrix in the case of vibration
and geometric matrix due to the in-plane forces in the case of buckling, and the
parameter Ω refers to the corresponding buckling or frequency parameter. It
should be noted that the solution of Eq. (3.8) gives three roots for fixed m
and n. The lowest of them is a critical buckling load parameter in the buckling
problem and they are three distinct frequencies in the vibration problem. If
required one can obtain corresponding mode shapes by inserting the eigenvalue
Ω into Eq. (3.8).

4. Numerical results

In the present study, bending, buckling and vibration results were determined
for symmetric cross-ply plates using superposed shape functions in a general
shear deformation plate theory. The following material properties are used in
the analysis:

Material 1 [1]: E1 = 174.6 GPa, E2 = 7 GPa, G12 = G13 = 3.5 GPa,
G23 = 1.4 GPa, ν12 = ν13 = 0.25.

Material 2: E1/E2 = open, G12 = 0.6E2, G23 = 0.5 E2, ν12 = 0.25.
It is assumed further that G13 = G12, ν13 = ν12 and ρ = 1.
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4.1. Bending and stress analysis for laminated composite plates

In this section bending and stresses of a transversely loaded simply sup-
ported symmetric cross-ply plate were given. The non-dimensional deflections
and stresses are defined as:

(4.1)

w̄ =
w

(

a
2 , a

2 , 0
)

E2h
3

q0a4
× 100, σ̄x = σx

(

a

2
,
a

2
,
h

2

)

h2

q0a2
,

σ̄y = σy

(

a

2
,
a

2
,
h

4

)

h2

q0a2
, τ̄xy = τxy

(

0, 0,
h

2

)

h2

qoa2
,

τ̄yz = τyz

(

a

2
, 0, 0

)

h

q0a
, τ̄xz = τxz

(

0,
a

2
, 0

)

h

q0a
.

The combinations of the four shape functions listed in Table 1 lead to 16
possibilities which can be used as a shape function in the x and y directions.
They are R-R, F-F, S-S, K-K, R-F, F-R, R-S, S-R, S-F, F-S, K-R, R-K, S-K,
K-S, K-F and F-K. Here the first and second letters denote the shape function
along the x and y directions.

Two example problems have been used in order to investigate the effect
of using different shape functions in the in-plane directions. In the first case,
the non-dimensional deflections and stresses under sinusoidal load obtained for
four-layers cross-ply (0◦/90◦/90◦/0◦) laminates using the shape functions stated
above for various values of thickness parameter a/h and compared with the pre-
viously published results [1, 21] in Tables 2–5. The second example problem is
for three-layers cross ply (0◦/90◦/0◦) laminates using various values of thickness
parameter a/h which are compared with the previously published results [1, 22]
in Tables 6–9.

It should be noted that approximate theories should predict stiffer mechanical
behaviour when compared to the 3-D elasticity results. Therefore, the deflection
and stress values predicted by shear deformation theories should be less than the
3-D results and vibration frequencies and buckling loads should be higher than
the corresponding 3-D counterparts. This fact is generally used in the literature
only for the classical plate theories but it has not been considered for shear
deformation theories. After comparing the present, bending and stress results
with the 3-D elasticity solutions, except R-R, S-S, R-S, S-R, R-K and S-K models
all the other models give some of the static results higher than that of the 3-D
elasticity results. This fact has been summarised in Table 10. If a theory predicts
flexible properties with respect to 3-D elasticity it is denoted with a “+” sign in
Table 10 for the corresponding stress components. So, the theories with at least
one “+” sign are not used in the remaining part of the study due to their flexible
behaviour predictions compared to 3-D elasticity. It is observed that σxz stress is
predicted less than 3-D elasticity by some of the theories for four layer cross-ply
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Table 2. Comparison of non-dimensionalized deflections and stresses under
sinusoidal transverse loads with 3-D results (a/b = 1, (0◦/90◦/90◦/0◦), Material 1)

(3-D: Pagano and Hatfield [21]).

a/h theory w σxx σyy σyz σxz σxy

4 3-D 1.954 0.720 0.663 0.292 0.219 0.0467

R-R 1.8946 0.6645 0.6315 0.2389 0.2064 0.04409

F-F 1.9268 0.7148 0.6377 0.2624 0.2397 0.004680

S-S 1.8930 0.6629 0.6313 0.2382 0.2055 0.04400

K-K 1.9203 0.6997 0.6360 0.2531 0.2265 0.04598

R-F 1.9031 0.6673 0.6291 0.2598 0.2074 0.04542

F-R 1.9183 0.7118 0.6400 0.2412 0.2385 0.04546

R-S 1.8943 0.6644 0.6317 0.2383 0.2064 0.04405

S-R 1.8934 0.6630 0.6310 0.2387 0.2055 0.04438

S-F 1.9018 0.6658 0.6287 0.2597 0.2066 0.04536

F-S 1.9180 0.7116 0.6402 0.2406 0.2385 0.04542

K-R 1.9147 0.6977 0.6387 0.2410 0.2258 0.04511

R-K- 1.9002 0.6664 0.6289 0.2509 0.2070 0.04495

S-K 1.8989 0.6649 0.6284 0.2508 0.2062 0.04490

K-S 1.9144 0.6976 0.6389 0.2404 0.2257 0.04507

K-F 1.9232 0.7007 0.6363 0.2621 0.2269 0.04645

F-K 1.9238 0.7138 0.6375 0.2633 0.2393 0.04633

Table 3. Comparison of non-dimensionalized deflections and stresses under
sinusoidal transverse loads with previously published results (a/b = 1,

(0◦/90◦/90◦/0◦), Material 1) (3-D: Pagano and Hatfield [21]).

a/h theory w σxx σyy σyz σxz σxy

10 3-D 0.743 0.559 0.401 0.196 0.301 0.0275

R-R 0.7156 0.5454 0.3884 0.1530 0.2640 0.02680

F-F 0.7281 0.5554 0.3939 0.1704 0.3133 0.02738

S-S 0.7151 0.5451 0.3882 0.1526 0.2627 0.02678

K-K 0.7248 0.5523 0.3925 0.1634 0.2941 0.02721

R-F 0.7162 0.5459 0.3875 0.1680 0.2642 0.02692

F-R 0.7274 0.5449 0.3948 0.1551 0.3130 0.02726

R-S 0.7155 0.5454 0.3885 0.1527 0.2640 0.02679

S-R 0.7151 0.5451 0.3882 0.1530 0.2627 0.02678

S-F 0.7157 0.5456 0.3872 0.1680 0.2629 0.02690

F-S 0.7274 0.5548 0.3949 0.1547 0.3130 0.02725

K-R 0.7244 0.5520 0.3932 0.1546 0.2939 0.02713

R-K 0.7159 0.5457 0.3877 0.1617 0.2642 0.02688

S-K 0.7155 0.5454 0.3875 0.1616 0.2628 0.02685

K-S 0.7244 0.5519 0.3933 0.1542 0.2939 0.02713

K-F 0.7251 0.5525 0.3923 0.1698 0.2942 0.02725

F-K 0.7278 0.5552 0.3941 0.1639 0.3132 0.02733
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Table 4. Comparison of non-dimensionalized deflections and stresses under
sinusoidal transverse loads with previously published results (a/b = 1,

(0◦/90◦/90◦/0◦), Material 1) (3-D: Pagano and Hatfield [21]).

a/h theory w σxx σyy σyz σxz σxy

20 3-D 0.517 0.543 0.308 0.156 0.328 0.0230

R-R 0.507 0.5391 0.3041 0.1234 0.2825 0.02284

F-F 0.511 0.5417 0.3062 0.1366 0.3372 0.02300

S-S 0.507 0.5391 0.3041 0.1231 0.2810 0.02284

K-K 0.509 0.5409 0.3055 0.1311 0.3160 0.02296

R-F 0.507 0.5392 0.3039 0.1358 0.2825 0.02286

F-R 0.510 0.5416 0.3062 0.1242 0.3372 0.02298

R-S 0.507 0.5391 0.3041 0.1231 0.2825 0.02284

S-R 0.507 0.5391 0.3040 0.1234 0.2810 0.02284

S-F 0.507 0.5392 0.3038 0.1358 0.2810 0.02286

F-S 0.511 0.542 0.306 0.124 0.337 0.02298

K-R 0.510 0.541 0.306 0.124 0.316 0.02294

R-K 0.507 0.539 0.304 0.131 0.283 0.02286

S-K 0.507 0.539 0.304 0.131 0.281 0.02285

K-S 0.510 0541 0.306 0.124 0.316 0.02294

K-F 0.510 0.541 0.306 0.136 0.316 0.02296

F-K 0.510 0.542 0.306 0.131 0.337 0.02299

Table 5. Comparison of non-dimensionalized deflections and stresses under
sinusoidal transverse loads with previously published results (a/b = 1,

(0◦/90◦/90◦/0◦), Material 1) (3-D: Pagano and Hatfield [21]).

a/h theory w σxx σyy σyz σxz σxy

100 3-D 0.4385 0.539 0.276 0.141 0.337 0.0216

R-R 0.435 0.539 0.271 0.112 0.2897 0.0214

F-F 0.4353 0.5387 0.2708 0.1230 0.3467 0.02139

S-S 0.4352 0.5386 0.2707 0.112 0.2881 0.0214

K-K 0.4353 0.5386 0.2708 0.1182 0.3246 0.02139

R-F 0.4352 0.5389 0.2707 0.1229 0.2897 0.02139

F-R 0.4353 0.5387 0.2708 0.1118 0.3467 0.02139

R-S 0.4352 0.5386 0.2708 0.112 0.2897 0.0214

S-R 0.4352 0.5386 0.2707 0.112 0.2882 0.0214

S-F 0.4352 0.5386 0.2707 0.1230 0.2881 0.02139

F-S 0.435 0.539 0.271 0.112 0.347 0.0214

K-R 0.435 0.539 0.271 0.112 0.325 0.0214

R-K 0.435 0.539 0.271 0.118 0.290 0.0214

S-K 0.435 0.539 0.271 0.118 0.288 0.0214

K-S 0.435 0.539 0.271 0.112 0.325 0.0214

K-F 0.435 0.539 0.271 0.123 0.325 0.0214

F-K 0.435 0.539 0.271 0.118 0.347 0.0214
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Table 6. Comparison of non-dimensionalized deflections and stresses under
sinusoidal transverse loads with previously published results (a/b = 1, (0◦/90◦/0◦),

Material 1) (3-D: Pagano [22]).

a/h theory w σxx σyy σyz σxz σxy

4 3-D 2.006 0.755 0.556 0.217 0.282 0.0505

R-R 1.9226 0.7337 0.502 0.1832 0.2024 0.04976

F-F 1.9524 0.7940 0.5016 0.1974 0.2332 0.05261

S-S 1.9213 0.7318 0.5019 0.1827 0.2016 0.04967

K-K 1.9441 0.7750 0.5021 0.1918 0.2205 0.05167

R-F 1.9191 0.7321 0.4927 0.1947 0.2021 0.05071

F-R 1.9562 0.7957 0.5110 0.1857 0.2335 0.05165

R-S 1.9227 0.7337 0.5023 0.1828 0.2024 0.04973

S-R 1.9212 0.7317 0.5016 0.1830 0.2016 0.04969

S-F 1.9176 0.7302 0.4923 0.1946 0.2013 0.05064

F-S 1.9563 0.7957 0.5113 0.1854 0.2335 0.05163

K-R 1.9462 0.7759 0.5083 0.1850 0.2207 0.05106

R-K 1.9206 0.7328 0.4959 0.1899 0.2022 0.05037

S-K 1.9192 0.7309 0.4955 0.1898 0.2014 0.05030

K-S 1.9462 0.7760 0.5086 0.1847 0.2207 0.05103

K-F 1.9424 0.7743 0.4989 0.1966 0.2204 0.05202

F-K 1.9541 0.7947 0.5048 0.1925 0.2333 0.05227

Table 7. Comparison of non-dimensionalized deflections and stresses under
sinusoidal transverse loads with previously published results (a/b = 1, (0◦/90◦/0◦),

Material 1) (3-D: Pagano [22]).

a/h theory w σxx σyy σyz σxz σxy

10 3-D 0.7405 0.590 0.288 0.123 0.357 0.0289

R-R 0.7133 0.5681 0.2687 0.1033 0.2446 0.02771

F-F 0.7297 0.5811 0.2740 0.1119 0.2924 0.0284

S-S 0.7127 0.5677 0.2685 0.1031 0.2434 0.02768

K-K 0.7239 0.5768 0.2721 0.1085 0.2727 0.02819

R-F 0.7131 0.5680 0.2679 0.1099 0.2446 0.02780

F-R 0.7298 0.5812 0.2748 0.1052 0.2924 0.02836

R-S 0.7133 0.5681 0.2687 0.1032 0.2446 0.02770

S-R 0.7127 0.5677 0.2685 0.1033 0.2434 0.02469

S-F 0.7126 0.5676 0.2677 0.1099 0.2434 0.02778

F-S 0.7298 0.5812 0.2749 0.1050 0.2924 0.02835

K-R 0.7240 0.5769 0.2727 0.1046 0.2727 0.02813

R-K 0.7132 0.5680 0.2681 0.1072 0.2446 0.02776

S-K 0.7126 0.5676 0.2679 0.1071 0.2434 0.02774

K-S 0.7240 0.5769 0.2727 0.1044 0.2727 0.02813

K-F 0.7238 0.5767 0.2719 0.1112 0.2727 0.02822

F-K 0.7297 0.5812 0.2743 0.1091 0.2924 0.02841
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Table 8. Comparison of non-dimensionalized deflections and stresses under
sinusoidal transverse loads with previously published results (a/b = 1, (0◦/90◦/0◦),

Material 1) (3-D: Pagano [22]).

a/h theory w σxx σyy σyz σxz σxy

20 3-D - 0.552 0.210 0.094 0.385 0.0234

R-R 0.5049 0.5458 0.2041 0.08262 0.2548 0.0230

F-F 0.5097 0.5492 0.2059 0.08839 0.3068 0.02323

S-S 0.5048 0.5457 0.2041 0.08246 0.2535 0.02302

K-K 0.508 0.5481 0.2053 0.08602 0.2854 0.02316

R-F 0.5049 0.5458 0.2040 0.08777 0.2548 0.02305

F-R 0.5098 0.5492 0.2060 0.08320 0.3068 0.02322

R-S 0.5049 0.5458 0.2041 0.08247 0.2548 0.02303

S-R 0.5048 0.5457 0.2041 0.08260 0.2535 0.02302

S-F 0.5047 0.5457 0.2039 0.08775 0.2535 0.02304

F-S 0.5098 0.5492 0.2060 0.08306 0.3068 0.02322

K-R 0.508 0.5481 0.2054 0.0829 0.2854 0.02315

R-K 0.5049 0.5458 0.2040 0.08563 0.2548 0.0230

S-K 0.5047 0.5457 0.2040 0.08561 0.2535 0.02304

K-S 0.5080 0.5481 0.2054 0.08285 0.2854 0.02315

K-F 0.5080 0.5481 0.2052 0.08817 0.2854 0.02317

F-K 0.5098 0.5492 0.2059 0.08624 0.3068 0.02323

Table 9. Comparison of non-dimensionalized deflections and stresses under
sinusoidal transverse loads with previously published results (a/b = 1, (0◦/90◦/0◦),

Material 1) (3-D: Pagano [22]).

a/h theory w σxx σyy σyz σxz σxy

100 3-D - 0.539 0.181 0.083 0.395 0.0213

R-R 0.435 0.539 0.181 0.075 0.259 0.0213

F-F 0.435 0.5389 0.1806 0.079 0.3120 0.0214

S-S 0.435 0.539 0.181 0.075 0.257 0.0213

K-K 0.435 0.5389 0.1805 0.07780 0.2900 0.0213

R-F 0.435 0.5388 0.18053 0.07970 0.2585 0.0213

F-R 0.4352 0.5389 0.1806 0.07511 0.3120 0.0213

R-S 0.435 0.539 0.181 0.075 0.259 0.0214

S-R 0.435 0.539 0.181 0.075 0.257 0.0213

S-F 0.435 0.5388 0.1805 0.07970 0.257 0.0213

F-S 0.435 0.5389 0.1806 0.07498 0.312 0.0214

K-R 0.435 0.5389 0.1805 0.07510 0.290 0.0213

R-K 0.435 0.539 0.181 0.078 0.259 0.0213

S-K 0.435 0.539 0.181 0.078 0.257 0.0213

K-S 0.435 0.5389 0.1805 0.07497 0.290 0.0213

K-F 0.435 0.5389 0.1805 0.07972 0.290 0.0213

F-K 0.435 0.5389 0.1806 0.07781 0.312 0.0214
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Table 10. Comparison of bending and stress values of higher order theories with
3-D elasticity results.

Theory 0◦/90◦/90◦/0◦) (0◦/90◦/0◦)

a/h a/h

5 10 20 100 5 10 20 100

σxz σxz σxz σxz σxx, σxy

R-R

F-F + + + + ++

S-S

K-K + ++

R-F +

F-R + + + + ++

R-S

S-R

S-F +

F-S + + + + ++

K-R + ++

R-K

S-K

K-S + ++

K-F + ++

F-K + + + + ++

composites whereas it is true for σxx and σxy stresses for three layer cross-ply
composites.

The percentage difference given in Tables 2–9 is defined as follows:

(4.2) %Error =
µe − µp

µe
100 (µ = σij , w; i, j = x, y, z),

where µe corresponds to the exact value and µp represents results obtained in
the present study by means of shear deformation theories.

Considering the results presented in Table 10, the percentage differences were
computed only for R-R, S-S, R-S, S-R, R-K and S-K models. The shape functions
and their derivatives used in this study were depicted in Fig. 2. According to
figures a shape function has an inflection point at z = 0. Derivatives of shape
functions have zero value at z = −0.5 and 0.5 nonzero elsewhere and they are
maximum at z = 0.

The %Error of deflection and stresses have been presented in Figs. 3–8 as
a function of a/h ratio for R-R, S-S, R-S, S-R, R-K and S-K models. According
to these tables and figures (3–8), the percentage errors of w, σxx, σyy and σxy
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Table 11. Comparison of non-dimensionalized vibration frequencies with
previously published results (a/b = 1, (0◦/90◦/90◦/0◦), Material 2) (A: Noor [23];

B: Phan and Reddy [24]).

E1/E2

a/h Source 3 10 20 30 40

5 A 6.6815 8.2103 9.5603 10.272 10.752

R-K 6.5986 8.5219 9.9447 10.676 11.051

%Error −1.24 3.79 4.02 3.93 2.78

S-K 6.5984 8.5217 9.9432 10.674 11.048

%Error −1.24 3.79 4.00 3.91 2.75

K-K 6.5625 8.2805 9.5420 10.292 10.810

%Error −1.78 0.85 0.19 0.19 0.53

B 6.5597 8.2718 9.5263 10.272 10.787

%Error −1.82 0.74 0.35 0.00 0.32

R-K 7.2576 9.9716 12.565 14.419 15.840

S-K 7.2575 9.9715 12.564 14.417 15.839

10 K-K 7.2440 9.8446 12.227 13.879 15.127

R-R 7.2433 9.8409 12.218 13.863 15.107

R-K 7.4626 10.466 13.562 15.975 17.986

S-K 7.4622 10.465 13.562 15.974 17.985

K-K 7.4588 10.428 13.440 15.753 17.655

20 R-R 7.4586 10.426 13.437 15.747 17.646

Table 12. Comparison of non-dimensionalized buckling load parameters with
previously published results (a/b = 1, (0◦/90◦/90◦/0◦), Material 2) (A: Noor [25];

B: Phan and Reddy [24]).

E1/E2

a/h Source 3 10 20 30 40

K-K 4.5502 7.1711 9.4538 10.952 12.050

R-R 4.5458 7.1554 9.4218 10.908 11.997

5 R-K 4.5474 7.1476 9.3967 10.8639 11.931

S-K 4.5472 7.1473 9.3958 10.861 11.928

10 A 5.2944 9.7621 15.0191 19.3040 22.8807

R-K 5.3937 9.9375 15.287 19.6530 23.305

%Error 1.87 1.80 1.78 1.80 1.85

S-K 5.3936 9.9374 15.287 19.651 23.303

%Error 1.87 1.80 1.78 1.80 1.84

K-K 5.3945 9.9480 15.322 19.717 23.402

%Error 1.89 1.90 2.01 2.13 2.27

B 5.1143 9.7740 15.298 19.957 23.340

%Error 3.40 0.12 1.85 3.38 2.00

R-R 5.3933 9.9405 15.298 19.674 23.340

R-K 5.6591 11.0557 18.359 25.209 31.648

S-K 5.6590 11.0556 18.359 25.209 31.648

20 K-K 5.6593 11.058 18.372 25.235 31.691

R-R 5.6590 11.056 18.363 25.216 31.659
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Fig. 2. Various shape functions used in the present study (R: Reddy [1], S: Soldatos [2],
K: Karama et al. [3], T: Thai et al [4].)
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Fig. 3. Variation of percentage error of bending w with a/h ratio.
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Fig. 4. Variation of percentage error of σxx with a/h ratio.

are less than %10. The %Error values decrease with increasing a/h ratio. This
fact is especially true for the R-K and S-K models.

However, higher errors are observed for transverse shear stress components
(σxz and σyz). The error of σxz for 4-layers cross-ply plates is between %13–15
whereas it is %33–35 for the 3-layers cross-ply composite plates when a/h>20.
There is no important effect of mixed shear deformation models on σxz com-
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Fig. 5. Variation of percentage error of σyy with a/h ratio.
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Fig. 6. Variation of percentage error of σxy with a/h ratio.

ponent of the stress. However, some reasonable improvements are observed for
the σyz component of the shear stress components. R-K and S-K models have
lower errors when compared to other models considered. The difference between
other models and R-K and S-K increases with increasing a/h ratio. S-K model
gives %8 lower errors when compared to other models (except R-K model) for



An equivalent single layer shear deformation plate theory. . . 259

0 10 20 30 40 50 60 70 80 90 100
5

10

15

%
 E

rr
or

xz

R - R
S - S
R - S
S - R
R - K
S - K

0 10 20 30 40 50 60 70 80 90 100

a/h

28

30

32

34

36

%
 E

rr
or

R - R
S - S
R - S
S - R
R - K
S - K

[0°/90°/90°/0°]

[0°/90°/0°]

Fig. 7. Variation of percentage error of σxz with a/h ratio.
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Fig. 8. Variation of percentage error of σyz with a/h ratio.

4-layers composite plates. Again S-K model predicts yz shear stress component
with %3–4 smaller errors when compared to other models. It means that the
K shape function is more appropriate for composite plates with low 90◦ layer
thickness.

Satisfying continuity of transverse shear stress components may improve
transverse shear stress terms, but this includes material properties. Continuity
of transverse shear stresses is not considered in the present study.
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4.2. Free flexural vibration analysis for laminated composite plates

The dimensionless natural frequency parameter is defined as Ω =
(ωa2/h)(ρ/E2)

1/2. Comparison of the lowest natural frequencies of four layer
symmetric cross-ply (0◦/90◦/90◦/0◦) rectangular laminates with three-dimen-
sional elasticity solutions of Noor [23] and parabolic shear deformation theory
results of Phan and Reddy [24] for various values of the orthotrophy of indi-
vidual layers E1/E2 and the various values of side to thickness ratio (a/h) is
presented in Table 11 and the agreement is found to be good. It was obtained
that the highest %Error between S-K, R-K and 3-D elasticity is less than %4.

4.3. Buckling analysis of laminated composite plates

The effects of transverse shear strain distribution on the buckling loads of
plates subjected to in-plane uni-axial compressive loads were investigated. The
dimensionless buckling load parameter is defined as Ω = N e

xa2/E2h
3. The criti-

cal buckling load parameter of four layers symmetric cross-ply (0◦/90◦/90◦/0◦)
rectangular plates are determined and compared to 3-D linear elasticity solutions
in Table 12 and the agreement is considered to be good. It was obtained that
the highest %Error between S-K, R-K and 3-D elasticity is less than %2.

5. Conclusions

A single layer shear deformation plate theory with superposed shape func-
tions for laminated composite structures has been proposed by using combi-
nations of some previously proposed higher order shear deformation theories
(parabolic [1], trigonometric [2], exponential [3] and trigonometric [4] shear de-
formation plate theories). Some statics and dynamics composite plate problems
have been investigated. The obtained results are compared with the 3-D elastic-
ity solutions. It was determined that superposed theories provide some improve-
ments for the y − z component of the transverse shear stress and approximately
gives similar results for other stress and bending values. In general, R-K and S-K
models have lower errors when compared to other models considered. It was con-
cluded that using different shear functions in the displacement field in different
in-plane directions may improve the effectiveness of the shear deformable the-
ories. Extension of this study can be considered for other boundary conditions
and lamination configurations.
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