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In crystal plasticity under prescribed deformation, the incremental mate-
rial response is potentially non-unique owing to slip system redundancy for most of
the crystalline structures. Following Petryk, energy minimizing considerations give
the way to select one of these solutions and the set of active systems, which depend
on their more or less favorable orientation and their mutual interactions (latent hard-
ening). This variational approach is extended here to confined plasticity in a finite
volume, simulating a single crystal embedded in an aggregate. A slip gradient en-
hanced framework and related micro-hard boundary conditions are considered, using
two defect energies introduced by Gurtin and coworkers: the first one takes the slip
system polar dislocation densities as internal state variables and the second one is
a quadratic potential of the dislocation density tensor. In both cases, micro-hard
conditions amount to null flow for the two former quantities. For the classical one
dimensional case of a strip in simple shear, the two models yield substantially differ-
ent solutions, the second one coupling the gradients on the different systems. These
results emphasize the necessity for a physically motivated modeling of gradient effects
in the vicinity of grain boundary interfaces.
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1. Introduction

In single crystal plasticity, under prescribed loading conditions,
plastic deformation is ensured by a combination of slips on the different slip
systems of the crystal structure. Furthermore, plastic strain organizes in a way
which makes glide the easiest, giving rise to either homogeneous or heterogeneous
deformation landscapes. Slip system activity is controlled by several phenomena
potentially operating at different scales and strain levels. First, for most of the
crystalline structures, the number of slip systems is higher than the one nec-
essary to accommodate any plastic strain. As a consequence, under prescribed
deformation, the crystal has the possibility to select some of them in accor-
dance with their more or less favorable orientation towards the loading direction
(quantified by the Schmid factor in uniaxial stress) and with the evolution of
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critical shear stresses, which leads to the extinction of some of the redundant
systems. Substantially, latent hardening between the different systems influences
activation in the sense that co-activation of pairs of systems with strong latent
hardening, which raises their critical shear stresses significantly, does not occur
if not necessary (it has been observed in single crystal experiments by Kocks [1]
and Franciosi and Zaoui [2] for instance).

In a second time, the segregation of the selected systems in separated zones,
still preventing the coexistence of strongly interacting systems, may occur pro-
vided that a kinematically admissible heterogeneous strain pattern could be gen-
erated. Segregation has been identified for large deformations in the early works
of Piercy et al. [3] and Saimoto [4] and characterized in the shear experi-
ments of Dmitrieva et al. [5]. It was displayed in crystal plasticity simulations
by various authors (in a bi-dimensional case by Yalcinkaya et al. [6] and for
a tridimensional FCC structure by Dequiedt et al., [7] and Wang et al. [8]
among others).

At last, in single slip areas, plastic strain localization may arise owing to any
kind of softening effect in the slip behavior (Portevin-Le Chatelier effect, Lüders
bands, dislocation cell formation, . . . ). This was displayed in the simulations of
Klusemann et al. [9] and Lancioni et al. [10] for a generic non-monotonous
shear strain-shear stress curve.

From an analytical point of view, in rate-independent crystal plasticity, the
plastic slip organization can be justified by energy considerations. Namely, when
the elasto-plastic behavior is derived from a free energy potential (function of
elastic deformation and slip fields for the different systems), a stable solution of
the single crystal incremental loading problem minimizes the second order time
evolution of a potential energy of the whole body. The baselines were given in
Nguyen [11] and applied to slip system activity in crystal plasticity by Or-
tiz and Repetto [12]: the approach encompasses all situations of loading or
unloading among the slip systems1. For multi-slip, as has been established by
Petryk and Kursa [15], an incremental work potential does exist provided that
the hardening matrix (restricted to the set of active systems) is symmetric. The
ongoing selection of slip systems at a material point for various loading paths was
investigated in this way by Petryk and Kursa [16]. The formation of laminate
structures of given orientations linked to system segregation is analyzed as a bi-
furcation of the homogeneous deformation path which is energetically favorable.
The approach is developed in Ortiz et al. [17] and [15] for tridimensional crystal
structures and in Kratochvil and Kruzik [18] for a plane double slip configu-
ration. In the former studies, a crucial role is played by latent-to-self hardening

1The same kind of approach, using a potential energy for irreversible processes has been
developed in damage mechanics (see for instance Bourdin et al. [13] or Pham et al. [14]).
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ratios: the hardening matrix of Peirce et al. [19] is adopted in [15–18] in which
the ratios are assumed higher than unity for both coplanar and intersecting sys-
tems. Finally, the localization pattern for single slip configurations can also be
derived from an incremental energy minimum principle: it happens when the
slip system free energy is non-convex: (see [10] and Lancioni et al. [20] in which
analytical solutions are provided for a one-dimensional problem).

It can also be assumed that slip system segregation and plastic slip local-
ization are triggered by growing perturbation modes of the basic homogeneous
deformation response. The existence of such modes is justified by a stability
analysis and their time evolution is ruled by linear equations. Such relations
hold as long as the constitutive behavior can be linearized in the vicinity of
the basic solution which implies viscoplastic regularization of the slip system
flow rules. Although this second approach only focuses on the onset of the two
former processes and does not investigate fully localized solutions, the deriva-
tion of the behavior from a free energy is no longer required and the restriction
to a symmetric hardening matrix can be removed. Following Molinari [21],
plane wave (band type) perturbation modes were displayed in [7] and the lam-
inar segregation identified by simulation was retrieved both in terms of ori-
entation and slip systems involved: the hardening matrix was driven from the
dislocation interaction coefficients identified by dislocation dynamics simulations
(Kubin et al. [22]) and integrated in a Teodosiu type hardening law (Teodosiu
et al. [23]).

However, concerning the development of heterogeneous deformation solu-
tions, strain gradient plasticity effects are of primary importance. They introduce
constitutive length scales in the single crystal models which control the size of
strain heterogeneities. In case when strain localization or laminar segregation is
energetically favorable, the addition of gradient terms to the free energy potential
is a necessary condition for the existence of a unique solution with a finite pattern
size (see [9, 10] for instance). In the stability analysis, the growth rate of plane
wave perturbation modes then depends on their wavenumber which drives the
band thickness and spacing (Dequiedt [24]). For a number of constitutive mod-
els, it is assumed that non-local effects arise from the storage of polar dislocations
under slip rate gradients: they generate microforces which modify the effective
resolved shear stress (the additional term is referred to as the “back stress”) and
induce kinematic hardening in the slip system flow rules (Yefimov et al. [25],
Evers et al. [26], Bayley et al. [27], Kuroda and Tvergaard [28])2. Several
authors (Gurtin [34], Erturk et al. [35]) derived micro-forces from a so-called

2In a couple of works, polar dislocations densities also act as additional densities in the
hardening law (see Fleck et al. [29], Gao et al. [30], Evers et al. [31], Ma et al. [32], Petryk
and Stupkiewicz [33], among others); in the present work, this effect is disregarded.
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defect energy expressing as a convex potential of polar dislocation densities or,
equivalently, of slip gradients. In this case, the non-local effects can be incorpo-
rated in a variational approach.

Furthermore, the equilibrium of microforces on a single crystal volume of
finite size requires additional boundary conditions either on microforces them-
selves or on plastic slips (see Gurtin and Needleman [36] or [35]). A com-
mon assumption is the one of micro-hard (or micro-clamped) conditions which
amount to a null polar dislocation flow through the boundary [36]. They are
representative of the behavior of grain boundary interfaces, at least as a first
order approximation, since the latter are supposed not to be crossed by mobile
dislocations because of the incompatibility of the two crystal lattices. In most
cases, such conditions lead to non-uniform deformation profiles confining plas-
tic strain in the bulk and concentrating dislocation densities in a limit layer
near the boundary. This has been illustrated by various authors in the one-
dimensional framework of a strip in simple shear subject to plane double slip
(Evers et al. [31], Yefimov and Van Der Giessen [37]); the slip rate profiles
depend primarily on the ratio between the strip thickness and the constitutive
length scale of the gradient model. The incidence of micro-hard boundary con-
ditions on band localization and laminar segregation has also been evaluated in
bi-dimensional simulations [9]: the laminar structure, which is usually not par-
allel to the boundary, is preserved in the bulk as long as the length scale of
the model, which drives the extent of the limit layer, is much lower than the
specimen size.

In case of slip system redundancy, the coupling of strain gradient plasticity
with micro-hard boundary conditions influences system selection in the neigh-
borhood of interfaces (independently of strain compatibility concerns at the scale
of the aggregate). Whereas inside grains, the selection is an outcome of system
orientation and self and latent hardening essentially, in the limit layer, non-local
effects and the way they couple the slip rate gradients on the different systems
ought to control system activation. This question can be addressed by applying
the energy minimizing approach of [16] to a finite volume including the boundary.
In this purpose, the former one-dimensional strip problem is here extended to
cases with three coplanar slip systems (two being sufficient to accommodate any
isochoric plastic strain under plane strain conditions). The respective influence
of the slip system orientations, the latent hardening coefficients and the length
scale of non-local effects is investigated. Two gradient rate-independent plasticity
theories, developed by Gurtin and co-workers, are considered. In the first one,
the free energy is proportional to the sum of square of polar dislocation densities
(see, Gurtin et al. [38]) and yields, for each slip system, a back stress linear
in the second derivative of slip for the system itself (an equivalent assumption
is made in [6] and [9]). In the second one, the free energy and therefore back
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stresses are functions of a dislocation density tensor [21], coupling the different
slip gradients. Among the three systems, a low latent hardening modulus is as-
sumed for at least two of them: therefore, single slip segregation and an oriented
laminar structure is unlikely to occur, which validates one-dimensional solutions.

The single crystal constitutive relations are presented in Section 2.1 and the
variational formulation of a time evolution problem is achieved for the two mod-
els. It is particularized to the one-dimensional strip case in Section 2.2. For three
potentially active slip systems, the profile in the band thickness of the different
slip rates and mechanical variables are displayed in Section 3: the areas of activa-
tion of the different systems are analyzed in terms of energy minimization. The
influence of the slip system orientations, latent hardening moduli and the inten-
sity of gradient effects are investigated; the difference between the two gradient
theories is also emphasized.

2. Framework

2.1. Gradient plasticity model and formulation of the boundary value problem

In this study, quasi-static loading (equilibrium) is considered and a small
deformation elasto-plastic formalism is retained. It yields an additive decompo-
sition of the displacement gradient into an elastic and a plastic part:

(2.1) U = grad(u) = Ue + Up.

The elastic transformation can be split into its symmetric (deformation) and
skew-symmetric (rotation) parts and the elastic-plastic decomposition is such
that ωe is the rotation of the crystal lattice:

(2.2) Ue = ε
e + ω

e.

The plastic transformation is given by summing plastic slip over all slip systems
α (nα is the slip plane normal and mα the slip direction):

(2.3) Up =
∑

α

γαmα ⊗ nα.

The total deformation reads:

(2.4) ε = ε
e + ε

p with ε
p =

∑

α

γα

2
(mα ⊗ nα + nα ⊗ mα).

In this work, slip systems are supposed to be activated always in the same sense
and mα denotes oriented slip directions; therefore γα ≥ 0.
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Plastic transformation gradients result in the accumulation of polar disloca-
tion densities (usually called geometrically necessary dislocation (GND) densi-
ties). A measure of GND densities is given by a dislocation density tensor intro-
duced by Nye [39] which quantifies the non-closure of Burgers circuits induced
by plastic deformation (see Cermelli and Gurtin [40]):

(2.5) G = curl(Up) 3.

curl(Up) also reads as a function of slip gradients (using Eq. (2.3)):

(2.6) curl(Up) =
∑

α

mα ⊗ (grad(γα) × nα).

On the other hand, the dislocation density tensor is a function of the edge and
screw components ρα

e and ρα
s of the polar densities of each slip system (following

Arsenlis and Parks [41]):

(2.7) G =
∑

α

b(ρα
e mα ⊗ pα + ρα

s mα ⊗ mα),

with b the Burgers vector and pα = nα × mα.
Assuming that accommodation of plastic strain gradients operates slip system

by slip system and owing to Eqs. (2.6) and (2.7), edge and screw densities are
related to slip rate gradients in the following way [38]:

(2.8) bρα
e = − grad(γα) · mα and bρα

s = grad(γα) · pα.

Micro-forces can be derived by postulating the existence of a free energy Ψ func-
tion of polar dislocation densities (defect energy). From a physical point of view,
one possible origin of defect energy is the interaction forces between individual
dislocations (i.e. depending on the interaction of their elastic fields)4. At the
scale of continuum, it is linked to spatial correlation in the dislocation distri-
bution function (the transition from discrete to continuum is beyond the scope
of the present paper but the interested reader is referred to Groma et al. [43]
for instance). In a first class of models (called M1 models in the following), Ψ is
a positive definite bilinear form of the edge and screw densities per systems [38]5.

3The curl of a second order tensor A and its cross product with a first order tensor b are
defined respectively by (curl(A))ij = ejlkAik,l and (A × b)ij = ejlkAilbk (ejlk is the Levi-
Civita permutation symbol); the notation (A×), introduced in [36] denotes the third order
tensor of components (A×)ijk = ejlkAil. Let us notice that, as U is a gradient, equivalently,
G = − curl(Ue).

4In some works, the defect energy is associated with the self-energy of GND (Ohno and
Okumura [42]), but this assumption is not considered here.

5In [38], dissipative micro-forces are added to the ones driven from the defect energy but
they are neglected in the present work.
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In a second class of models (called M2 models in the following), it is assumed that
Ψ is quadratic in the dislocation density tensor [34] (which integrates the effect
of polar densities globally). The two cases are investigated in this work: some
comments about the physical meaning of the two defect energies are provided in
the conclusion.

Let us notice that the time evolutions of G, ρα
e and ρα

s , derived from Eqs.
(2.5) and (2.8) respectively, also express as balance equations (superimposed dot
is for time derivatives):

(2.9) Ġ = −div(U̇p×), bρ̇α
e = −div(γ̇αmα) and bρ̇α

s = −div(−γ̇αpα),

in which (U̇p×) is the dislocation tensor flux and γ̇αmα and −γ̇αpα are edge
and screw dislocation fluxes [36].

On a material volume Ω, macroscopic equilibrium and plastic flow conditions
are derived from an extended principle of virtual power in which virtual material
velocity v̂ and shearing rates ˆ̇γα are specified independently [34]. The virtual
power of external forces writes, in the absence of body forces, as a linear form
of surface traction t on the boundary ∂Ω:

(2.10) Pext(v̂) =

∫

∂Ω
t · v̂da.

The virtual power of internal forces is expended by Cauchy stress conjugate to
elastic strain rate, critical shear stresses conjugate to slip rates and micro-forces
conjugate to slip rate gradients. The power expenditure of micro-forces balances
the increase of the defect energy. Therefore, owing Eq. (2.8), for the M1 models,
they expend power over slip rate gradients and more precisely over the slip plane
components of these gradients:

(2.11) Pint(v̂, ˆ̇γα) = −
∫

Ω

σ : ˆ̇εedΩ −
∑

α

∫

Ω

(τα
c

ˆ̇γα + ξ
α · gradα(ˆ̇γα))dΩ,

with

gradα(ˆ̇γα) = (grad(ˆ̇γα) · mα)mα + (grad(ˆ̇γα) · pα)pα.

For M2 models, owing (2.5), the virtual power of internal forces is expended by

a micro-force conjugate to curl( ˆ̇
Up) since non-local effects are correlated with

the evolution of the dislocation density tensor G:

(2.12) Pint(v̂, ˆ̇γα) = −
∫

Ω

σ : ˆ̇εedΩ −
∑

α

∫

Ω

τα
c

ˆ̇γαdΩ−
∫

Ω

T : curl( ˆ̇
Up)dΩ.
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Let us assume, as classically, that material velocity is prescribed on one part of
the boundary and surface traction is prescribed on the complement:

(2.13) v = vd on ∂Ωu and t = td on ∂Ωσ = ∂Ω \ ∂Ωu.

In case of micro-hard conditions on ∂Ω, for M1 models, it is natural to assume
that screw and edge dislocation density flows are prohibited, namely shearing
rates annihilate for all slip planes intersecting ∂Ω (n is the outward unit normal
to ∂Ω):

(2.14) γ̇αmα · n = γ̇αpα · n = 0 on ∂Ω.

For M2 models, it is natural to assume that the dislocation density tensor flow
is prohibited:

(2.15) U̇p × n = 0 on ∂Ω.

The condition (2.15) is weaker than the condition (2.14) and, as we shall see in
Section 3, can be fulfilled for some combinations of non-zero shearing rates6:

Due to Eqs. (2.14) and (2.15), integration by parts of Eqs. (2.11) and (2.12)
yield for M1 models and M2 models respectively (τα = σ : (mα ⊗ nα) is the
resolved shear stress):

Pint(v̂, ˆ̇γα) =

∫

Ω
div(σ) · v̂dΩ −

∫

∂Ω

(σ · n) · v̂da(2.16)

+
∑

α

∫

Ω

(τα − τα
c + div(ξα))ˆ̇γαdΩ,

Pint(v̂, ˆ̇γα) =

∫

Ω

div(σ) · v̂dΩ −
∫

∂Ω

(σ · n) · v̂da(2.17)

+
∑

α

∫

Ω

(τα − τα
c − curl(T) : (mα ⊗ nα))ˆ̇γαdΩ.

In Gurtin and co-workers [29–31], equilibrium holds when the power of all forces
annihilates for any virtual fields v̂ and ˆ̇γα ≥ 0 satisfying boundary conditions
Eqs. (2.13)1 and (2.14) or (2.15):

(2.18) Pext(v̂) + Pint(v̂, ˆ̇γα) = 0,

6Indeed, it is also proved in [36] that the condition (2.15) is the one which guarantee the
well-posedness of a boundary value problem with a M2 type defect energy.
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and, as it holds for the actual fields v and γ̇α:

(2.19) Pext(v − v̂) + Pint(v − v̂, γ̇α − ˆ̇γ
α
) = 0.

This generalized principle of virtual power implies, apart from the equilibrium
of macroscopic forces in the bulk and on the boundary, the micro-force balance
equations in which non-local effects provide, for each slip system, a so-called
“back stress” τα

b in the yield function (left-hand side of equality):

(2.20) τα − (τα
c + τα

b ) = 0 in Ω,

with τα
b = −div(ξα) for M1 models and τα

b = curl(T) : (mα⊗nα) for M2 models.
Still, in rate-independent plasticity (with oriented slip systems), critical shear

stresses act as thresholds; plastic slip cannot decrease and annihilates whenever
the yield function is strictly negative. Namely, micro-force balance reads:

(2.21) (τα − (τα
c + τα

b )) ≤ 0, γ̇α ≥ 0 and (τα − (τα
c + τα

b ))γ̇α = 0.

Equivalently, the plastic slip rate maximizes plastic work in the sense that:

(2.22) γ̇α ≥ 0 and (τα − (τα
c + τα

b ))(γ̇α − ˆ̇γα) ≥ 0 for all ˆ̇γα ≥ 0.

The virtual power principle then writes in the following way (Eq. (2.19) holds
when the yield function is zero for all slip systems):

(2.23) Pext(v − v̂) + Pint(v − v̂, γ̇α − ˆ̇γ
α
) ≥ 0,

for all fields v̂ and ˆ̇γα ≥ 0.
Let us now assume that elasticity is linear and that critical shear stresses are

linear functions of plastic slips, the hardening matrix being symmetric:

(2.24) σ = C : ε
e and τα

c = Hαβγβ with Hβα = Hαβ.

The defect energy Ψ is a function of polar dislocation densities Ψ(ρα
e , ρα

s ) for M1

models [38] and microforces are assumed non-dissipative; therefore:

(2.25)
∑

α

ξ
α · gradα(γ̇α) = Ψ̇ =

∑

α

(

∂Ψ

∂ρα
e

ρ̇α
e +

∂Ψ

∂ρα
e

ρ̇α
s

)

.

Owing to Eq. (2.8):

(2.26) ξ
α =

1

b

(

− ∂Ψ

∂ρα
e

mα +
∂Ψ

∂ρα
e

pα

)

.
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The defect energy Ψ is a function of the dislocation density tensor G for M2

models:

(2.27) T : curl(U̇p) = Ψ̇ =
dΨ

dG
: Ġ and, therefore: T =

dΨ

dG
.

In both cases, by virtue of Eqs. (2.8) and (2.6), Ψ expresses as a function of
slip gradients and equilibrium relations may be re-formulated using a poten-
tial energy E(u, γα, td) of material displacement, plastic slip fields and loading
parameter td. Eqs. (2.19) and (2.23) give respectively:

(2.28)

E,u · (v − v̂) +
∑

α

E,γα · (γ̇α − ˆ̇γα) = 0,

E,u · (v − v̂) +
∑

α

E,γα · (γ̇α − ˆ̇γα) ≥ 0,

with:

E(u, γα, td) =

∫

Ω

(

1

2
(ε − ε

p) : C : (ε − ε
p) +

∑

α,β

1

2
γαHαβγβ + Ψ

)

dΩ(2.29)

−
∫

∂Ωσ

(td · u)da.

Following the notations of [11], in Eq. (2.28), E,u · δu and E,γα · δγα hold for the
first variations of E with respects to u and γα; for instance:

(2.30) E,u · δu =

∫

Ω

(C : (ε − ε
p)) : δεdΩ −

∫

∂Ωσ

(td · δu)da.

At a time t, let us restrict the set of slip systems to the ones for which the yield
function is zero. Equilibrium relations written at times t and t + dt yield:

(2.31) E,u · (v̇ − ˆ̇v) +
∑

α

E,γα · (γ̈α − ˆ̈γα)

+
(

ṫd · E,tdu + v · E,uu +
∑

β

γ̇β · E,γβu

)

· (v − v̂)

+
∑

α

(

v · E,γαu +
∑

β

γ̇β · E,γαγβ

)

(γ̇α − ˆ̇γα) ≥ 0.

In Eq. (2.31), δũ · E,uu · δu, δũ · E,uγα · δγα, . . . hold for the second variations
of E; namely:

(2.32) δũ · E,uu · δu =

∫

Ω

δε̃ : C : δεdΩ.
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Owing to Eq. (2.28)1:

(2.33) E,u · (v̇ − ˆ̇v) +
∑

α

E,γα · (γ̈α − ˆ̈γα) = 0.

Therefore, every solution (v, γ̇α) of the system evolution is given by the following
relation:

(2.34)
(

ṫd · E,tdu + v · E,uu +
∑

β

γ̇β · E,γβu) · (v − v̂)

+
∑

α

(

v · E,γαu +
∑

β

γ̇β · E,γαγβ

)

(γ̇α − ˆ̇γα) ≥ 0.

A sufficient condition for (v, γ̇α) to fulfill Eq. (2.34) is to minimize the quadratic
pseudo-potential:

J(v̂, ˆ̇γα) = ṫd · E,utd · v̂ +
1

2
v̂ · E,uu · v̂(2.35)

+
∑

α

v̂ · E,uγα · ˆ̇γα +
1

2

∑

α,β

ˆ̇γα · E,γαγβ · ˆ̇γβ.

Among solutions of Eq. (2.34), the one satisfying Eq. (2.35) is stable in the sense
that it leads to a minimum of the potential energy at time t + dt for a given
state at time t (owing to that E is assimilated to its second order development
in dt [16]).

2.2. Bi-dimensional framework

Let us now consider the classical bi-dimensional problem of a band of thick-
ness h under shear deformation (Fig. 1). All mechanical quantities depend on
the y coordinate and material displacement in the z direction is zero (in what
follows, ex, ey and ez are unit vectors in the x, y and z direction respectively):

(2.36) u = ux(y)ex + uy(y)ey.

Boundary conditions are of imposed displacement:

(2.37) ux(y = 0) = 0, ux(y = h) = U and uy(y = 0, h) = 0.

Slip systems have their slip plane normal and slip directions in the (x,y) plane
and dislocations are of edge type with dislocation lines collinear to the z-axis.
The elastic behavior is supposed to be isotropic (λ and µ are the Lamé and shear
moduli):

(2.38) ε
e : C : ε

e = λ(Tr(εe))2 + 2µ(εe : ε
e).
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Fig. 1. Geometry, loading conditions and orientations of the three slip systems for the band.

Self-hardening moduli are set equal and latent to self hardening ratios qαβ are
defined for all pairs of systems:

(2.39) Hαα = H and Hαβ = qαβH.

A M1 model with defect energy quadratic in edge densities [38] and a M2 model

with defect energy quadratic in the norm of tensor G [34] are considered in the
following:

(2.40)

Ψ1(ρ
α
e ) =

1

2
S0L

2b2
∑

α

ρα2

e ,

Ψ2(G) =
1

2
S0L

2‖G‖2

with ‖G‖2 = G : G.

It is clear from Eq. (2.29) that S0 has dimension of stress and it can be set equal
to twice the shear modulus (S0 = 2µ) without loss of generality, the intensity of
non-local effects being captured by the characteristic length L. Let us observe
that Ψ1 assumes no coupling between polar dislocations of the different systems.

The edge densities and the dislocation density tensor are given respectively
by:

(2.41) bρα
e = −dγα

dy
(mα · ey) and G = −

∑

α

dγα

dy
(nα · ex)mα ⊗ ez.

For the two models, micro-hard boundary conditions given by Eqs. (2.14) and
(2.15) yield:

(2.42) γ̇α(y = 0, h)(mα · ey) = 0



Selection of slip systems in confined single crystal. . . 219

and
U̇p(y = 0, h) × ey =

∑

α

γ̇α(y = 0, h)(nα · ex)mα ⊗ ez = 0.

After some straightforward calculations, the pseudo-potential, defined for a unit
length in the x direction and unit thickness in the z direction, expresses in non-
dimensional form as the sum of a local and a non-local component:

(2.43) J(v̂, ˆ̇γα) =
2µU̇2

h
(J̄loc(v̄, ¯̇γα) + J̄non loc(v̄, ¯̇γα)),

with ({A}S is for the symmetric part of tensor A):

J̄loc(v̄, ¯̇γα) =
1

2

1
∫

0

(

(λ̄ + 1)

(

dv̄y

dȳ

)2

+
1

2

(

dv̄x

dȳ

)2

(2.44)

− 2

(

dv̄x

dȳ

)

∑

α

¯̇γα(ex · {mα ⊗ nα}S · ey)

− 2

(

dv̄y

dȳ

)

∑

α

¯̇γα(ey · {mα ⊗ nα}S · ey)

+
∑

α,β

¯̇γα ¯̇γβ(qαβH̄ + {mα ⊗ nα}S : {mβ ⊗ nβ}S)

)

dȳ.

For the M1 model and M2 model, the non-local components read respectively:

J̄non loc 1(¯̇γ
α) =

1

2
L̄2

∑

α

1
∫

0

(

d¯̇γα

dȳ

)2

(mα · ey)
2dȳ(2.45)

=
1

2
L̄2

∑

α

1
∫

0

(

d¯̇γα

dȳ

)2

(nα · ex)2dȳ,

J̄non loc 2(¯̇γ
α) =

1

2
L̄2

∑

α,β

1
∫

0

(

d¯̇γα

dȳ

)(

d¯̇γβ

dȳ

)

× (nα · ex)(mα · mβ)(nβ · ex)dȳ.

In the above relations, lengths are adimensioned by the band thickness, velocities
by the imposed velocity U̇ , slip rates by the average shear strain rate and all
moduli by twice the shear modulus:

y = hȳ, L = hL̄, v̂x = U̇ v̄x, v̂y = U̇ v̄y,

ˆ̇γα = U̇ ¯̇γα/h, λ = 2µλ̄ and H = 2µH̄.
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The time evolution of the dislocation densities and the dislocation density tensor
are adimensioned as follows:

(2.46)

¯̇ρα
e =

h2

U̇
(bρ̇α

e ) = −d¯̇γα

dȳ
(mα · ey),

¯̇
G =

h2

U̇
Ġ = −

∑

α

d¯̇γα

dȳ
(nα · ex)mα ⊗ ez.

The time rates of the resolved shear stresses still express in non-dimensional
form:

(2.47) τ̇α = 2µU̇ ¯̇τα/h.

Time rates of the critical shear stresses are adimensioned in the same way and
satisfy the following relation:

(2.48) ¯̇τα
c = H̄αβ

¯̇γβ .

Time rates of back stresses satisfy, for the M1 model and M2 model respectively:

(2.49)

¯̇τα
b = −L̄2

(

d2 ¯̇γα

dȳ2
(mα · ey)

2

)

,

¯̇τα
b = −L̄2

(

∑

β

(

d2 ¯̇γβ

dȳ2

)

(nα · ex)(mα · mβ)(nβ · ex)

)

.

Below, for the sake of simplicity, non-dimensional actual and virtual fields are
denoted in the same way.

Let us observe that, since Ψ1(ρ
α
e ) assumes no coupling between the dislocation

densities of the different systems, no coupling emerges between slip gradients in
J̄non loc 1. On the contrary, G combines the densities on the different systems
and J̄non loc 2 contains αβ-terms coupling their slip gradients (the αα-term in
J̄non loc 2 is the α-term in J̄non loc 1).

Minimization of the pseudo potential is performed by a finite element method
using piecewise linear elements to interpolate v̄ and ¯̇γα fields and 100 nodes.
Boundary conditions are imposed through penalization terms added to the po-
tential. Namely, the term for velocities reads:

(2.50) J̄bond u(v̄)

= Ru((v̄x(ȳ = 0))2 + (v̄x(ȳ = 1) − U̇)2 + (v̄y(ȳ = 0))2 + (v̄y(ȳ = 1))2).

Following (2.42)1, the term for slip rates is, for the M1 model:

(2.51) J̄bond γ(¯̇γα) = RγL̄2
∑

α

((¯̇γα(ȳ = 0))2 + (¯̇γα(ȳ = 1))2)(mα · ey)
2.
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Following (2.42)2, for the M2 model:

J̄bond γ(¯̇γα) = RγL̄2
(
∥

∥

∥

∑

α

¯̇γα(ȳ = 0)(nα·ex)mα⊗ez

∥

∥

∥

2

(2.52)

+
∥

∥

∥

∑

α

¯̇γα(ȳ = 1)(nα·ex)mα⊗ez

∥

∥

∥

2)

= RγL̄2
(

∑

α,β

¯̇γα(ȳ = 0)¯̇γβ(ȳ = 0)(nα·ex)(mα·mβ)(nβ ·ex)

+
∑

α,β

¯̇γα(ȳ = 1)¯̇γβ(ȳ = 1)(nα·ex)(mα·mβ)(nβ ·ex)
)

.

In Eqs. (2.50), (2.51) and (2.52), Ru and Rγ are non-dimensional penalty pa-
rameters of high values. Minimization yields v̄x, v̄y and ¯̇γα on the nodes7 and ¯̇ρα

e

and ¯̇τα
b are derived by finite difference evaluation of the gradients of ¯̇γα.

3. Plastic slip profiles in a sheared band

This section investigates the incidence of non-local effects coupled with con-
fined plasticity (micro-hard boundary conditions) on the selection of slip systems
in the band. Namely, three systems with orientations close to the shear orien-
tation (labelled by the angles θα formed with direction x) are supposed to be
potentially active at a time t = 0. The angles θ1 and θ3 are positive and θ2 is
negative (cf. Fig. 1):

(3.1) mα = cos(θα)ex + sin(θα)ey and nα = − sin(θα)ex + cos(θα)ey,

with: θ1 = π/7, θ2 = −π/12 and θ3 = π/8.
One could easily establish that two slip systems with angles of opposite sign

are enough to accommodate a shear deformation. In other words, systems 1 and
3 are redundant from a kinematic point of view.

The incremental problem is solved byminimizing the pseudo potential J̄(v̄,¯̇γα).
The slip rate profiles obtained for local and non-local constitutive models are
compared by using successively the M1 model and the M2 model. The local model
leads to the formation of uniform slip rate profiles in the layer, the intensity of
the different slip rates depending on the orientation of the slip systems on the
one hand, and the latent-to-self-hardening ratios, on the other hand.

Due to micro-hard boundary conditions, for non-local models, in most cases
(but not all of them as we see in Section 3.3), plastic slip rates annihilate for

7It is achieved by a Mathematica routine applied to the vectors of components of v̄x, v̄y

and ¯̇γα on the shape functions.
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ȳ = 0 and ȳ = 1 and plastic slip concentrates in the center of the band, thus
forming non-uniform profiles in the thickness. In other words, limit layers form
near the boundaries in which plastic slip evolves from zero to nearly constant
values; when the characteristic length of non-local effects is increased, the two
limit layers tend to meet in the center and slip system activity is controlled by
the boundary conditions.

In Section 3.1, all latent to self-hardening ratios are set equal and less than
unity. As we shall see, for the local model, this situation favors the co-activation
of the three systems even though two of them would be sufficient. The M1 model

and M2 model modify this selection in the limit layer in a different way. In
Section 3.2, two situations are considered in which the latent to self-hardening
ratios are not equal and enhance activation of system 1 even though system 3 is
the most favorably oriented towards the shear direction. At last, in Section 3.3,
latent to self hardening ratios are the same as in Section 3.1 but system 3 is
replaced by its orthogonal counterpart (the slip plane normal becomes the slip
direction and vice-versa). Although the solution is identical in the local case,
the gradient effects are substantially different than for the case of Section 3.1;
moreover, the M1 model and M2 model give totally different activation profiles
in the band thickness.

In the following, the non-dimensional parameters are set equal to the follow-
ing:

λ̄ = 1.5 and H̄ = 0.05.

3.1. Low equal latent to self hardening ratios

The three latent to self hardening ratios are first supposed to be the same
and lower than unity: q12 = q23 = q31 = 0.5. For the local model, the slip
rates are respectively ¯̇γ1 = 0.15, ¯̇γ2 = 0.67 and ¯̇γ3 = 0.32, in accordance with
|θ1| > |θ3| > |θ2| namely with the more or less favorable orientation of the
system towards the shear direction. The slip rates given by the M1 model and
a characteristic length L̄ = 0.1 are nearly homogeneous in the center of the band
and the profiles exhibit a transition from zero in the limit layer for the three
systems (Fig. 2a). The order of the three slip rates is not modified When the
characteristic length is raised up to 0.5, the two limit layers enlarge and meet in
the center, the three slip rate profiles forming bell-shaped curves (Fig. 2b) as has
already been observed in double slip simulations [31]. The rates of dislocation
density are reported in Fig. 3: for L̄ = 0.1, polar dislocations concentrate near the
boundaries (Fig. 3a) whereas for L̄ = 0.5 these densities evolve almost linearly
in the band thickness (Fig. 3b). Figure 4 displays the profiles for the rates of
critical shear stress, back stress and resolved shear stress for system 1 and the
two values of L̄. For L̄ = 0.1, the rate of the back stress annihilates in the center
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Fig. 2. Slip rate profiles for the three slip systems for the local model (dark gray lines) and
M1 model (black lines) and a characteristic length (a) L̄ = 0.1 and (b) L̄ = 0.5.

of the band where non-local effects are therefore negligible (Fig. 4a); it increases
in the limit layer while the rate of critical shear stress tends to zero. For L̄ = 0.5,
the rate of the back stress dominates the rate of the critical shear stress in the
whole band (Fig. 4b): in other words, the slip activity is mainly controlled by
non-local effects in this case.



224 J. L. Dequiedt

Fig. 3. Dislocation density profiles for the three slip systems for the M1 model and a
characteristic length (a) L̄ = 0.1 and (b) L̄ = 0.5.

For the M2 model and the characteristic length L̄ = 0.1, the structure of the
limit layer is substantially different with non-coexistence of gradients for systems
1 and 3 (Fig. 5a): namely, in the first part ¯̇γ3 evolves from zero to a constant
value and ¯̇γ1 remains zero; in a second part, ¯̇γ1 evolves and reaches a nearly
constant value while it approaches the center of the band. Let us recall that the
change from the M1 model to the M2 model introduces coupling terms between



Selection of slip systems in confined single crystal. . . 225

Fig. 4. Rate of critical shear stress, back stress and resolved shear stress for system 1 for the
M1 model and a characteristic length (a) L̄ = 0.1 and (b) L̄ = 0.5.

the gradients of slips of the different systems according to Eq. (2.45)2. Following
the sign of (nα · ex)(nβ · ex), these αβ-terms favor coexistence of gradients of
the same sign for ¯̇γ1 and ¯̇γ2, and ¯̇γ3 and ¯̇γ2 but penalizes such coexistence for
¯̇γ1 and ¯̇γ3. Since (n1 · ex)2 > (n3 · ex)2, system 3 is favored in the first part of
the limit layer in which gradients are the strongest. For L̄ = 0.5, the M2 model
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Fig. 5. Slip rate profiles for the three slip systems for the local model (dark gray lines) and
M2 model (black lines) and a characteristic length (a) L̄ = 0.1 and (b) L̄ = 0.5.

leads to complete extinction of system 1 (Fig. 5b). The norm of the dislocation

density tensor rate ‖ ¯̇
G‖ =

√

¯̇
G : ¯̇

G is reported in Fig. 6 for the two characteristic
lengths: as for the rate of dislocation densities with the M1 model, it concentrates
near the boundaries for L̄ = 0.1 and is positive in the whole band for L̄ = 0.5.
The shear stress profiles of system 1 (Fig. 7) exhibit a back stress higher than the
resolved shear stress near the boundaries which justifies extinction of system 1.
In other words, although latent hardening would favor coexistence of the three
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Fig. 6. Norm of the dislocation density tensor rate for the M2 model for characteristic
lengths L̄ = 0.1 and L̄ = 0.5.

Fig. 7. Rate of critical shear stress, back stress and resolved shear stress for system 1 for the
M2 model and a characteristic length L̄ = 0.1.

systems, gradient plasticity effects progressively induce selection of systems 2
and 3 alone.
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3.2. Unequal latent to self hardening ratios favoring system 1

In this subsection, two cases are investigated for which latent to self-harden-
ing ratios tend to favor system 1 even though its orientation is less favorable
than the one of system 3.

In the first case, all ratios are assumed below 1 but q12 is assumed to be lower
than the two others (q12 = 0.25 and q23 = q31 = 0.5). For the local model, the
slip rates are respectively ¯̇γ1 = 0.32, ¯̇γ2 = 0.70 and ¯̇γ3 = 0.14. With the M1

Fig. 8. Slip rate profiles for the three slip systems for the local model (dark gray lines) and
M1 model (black lines), a latent to self hardening ratio q12 = 0.25 and a characteristic length

(a) L̄ = 0.1 and (b) L̄ = 0.5.
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Fig. 9. Slip rate profiles for the three slip systems for the local model (dark gray lines) and
M2 model (black lines), a latent to self hardening ratio q12 = 0.25 and a characteristic length

L̄ = 0.1.

model, the increase of L̄ progressively penalizes system 1 (Fig. 8) in accordance
with (n1 · ex)2 > (n3 · ex)2. For L̄ = 0.1, ¯̇γ1 ≈ ¯̇γ3 near the boundaries whereas it
is still higher in the center and the transition zone is larger for system 1 (Fig. 8a).
For L̄ = 0.5, system 3 now dominates system 1 in the whole band and the slip
rate profiles are nearly identical than the ones obtained for the case with three
equal latent to self-hardening ratios (Fig. 8b vs Fig. 2b); in other words, for
high L̄, the role of latent hardening becomes negligible which is consistent with
the prominence of back stresses on critical shear stresses. For the M2 model,
a double limit layer structure is still displayed with system 3 alone in a first part
of the limit layer (Fig. 9). In the second part, systems 1 and 3 exhibit gradients of
opposite sign. The increase of L̄ progressively leads to the extinction of system 1
(but for a value of L̄ above 0.5 not represented here).

In a second case, the latent to self-hardening ratio for systems 2 and 3 is
supposed to be higher than unity, the other ones being kept lower: q12 = q31 = 0.5
and q23 = 1.2. In this case, due to the redundancy of system 1 and 3, the local
model predicts non activation of system 3 balanced by a higher activation of
system 1 (even though system 3 is the most favorably oriented of the two):
¯̇γ1 = 0.44, ¯̇γ2 = 0.71 and ¯̇γ3 = 0. The increase of non-local effects progressively
re-activates system 3. For the M1 model, the coexistence of systems 1 and 3 is
restored (Fig. 10), starting from the boundaries. The slip rate gradients being
uncoupled, non-local effects favor distribution of plastic slip gradients on the
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Fig. 10. Slip rate profiles for the three slip systems for the local model (dark gray lines) and
M1 model (black lines), a latent to self hardening ratio q23 = 1.2 and a characteristic length

(a) L̄ = 0.1 and (b) L̄ = 0.5.

two systems. For L̄ = 0.5, ¯̇γ1 ≈ ¯̇γ3 which emphasizes once again the first order
influence of gradient effects, the slip rate profiles being close to the ones obtained
with the other latent to self-hardening ratios. For the M2 model, system 3 is still
re-activated in the limit layer and system 1 is de-activated in a first part where
the slip gradient for system 3 is positive. In a second part of the limit layer,
systems 1 and 3 coexist with gradients of opposite sign (Fig. 11). In the center
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Fig. 11. Slip rate profiles for the three slip systems for the local model (dark gray lines) and
M2 model (black lines), a latent to self hardening ratio q23 = 1.2 and a characteristic length

(a) L̄ = 0.1 and (b) L̄ = 0.5.

of the band, systems 1 and 2 remain alone consistently with latent hardening
penalizing system 3.

3.3. One “orthogonal” slip system

In this subsection, system 3 is replaced by its orthogonal counterpart sys-
tem 3∗, i.e. the slip plane normal n3 and the slip direction m3 are exchanged, the
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Fig. 12. (a) Slip rate and (b) dislocation density profiles for the three slip systems 1, 2 and
3∗ for the local model (dark gray lines) and M1 model (black lines) and a characteristic

length L̄ = 0.1.

former being now close to the shear direction. Low equal latent to self-hardening
ratios are kept as in the case of Section 3.1 (q12 = q23∗ = q3∗1 = 0.5). For the
local model and a small deformation theory, these two cases are strictly identi-
cal8 and lead to the same slip rates (J̄loc(v̄, ¯̇γα) only depends on the symmetric
parts of the outer products mα ⊗ nα).

8This would not be the case in a finite deformation framework due to the rotation of slip
systems as shown in Asaro [44] for instance.
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Fig. 13. (a) Slip rate profiles for the three slip systems 1, 2 and 3∗ for the local model (dark
gray lines) and M2 model (black lines) and a characteristic length L̄ = 0.1. (b) Rate of

critical shear stress, back stress and resolved shear stress for system 1 for the M2 model.

However, with the M1 model, the non-local effects are far much stronger for
system 3∗ than for system 3 in accordance with (n3∗·ex)2 = (m3·ex)2 ≫ (n3·ex)2

(namely, the slip plane of system 3∗ is almost perpendicular to the boundaries).
This is consistent with the results established for kink band formation by Forest
[45] for instance. Till L̄ = 0.1 the order of slip rates for system 1 and 3∗ is inverted
in comparison with the local case (Fig. 12a), system 1 being strongly enhanced.
Although the increase of dislocation densities ¯̇ρ1

e and ¯̇ρ2
e concentrates near the

boundaries, ¯̇ρ3∗
e spreads in the whole band (Fig. 12b).
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The M2 model displays a totally different behavior since, in ȳ = 0 and ȳ = 1,
annihilation of the density tensor flow does not yield annihilation of the three
slip rates as is seen on the slip rate profiles of Fig. 13a. Non-local effects enhance
the slip rate ¯̇γ1 and reduces the slip rate ¯̇γ3 when going from the center to
the boundaries. Since (n3∗ · ex)(n1 · ex) ≥ 0, non local effects favor gradients of
opposite sign for the two systems. The shear stress profiles of system 1 (Fig. 13b)
exhibit a negative back stress which justifies the fact that ¯̇γ1 is higher than in
the local model case.

4. Concluding remarks

The combination of gradient plasticity effects with extended boundary con-
ditions modifies the activation of slip systems in a single crystal of a finite size.
Namely, non-local formulations introduce a characteristic length scale which con-
trols the extent of a limit layer near boundaries in which system selection may
be different from the bulk. When this length scale is of the same order as the
size of the single crystal, gradient effects drive activation all over it. These phe-
nomena have been illustrated by considering the classical bi-dimensional model
of a band of finite thickness submitted to a simple shear deformation and micro-
hard boundary conditions simulating the behavior of a grain boundary interface.
Assuming that non-local plasticity effects stem from the storage of polar dislo-
cation densities, two formulations have been tested for the defect energy: the
first one is proportional to the square of polar edge densities for all systems
(M1 model) and the second one is a quadratic form of the dislocation density
tensor (M2 model).

Since these two formulations give substantially different behaviors in some
cases, their physical justification in the context of grain boundary interfaces
needs to be examined. A few elements are given in Nicola et al. [46], although
their analysis deals with an interface between a thin film and a substrate and not
with a crystal in an aggregate. The M1 model assumes that the accumulation of
polar densities proceeds independently on the different systems and the defect
energy would be the one of dislocation pile-ups, the interactions between pile-
ups from the different slip systems being negligible. In micro-hard conditions,
no dislocation of any system can cross grain boundaries. On the contrary, the
M2 model postulates that the defect energy is the same for all polar dislocation
arrangements leading to a given net Burgers vector regardless of the slip systems
they come from. In the rigid plastic limit case, namely for εe = 0, the defect
energy is a function of the lattice curvature (the relation between the dislocation
density tensor and the curvature tensor is established in Fressengeas et al.

[47] for instance). In micro-hard conditions, dislocation flows are allowed through
the boundaries provided that the Burgers vector flow is zero (in the rigid plastic



Selection of slip systems in confined single crystal. . . 235

case, this condition amounts to constant lattice misorientation between the two
grains [36]).

For the M2 model, weaker grain boundary constraints were next proposed by
Gurtin [48] who defined a surface dislocation density tensor to which additional
defect energy is related. The evolution of this tensor equals the net Burgers
vector flow and the possibility to accumulate GND on the boundary is assumed.
Slip system activity and the role of both volume and surface defect energy on
system selection could be investigated in this framework. However, the grain
boundary approach of [48] should be brought together with the modelling of the
intrinsic structure of grain boundaries. Namely, the former are represented as
structured dislocation networks pre-existing to deformation which accommodate
the lattice incompatibility between the two grains (see Vattre and Demkowicz
[49] for instance). These dislocations must contribute to the defect energy and
may interact with GND stored during deformation.
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