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The aim of this paper is to discuss the double-diffusive natural convection in an
anisotropic porous medium saturated with a binary fluid. The vertical walls of porous
cavity are subjected to uniform temperature and concentration whereas the other sur-
faces are assumed to be adiabatic and impermeable. Darcy–Brinkman–Forchheimer
model with the Boussinesq approximation was used to formulate the problem and
the finite volume method was adopted to resolve the governing equations system.
A parametric study was conducted and the results are presented and analyzed. They
showed an excellent agreement in comparison with those reported in literature. They
also allowed the evaluation of the control parameters effect on the flow structure,
heat and mass transfer.
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1. Introduction

The combined heat and mass transfer in saturated porous media contin-
ues to interest many researchers because of its use in several engineering fields.

Ingham and Pop (eds.) [1], Nield and Bejan [2] and Vafai (ed.) [3] have,
respectively, reported in their books, a review of the literature concerning the
determination of convective heat and mass transfer in saturated porous media.

Natural convection in anisotropic porous media has received relatively lit-
tle attention despite its large range of applications. The work concerns such
a problem undertaken by Ni and Beckermann [4] who studied the natural
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convection flow and heat transfer in a vertical enclosure filled with homoge-
neous, hydrodynamically and thermally porous anisotropic media. Their results
showed an enhancement of the Nusselt number by a large permeability ratio
and its reduction by a low one. A large thermal conductivity ratio, also, caused
a smaller Nusselt number and a low thermal conductivity ratio has an insignif-
icant effect on the heat transfer pattern. Bera et al. [5] conducted a study on
thermosolutal convection within a rectangular enclosure. They observed signifi-
cant changes in the Nusselt and Sherwood numbers caused by the anisotropy and
a maximum of mass transfer was obtained for a critical thermal anisotropy ratio.
Baytas and Pop [6] carried out a numerical analysis for the steady-state free
convection within an inclined cavity filled with a fluid-saturated porous medium.
The cavity walls were kept at a constant temperature while the horizontal walls
were insulated. Their results concerned momentum and heat transport charac-
teristics within the Rayleigh number, enclosure aspect ratio and inclined angle.
Ress and Postelnicu [7] analysed the onset of convection in an inclined porous
anisotropic layer in both permeability and thermal diffusivity, heated from below.
It has been observed that the transition between longitudinal and transverse rolls
was often smooth rather than abrupt when the governing parameters are varied.
Bennacer et al. [8] studied double-diffusive natural convection in a vertical
cavity filled with a saturated anisotropic porous medium. The medium was as-
sumed to be hydrodynamically anisotropic with the principal axes of anisotropic
permeability. The cavity side walls were maintained at constant temperatures
and concentrations, while the horizontal walls were adiabatic and impermeable.
The results indicated the existence of three regimes: a diffusive regime for low
values of anisotropy (K), a transition regime when Nusselt and Sherwood num-
bers increased for larger value of K and an asymptotic regime where Nusselt
and Sherwood numbers became independent of K. The transition between the
different regimes depends on the thermal Rayleigh number, buoyancy ratio and
the Lewis number. Hadad [9] studied the effect of anisotropy and the variable
permiability in a vertical direction for the problem of convection in a Darcy
porous medium. Linear instability results proved that the nonlinear energy sta-
bility bound was the same as the linear one. Singh and al. [10] studied heatlines
for natural convection heat transfer inclined porous square cavities. The obtained
results showed that the larger inclination angle may be optimal for the energy ef-
ficient processes involving inclined enclosures due to larger heat flow circulations
with enhanced thermal mixing.

The problem of double-diffusive convection in an inclined horizontal bi-
layered porous cavity was considered by [11]. The numerical results were pre-
sented and analyzed in terms of streamlines, isotherms, isoconcentrations lines
and average Nusselt and Sherwood numbers. Numerical and a scale analysis
were used to characterize the effect of the permeability ratio on the heat and
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mass transfer in vertical bi-layered porous cavity. Harfash and Hill [12] sim-
ulated a three dimensional double-diffusive through flow in an internally heated
anisotropic porous media. The linear threshold could accurately predict the onset
of instability in the steady state through flow.

The aim of the present study is to emphasize how the natural convection
and heat and mass transfer in an anisotropic porous layer. The saturated porous
medium is anisotropic in permeability and thermal conductivity. The orientations
of the permeabilities Kx and Ky are inclined with respect to a coordinate system
by an angle α. To study such a problem, a rectangular cavity with the aspect ratio
A = 4 is used. The formulation is based on the Darcy–Brinckman–Forchheimer
model and the thermosolutal convection is studied. Effects of many parameters
such as the inclination angle and permeability ratio on particularly heat and
mass transfer are discussed.

2. Problem formulation

Figure 1 presents the studied physical model. It is represented by a horizontal
porous layer, with the aspect ratio (A = L/H) = 4, saturated by a binary fluid.
The porous medium was considered homogeneous and anisotropic in permeabil-
ity and thermal conductivity. Directions of equivalent thermal conductivities λ1,
λ2 coincide respectively with the horizontal and vertical axes. The permeabilities
are denoted by K1 and K2. They make an angle α with the principal axes of
the cavity. The anisotropy ratio is then defined as K∗ = K2/K1. The vertical
walls of the porous cavity were subjected to uniform conditions of temperature
and concentration whereas the horizontal walls are assumed to be adiabatic and
impermeable. A general model of Darcy–Brinkman–Forchheimer was used to
account for the flow in the porous medium.

Fig. 1. Physical situation and coordinate system.

Under the usual Boussinesq approximation, the governing equations for
steady two-dimensional natural convection flow in the porous cavity using con-
servation of mass, momentum, energy and species are expressed as:
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Continuity equation

(2.1) ∇ · V ′ =
∂u′

∂x′
+
∂v′

∂y′
= 0.

Momentum equation

(2.2) ρf

[

1

ϕ

∂V ′

∂t′
+

1

ϕ2
(V ′ · ∇)V ′

]

= −∇P ′ − µ
V ′

K
′′
− Cf

K
′′ 1/2

V ′|V ′| + µeff ∇2V ′ + ρf~g.

Energy equation

(2.3) σ
∂T ′

∂t′
+ V ′ · ∇T ′ = ∇ · (Λ∇T ′).

Concentration equation

(2.4) ϕ
∂C ′

∂t′
+ V ′ · ∇C ′ = ∇ · (Deq∇C ′).

Where: |V ′| denotes the magnitude of velocity vector (
√
u′2 + v′2); u′ and v′ are

dimensional horizontal and vertical velocities; x′ and ′y are dimensional horizon-
tal and vertical coordinates and T ′, C ′, P ′ and t′ are the dimensional, tempera-
ture, concentration, pressure and time, respectively; ρf is the fluid density; g is
the gravity acceleration; µ is dynamic viscosity of the fluid; µeff is the apparent
dynamic viscosity for Brinkman’s model; Deq is the equivalent mass diffusivity;
ϕ is the porosity; Cf is the Forchheimer coefficient; σ is the ratio of heat ca-
pacities = (ρc)m/(ρc)f ; with (ρc)f is the thermal heat capacity of the fluid and
(ρc)m is the thermal heat capacity of the saturated porous medium.

K
′′

and Λ are the second order flow permeability and thermal conductivity
tensors of the saturated porous medium

(2.5) K
′′

=

[

K1(cosα)2 +K2(sinα)2 (K1 −K2) sinα cosα

(K2 −K1) sinα cosα K1(sinα)2 +K2(cosα)2

]

.

The permeability tensor may be expressed as K
′′

= K2K, in which

(2.6) K =

[

1
K∗

(cosα)2 + (sinα)2
(

1
K∗

− 1
)

sinα cosα
(

1
K∗

− 1
)

sinα cosα 1
K∗

(cosα)2 + (sinα)2

]

is a dimensionless form of the permeability tensor.
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The inverse of K is defined as:

(2.7) K
−1

=

[

K∗(cosα)2 + (sinα)2 (K∗ − 1) sinα cosα

(K∗ − 1) sinα cosα K∗(cosα)2 + (sinα)2

]

.

The thermal conductivity tensor may be expressed as:

(2.8) Λ =

[

λ1 0
0 λ2

]

.

The inverse of Λ is defined as:

(2.9) Λ
−1

=

[

λ 0
0 1

]

.

with λ = λ2/λ1.
The dimensionless governing equations are written as:

(2.10)
∂U

∂X
+
∂V

∂Y
= 0,

(2.11)
1

ϕ

∂U

∂τ
+

1

ϕ2

(

U
∂U

∂X
+ V

∂U

∂Y

)

= − ∂P

∂X
+
Pr

ϕ

(

∂2U

∂X2
+
∂2U

∂Y 2

)

− Pr

Dα

[

U(K∗(cosα)2 + (sinα)2)

+ V ((K∗ − 1) sinα cosα) − Cf√
Dα

[U(
√
K∗(cosα)2 + (sinα)2)]

+ V ((
√
K∗ − 1) sinα cosα)

]

√

U2 + V 2.

(2.12)
1

ϕ

∂V

∂τ
+

1

ϕ2

(

U
∂V

∂X
+ V

∂V

∂Y

)

= −∂P
∂Y

+
Pr

ϕ

(

∂2V

∂X2
+
∂2V

∂Y 2

)

− Pr

Dα
[U((K∗ − 1)(sinα cosα)2)

+ V (K∗(cosα)2 + (sinα)2] − Cf√
Dα

[U((1 −
√
K∗) sinα+ cosα)

+ V (
√
K∗(cosα)2 + (sinα)2]

√

U2 + V 2 + PrRa(T +NC),

(2.13)
∂T

∂τ
+

(

U
∂T

∂X
+ V

∂T

∂Y

)

=
1

Pr
Λ
−1

(

∂2T

∂X2
+
∂2T

∂Y 2

)

,

(2.14)
∂C

∂τ
+

1

ϕ

(

U
∂C

∂X
+ V

∂C

∂Y

)

=
1

Le

(

∂2C

∂X2
+
∂2C

∂Y 2

)

,

where (X,Y ) are the dimensionless horizontal and vertical coordinate and (U, V )
are dimensionless velocity in (X,Y ) direction; τ , P , T and C are respectively
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the dimensionless time, pressure, temperature and concentration

(2.15)































(X,Y ) =

(

x′

H ′
,
y′

H

)

, (U, V ) =

(

u′H

a
,
v′H

a

)

,

P =
p′H2

ρfa2
, τ =

t′

σa
,

C =
(C ′ − C ′

m)

∆C ′
, T =

(T ′ − T ′

m)

∆T ′
,

where H and L are the height and the length of the cavity, respectively, a is the
thermal diffusivity of a porous medium, ∆C ′ is the characteristic concentration
difference = C ′

1−C ′

2, ∆T ′ is the characteristic temperature difference = T ′

1−T ′

2,
Cm is the reference solute concentration = (C ′

1 + C ′

2)/2, T ′

mis the reference
temperature = (T ′

1 + T ′

2)/2.
The non-dimensional boundary conditions associated to this problem are as

follows:

U = V = 0, T = 0 and C = 0 at τ = 0,(2.16)

∂T

∂Y
= 0,

∂C

∂Y
= 0, U = V = 0 at Y = 0, ∀X,(2.17)

∂T

∂Y
= 0,

∂C

∂Y
= 0, U = V = 0 at Y = 1, ∀X,(2.18)

T = 1, C = 0, U = V = 0 at X = 0, ∀Y,(2.19)

T = 0, C = 1, U = V = 0 at X = L/H, ∀Y,(2.20)

The dimensionless variables are defined as: Darcy number (Da = K2/H
2),

Prandtl number (Pr = v/a), Rayleigh number (Ra = gβT ∆TH3/(av)), Lewis
number (Le = a/D) and Buoyancy ratio number (N = βS∆C/(βT ∆T )), where
βS and βT are respectively coefficient of volumetric solutal and thermal expan-
sion, ∆T and ∆C are respectively the temperature and concentration differences.
is the kinematic viscosity.

The average Nusselt and Sherwood numbers are defined by

Nu =

1
∫

0

(

∂T

∂X

)

X=0

dY,(2.21)

Sh =

1
∫

0

(

∂C

∂X

)

X=0

dY.(2.22)

3. Numerical method

The governing equations (2.10) to (2.14) with the boundary conditions and
initial conditions were discretized by the finite volume method on an irregular
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staggered grid system using the SIMPLER algorithm of Patankar [13]. A re-
fined mesh has been employed near the walls. The velocity components were
stored on the faces of control volumes and other variables pressure and temper-
ature were stored at the nodes of the staggered mesh. Finally, the discretized
algebraic equations were solved iteratively by the line-by-line using the TDMA
algorithm adapted to a tri-diagonal matrix system.

However, the discretized momentum, energy and concentration equations in-
clude transient terms; so, the pseudo-transient strategy will be used. This consists
of calculations from a given initial field by means of a pseudo-transient compu-
tation starting from the same initial field by taking a step size at each time
level until convergence is achieved. Alternatively steady state calculations may
be interpreted as pseudo-transient solutions with spatially varying time steps
Versteeg and Malalasekera [14].

Convergence to a steady state is reached when the mass and energy balance
is satisfied after each iteration by checking that the relative difference of the
dependent variable between two successive iterations is less than a user defined
accuracy criterion given by

(2.23)

(
∣

∣

∣

∣

φt+∆t
i,j − φt

i,j

φt+∆t
i,j

∣

∣

∣

∣

)

≤ 10−4,

where φ corresponds to U , V , T and C. The indices i, j indicate a mesh point.
∆t is the time increment.

Many sized grids were used to obtain satisfactory solutions. Figures 2 and 3
illustrate, respectively, the distribution of the horizontal u – velocity in the ver-
tical mid plane (X = L/2) and the temperature at the horizontal mid plane

Fig. 2. Horizontal velocity profiles (u) in the vertical mid plane, X = L/2 (Da = 10−3,
N = 0, Ra = 106, and α = 0◦).



96 S. Safi, S. Benissaad

Fig. 3. Temperature profiles in the horizontal mid plane, Y = L/2 (Da = 10−3, N = 0,
Ra = 106, and α = 0◦).

(Y = H/2). It is observed that the curves of velocities and the temperatures
overlap with each other for all grids. So a grid number of 132 × 68 was chosen
for all computations.

For the accuracy of the results, the present study was compared with those re-
ported in literature. Typical results are presented in Tables 1–3 for, respectively,
the case of isotropic and anisotropic porous media.

Tables 1 and 2 show the results for the thermal convection in an isotropic
porous medium, respectively, for Darcy regime and Darcy–Brinkman regime.

Table 1. Comparison of the Nusselt number in the case of the Darcy regime, in
thermal convection (Da = 10−7, A = 1, Pr = 0.71, N = 0.

Ra∗ = Ra. Da Lauriat and
Prassad [15]

Trevesion and
Bejan [16]

Nithiarasu
et al. [17]

Younsi
et al. [18]

Present study

10 1.07 / 1.08 1.06 1.078

50 / 2.02 1.958 1.936 1.976

100 3.09 3.27 3.02 2.98 3.089

500 / / 8.38 8.32 8.69

1000 13.41 18.38 12.514 12.32 12.7

Table 2. Comparison of the Nusselt number in the case of the Darcy–Brinkman
regime, in thermal convection (A = 1, Pr = 0.71).

Da
Nu

10−8 10−6 10−5 10−4 10−3 10−2

Present study

Ra∗ = 500

8.83 8.81 8.63 7.61 5.46 3.26

Bennacer et al. [19] 8.80 8.68 8.37 7.30 5.38 3.26

Lauriat and Prassad [20] 8.84 8.72 8.41 7.35 5.42 3.30

Present study

Ra∗ = 103

13.09 – 12.73 – – 4.19

Bennacer et al. [19] 13.48 – 12.26 – – 4.18

Lauriat and Prassad [20] 13.41 – 12.42 – – 4.26
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From this comparison, it can be noticed that the maximal difference between
these results remains less than 3%.

Table 3 presents the results for an anisotropic porous medium. The maximal
difference between these results does not exceed 1.5%.

Table 3. Comparison of the Nusselt numbers in anisotropic porous medium
(Da = 10−7, A = 1, Ra = 103, N = 0, α = 0◦).

K∗ = K2/K1 103 102 101 100 10−1 10−2

Ni and Beckermann [4] 1.01 1.30 4.17 13.41 37.37 80.34

Bennacer et al. [8] 1.00 1.29 4.17 13.48 37.56 80.62

Present study 1.04 1.26 4.19 13.09 37.31 80.33

The results presented above, showed a good accuracy and then were satis-
factory.

4. Results and discussion

The present results have been obtained for wide ranges of parameters. The
inclination angle α varied from 0◦ to 60◦, the anisotropic permeability ratio K∗

varied within 10−4 to 103 and the thermal conductivity λ varied from 10−3 to 103.
The Prandtl number and the Forchheimer constant were set to be respectively
0.71 and 0.55. The Rayleigh number varied from 106 to 108 for the different
buoyancy ratio N .

4.1. Study of flow structure, temperature and concentration fields

Figures 4–6 display streamlines, isotherms and isoconcentrations for the
Rayleigh number (Ra = 106) and the Darcy number (Da = 10−3), with in-
clination angles, α = 0◦; 30◦ and 60◦ for various K∗ varying within 0.1
to 10.

K∗ = 0.1 K∗ = 1 K∗ = 10

Fig. 4. Streamlines for various values of K∗ and α (Da = 10−3, N = 0, Ra = 104, λ = 10.)
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It is readily seen from Fig. 4 that for K∗ = 10, the flow pattern is channelled
along the thermally active vertical walls, while it is strongly channelled along the
horizontal boundaries for α = 0◦ and K∗ = 10−1. This is due to the relatively
high permeability in that direction. However, as α increases to 30◦ and 60◦, the
fluid motion is represented by one clockwise vortex inside the cavity and the
intensity of the flow is very weak as observed from stream function contours.

Figure 5 illustrates the isotherms contours for α = 0◦, 30◦ and 60◦, respec-
tively. They are more distorted from left to right. This reflects the intensification
of the convection. The thermal boundary layer is developed in the upper part of
the cavity walls.

The effect of various inclination angles α for K∗ = 0.1 to 10 on isoconcen-
trations are shown in Fig. 6. The isoconcentrations increase as the anisotropic
permeability ratio K∗ increase. They are confined near the active walls of the
cavity. However, a further increase of K∗ for any angle of inclination α signifi-
cantly changes the concentration field.

K∗ = 0.1 K∗ = 1 K∗ = 10

Fig. 5. Isotherms for various values of K∗ and α (Da = 10−3, N = 0, Ra = 104, λ = 10.)

K∗ = 0.1 K∗ = 1 K∗ = 10

Fig. 6. Isoconcentrations for various values of K∗ and α (Da = 10−3, N = 0, Ra = 104,
λ = 10.)
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4.2. Nusselt and Sherwood numbers

The average Nusselt and Sherwood numbers with different permeability ra-
tiosK∗at various inclinations of principal axes α (α = 0◦, 30◦ and 60◦) are shown
in Fig. 7a and 7b. Different values of the Rayleigh number (Ra = 106 and 108),
Da = 10−3, and λ = 10 are taken into consideration. We notice a continuous
transition for Nusselt and Sherwood from its minimum to its maximum values,
with increasingK∗. Three stages are observed in theses curves. The first one is
characterized by low values of Nu and Sh. As the permeability ratio K∗ increases
from 10−3 to 10, the heat and mass transfer increase sharply. That is the second
one. For further grow up of the permeability ratio, the heat and mass transfer
remain almost constant. That is the third stage. In each of these cases, the Sher-
wood number is greater than the Nusselt number. An optimal inclination value
for which the heat and mass transfers are maximal exists. For the parameters
used (Le = 10, N = 10, Da = 10−3, λ = 10) the optimal angle is equal to 30◦,
also the heat and mass transfer decrease when the angle of inclination is equal
to 60◦.

a) b)

Fig. 7. a) Effect of K∗ on heat transfer and b) mass transfer for various values of Ra and α
(Da = 10−3, λ = 10 and N = 0).

Figures 8a and 8b illustrate the effect of buoyancy ratio N on heat and
mass transfer with different angles of inclination α. The minimum Nusselt and
Sherwood numbers go up with the increase of buoyancy ratio N . For a fixed value
of N , the heat and mass transfers increase with the increase of the anisotropy
permeability ratio. Three stages are then noticed. The first stage is characterized
by a slow increase of Nu and Sh. The second one is characterized by an important
increase of Nu and Sh numbers. It corresponds to the anisotropy permeability
ratio K∗ from 10−2 until 10. After that, they were almost constant. The highest
values of Nusselt and Sherwood numbers occur at about 30◦. They are smaller
for the inclination angle equal to 60◦.
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a) b)

Fig. 8. Effect of K∗ on a) heat transfer and b) mass transfer for various values of N
(Da = 10−3, λ = 10 and Ra = 104).

The influence of the thermal conductivity ratio λ on heat and mass transfer
is depicted in Figs. 9a and 9b. These curves are obtained for fixed values of
anisotropy permeability ratio K∗ (K∗ = 10−1, 1 and 10) and the enclosure
inclination angle α = 0◦. It is seen from these curves that Nusselt augments
almost linearly with the increasing value of λ. Such increases are greater with
a greater value of K∗. However, two distinctive stages are observed in the case of
Sherwood number: an increasing stage and a decreasing one. The increase in λ
induces an increase in the number of Sherwood until reaching a maximum for a λ
value corresponding to 10. Beyond this value, the mass transfer decreases. For
fixed K∗ and for the thermal anisotropy ratio λ becoming weakest, the Sherwood
number tends towards diffusive transfers. It is also worth noting that the Nusselt
and Sherwood numbers are greater for a lower Darcy number.

a) b)

Fig. 9. Effect of thermal anisotropy ratio λ on a) heat transfer and b) mass transfer
(Ra = 104, N = 0 and various values of K∗ and Da).
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5. Conclusions

A numerical simulation of the natural convection in a horizontal porous cav-
ity saturated by a binary fluid was carried out. The porous medium was assumed
to be anisotropic in both permeability and thermal conductivity. The focus of
the work was on the validity of the Darcy–Brinkman Forchheimer model when
various combinations of the thermal Rayleigh number, inclination angle, perme-
ability ratio, thermal conductivity and buoyancy ratio were considered. Results
are analyzed and discussed according to the study parameters. Their comparison
with those available in the literature showed good agreement. It was observed
that the different parameters have strong effects on heat and mass transfer as
well as fluid flow. The heat and mass transfer rates increased with the increasing
of the permeability ratio. Inclination angle effect on the heat and mass trans-
fer was clearly observed. It was also observed that the Nusselt and Sherwood
numbers increase with the increase of the buoyancy ratio and thermal Rayleigh
number.
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