
Arch. Mech., 70, 6, pp. 505–534, Warszawa 2018, DOI: 10.24423/aom.3000
SEVENTY YEARS OF THE ARCHIVES OF MECHANICS

Linear genetic programming control for strongly nonlinear

dynamics with frequency crosstalk

R. LI1), B. NOACK2,3,4,5), L. CORDIER1), J. BORÉE1),
E. KAISER6), F. HARAMBAT7)

1)Institut Pprime, CNRS - ISAE-ENSMA - Université de Poitiers

Futuroscope Chasseneuil, France

e-mail: ruiying.li@ensma.fr
2)LIMSI, UPR 3251, Orsay, France
3)Technische Universität Braunschweig, Germany
4)Technische Universität Berlin, Germany
5)Harbin Institute of Technology

Graduate School Shenzhen, China
6) University of Washington

Seattle, WA, U.S.A.
7)Groupe PSA, Vélizy-Villacoublay, France

We advance Genetic Programming Control (GPC) for turbulence flow con-
trol application building on the pioneering work of [1]. GPC is a recently proposed
model-free control framework which explores and exploits strongly nonlinear dynam-
ics in an unsupervised manner. The assumed plant has multiple actuators and sensors
and its performance is measured by a cost function. The control problem is to find
a control logic which optimizes the given cost function. The corresponding regression
problem for the control law is solved by employing linear genetic programming as an
easy and simple regression solver in a high-dimensional control search space. This
search space comprises open-loop actuation, sensor-based feedback and combinations
thereof — thus generalizing former GPC studies [2, 3]. This new methodology is
denoted as linear genetic programming control (LGPC). The focus of this study is
the frequency crosstalk between unforced, unstable oscillation and the actuation at
different frequencies. LGPC is first applied to the stabilization of a forced nonlinearly
coupled three-oscillator model comprising open- and closed-loop frequency crosstalk
mechanisms. LGPC performance is then demonstrated in a turbulence control exper-
iment, achieving 22% drag reduction for a simplified car model. In both cases, LGPC
identifies the best nonlinear control achieving the optimal performance by exploiting
frequency crosstalk. Our control strategy is suited to complex control problems with
multiple actuators and sensors featuring nonlinear actuation dynamics. Significant
further performance enhancement is envisioned in the more general field of machine
learning control [4].
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1. Introduction

Control is of fundamental importance for most living and engineering
systems. Its applications range from a small home heating controller using a sin-
gle thermostat to a large industrial control system with hundreds of sensor mea-
surements and control signals. Here, we focus on the potential of active flow
control in fluid mechanics. Flow control helps to achieve important engineering
goals, such as drag reduction of road vehicles, lift increase of airfoils, efficiency
increase of harvesting wind and water energy and combustion processes (see for
example [5]).

The rich application of control boosts the development of control theory.
Over the past decades, it has progressed into a mature discipline with a sound
theoretical foundation and powerful associated numerical algorithms. The most
well-developed theory of control applies to a linear system or to the linearization
of a nonlinear system about a fixed point or a periodic orbit. In fluid dynamics,
linear control theory can be applied to stabilize shear layers over cavities [6, 7],
wakes of a cylinder at low-Reynolds number [8], just to name a few benchmark
configurations. In such works, an assumption of linearity can often be made, from
which a model can be deduced. However, this assumption is not true for most
of the real-world flows which are highly turbulent, inherently strongly nonlinear
and lead to a broadband frequency spectra and a high-dimensional state space.
Turbulent flows are also characterized by frequency interactions, also called fre-
quency crosstalk: actuation at one frequency may change the whole spectrum of
frequencies and thus ultimately affects the mean flow. Control of such systems
poses great challenges because the linear theory rarely applies to them.

Yet, when looking at the flight maneuvers of birds, it is clear that nature has
found impressive flow control solutions without apparent knowledge of the flow
governing equations (Navier–Stokes equations) or reduced-order modeling. An
eagle, for instance, can land gently under gusty wind conditions and in rain by
moving its wings and feathers to manipulate fluid forces. This suggests an al-
ternative way to perform flow control through optimization processes emulating
nature’s evolution. Machine learning, and in particular evolutionary algorithms,
can help us to achieve the control goal by mimicking the learning process of na-
ture. The development of evolutionary computation starts from the fundamental
work of [9–11] over 50 years ago. With the current advancement of big data and
progress of powerful computer techniques, machine learning gets a fertile ground
to grow and has been applied in a myriad of applications of control, modeling
and prediction [4, 12, 13]. Genetic algorithms [9] and genetic programming [14]
are the two most applied evolutionary algorithms. They learn and refine an effec-
tive control only based on the control performance (cost function) as measured
on the control system. Genetic algorithms are employed for the parameter iden-
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tification of controllers with a given structure like PID controller [15]. Genetic
programming achieves both structure and parameter identification, thus it en-
ables to identify arbitrary nonlinear control laws. In this case, neither a model,
nor the control law structure needs to be known. The methodology of solving
optimal control problems with methods of genetic programming is referred to as
Genetic Programming Control (GPC), which is the focus of this study.

In this study, we target GPC for control of dynamics with strong nonlinear-
ities—circumventing the challenge to construct corresponding models and to
derive nonlinear control laws. GPC addresses the turbulent flow control chal-
lenges mentioned above using advanced methods of genetic programming. The
latter is used as a powerful regression technique to explore and evolve effective
control laws by learning from the training data of experiments or simulations.
Successful applications of GPC include separation control [2, 16] and mixing
layer control [3]. The innovations in this work include: (1) the use of linear ge-
netic programming as a simpler algorithm and (2) a very general framework for
control laws incorporating open-loop and sensor-based feedback control.

The paper is organized as follows. In Section 2, we present the proposed
method and its implementation. Then, in Section 3, we demonstrate LGPC (lin-
ear genetic programming control) to the stabilization of a forced nonlinearly
coupled three-oscillator model. This dynamical system illustrates that frequency
crosstalk between actuation and dynamics can be the only enabling mechanism
for stabilization—as typical in turbulence control. Moreover, the system com-
prises open- and closed-loop stabilization mechanisms—foreshadowing another
feature of the studied experiment. In Section 4, LGPC is applied to a turbulence
control experiment, achieving 22% drag reduction for a simplified car model.
A landscape of the discovered control laws is visualized in Section 5 to examine
its search space topology. Section 6 concludes with a summary and outlook.

2. Linear genetic programming control

We consider a multiple-input multiple-output (MIMO) system with the state
a ∈ R

Na , an input vector b ∈ R
Nb commanding actuation and an output vector

s ∈ R
Ns sensing the state. Here, Na, Nb and Ns denote the dimension of the

state, the number of actuators and sensors, respectively. The general form of the
system reads

da

dt
= F(a, b)(2.1a)

s = G(a)(2.1b)

b = K(s).(2.1c)
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The control b directly affects the state a through a general nonlinear propaga-
tor F. G is a measurement function comprising the sensor signals s as a function
of the state a. The control objective is to construct a MIMO controller b = K(s)
so that the system has a desirable behaviour. Most control objectives can be for-
mulated in a cost function J(a, b). The definition of J depends on the control
goal. For instance, in a drag reduction problem, we define J as the drag power
penalized by the actuation power.

Following [4], the control design is formulated as a regression problem: find
the control law b = K(s) which optimizes a given cost function J . The cost only
depends on the control law, or, symbolically J(K(s)) for a well-defined initial
value problem or statistically stationary actuation response. Summarizing, the
control task is transformed into an optimization problem via cost minimization
and is equivalent to finding Kopt such that

(2.2) Kopt(s) = argmin
K

J(K(s)).

The sensor-feedback law maps Ns sensor signals onto Nb actuation com-
mands. Such feedback can be expected to be approximated by a finite number
of elementary operations (+,−,×,÷, . . . ) acting on the sensor signals s and a fi-
nite number of fixed constants. Thus, the search space of permissible control
laws is finite, yet of astronomical cardinality. Hence, an exhausting testing in
an experiment or numerical calculation is not an option. Instead, we employ ge-
netic programming (GP) as a powerful evolutionary search algorithm. GP yields
optimal or near-optimal control laws in the search space with a high probabil-
ity for suitable parameters, yet with no mathematically assured convergence.
The original tree-based genetic programming (TGP) formulates the mapping by
a binary tree structure [14]. Here, we propose to apply a more recent alternative
to TGP, called linear genetic programming (LGP) [17]. LGP formulates the con-
trol law as a sequence of instructions operating on a set of sensors s, elementary
operators (+,−,×,÷, . . . ) and constants (for details, see App. A in [18]). In con-
trast, the control law in TGP is represented as a recursive tree where the root
holds the output variable, each branching node holds an elementary operator
(+,−,×,÷, . . . ) and the leaves contain the sensors s and constants. TGP and
LGP are equivalent in the sense that any LGP-law can be expressed in TGP
and vice versa. The difference is the linear versus recursive coding of LGP and
TGP, respectively. LGP describes a directed acyclic graph [19] and is not con-
strained as a tree structure. Hence, it provides more freedom for the function
construction than TGP. Linear genetic programming is a terminus technique in
computer sciences. The term ‘linear’ in LGP refers to the linear sequence of in-
structions, and not to the superposition principle like in differential equations.
The resulting functions of LGP are typically nonlinear. As presented before, we
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refer to this method as linear genetic programming control (LGPC). For details
of LGPC, see [18].

The implementation of LGPC for feedback control is sketched in Fig. 1. The
fast real-time control occurs in the inner loop with a control law proposed by
LGPC. The control law is evaluated in the dynamical system over an evaluation
time T . Then, a cost J is measured quantifying the performance of the control
law. The cost value for each control law is sent to the slow outer learning loop,
where LGPC evolves these laws.
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Fig. 1. LGPC implementation. The real-time closed-loop control is performed in the inner
loop (red lines). The control plant feeds back the sensor output s to the control law. This
control law proposed by LGPC computes the actuation command based on s and sends it
back to the plant. A cost J is attributed to the control law after its evaluation during the

time T . In the outer learning loop, LGPC uses these costs J to evolve the new population of
control laws. The LGPC learning process is depicted in the lower part. On the leftmost side,
an evaluated generation with M individuals is sorted in ascending order based on J . If the
stopping criterion is met, the learning process is terminated. If not, the next generation (on

the rightmost side) is evolved by genetic operators (elitism, replication, mutation, and
crossover). After being evaluated, this generation is sorted as indicated by the arrow at the

bottom. We repeat the process from left to right until the stopping criterion is met.
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The learning process of LGPC is detailed in the lower part of Fig. 1. An
initial population of control law candidates, called individuals, is generated ran-
domly like in a Monte-Carlo method (see App. A in [18]). Each individual is
evaluated in the inner loop and a cost J is attributed to them. After the whole
generation is evaluated, its individuals are sorted in ascending order based on
J . The next generation of individuals is then evolved from the previously evalu-
ated one by elitism and genetic operators (replication, mutation, and crossover).
Elitism is a deterministic process which copies a given number of top-ranking
individuals directly to the next generation. This ensures that the best individual
in the next generation will not perform worse than that of the previous one.
The remaining genetic operations are stochastic in nature and have specified
selection probabilities. The individual(s) used in these genetic operators is (are)
selected by a tournament process: Nt randomly chosen individuals compete in
a tournament and the winner(s) (based on J) is (are) selected. Replication copies
a statistically selected number of individuals to the next generation. Thus bet-
ter performing individuals are memorized. Crossover involves two statistically
selected individuals and generates a new pair of individuals by exchanging ran-
domly their instructions. This operation contributes to breeding better individ-
uals by searching the space around well-performing individuals. In the mutation
operation, random elements in the instructions of a statistically selected individ-
ual are modified. Mutation serves to explore potentially new and better minima
of J . After the new generation is filled, the evaluation of this generation can
be pursued in the plant. This learning process will continue until a stopping
criterion is met. Different criteria are used. Ideally, the process is stopped when
a known global minimum is obtained (which is unlikely in an experiment). Al-
ternatively, the evolution terminates upon no improvement from one generation
to the next or when a predefined maximum number of generations is reached.
By definition, the targeted optimal control law is the best individual of the last
generation.

LGPC can also be used to explore open-loop control by including time-
periodic functions h in the inputs of the control law, i.e. b = K(h). This method
permits to search a much more general multi-frequency control which is hardly
accessible to a parametric study of single frequency. Furthermore, the range of
LGPC can be extended by comprising both the sensors s and time-periodic
functions h into the inputs of K. This results in a non-autonomous control law
b = K(s,h). This generalization permits to select between open-loop actuation
b = K(h), sensor-based feedback b = K(s) or combinations thereof b = K(s,h)
depending on which performs better. In the following, we term the approach op-
timizing open-loop frequency combinations b = K(h) as LGPC-1. The approach
to optimize autonomous controllers b = K(s) is referred to as LGPC-2. The
generalized non-autonomous control design b = K(s,h) is denoted as LGPC-3.
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3. Model of three coupled oscillators

In this section, we illustrate LGPC to stabilize a forced dynamical system
with three nonlinearly coupled oscillators at three incommensurable frequencies
extending the generalized mean-field model [20] (see Chapter 5 of [4]). The goal
is to stabilize the first unstable, amplitude-limited oscillator, while the forcing
is performed on the second and third oscillator (see Fig. 2). The second oscil-
lator has also unstable, amplitude-limited dynamics and destabilizes the first
oscillator. The third oscillator has linear stable dynamics and has a stabilizing
effect on the first. The stabilization of the first oscillator can be performed by
closed-loop suppression of the second oscillator or open-loop excitation of the
third one. In the following, we formulate the control problem mathematically
(Section 3.1), parametrically explore the effect of periodic forcing like in many
turbulence control experiments (Section 3.2), and apply LGPC (Section 3.3).

Unforced state

First

Second Third

Forced state

First

Second Third

(a) (b)

Unstable

Unstable Stable

Fig. 2. Illustration of the three-oscillator model: (a) unforced state and (b) forced state. The
red dashed arrows indicate the tendency of amplitudes of oscillators. The sign ‘−’ and ‘+’ in

(b) represent the suppression and excitation of oscillators, respectively.

3.1. Problem formulation

The system has three oscillators at frequency ω1 = 1, ω2 = π and ω3 = π2,
the coordinates of which being (a1, a2), (a3, a4) and (a5, a6), respectively. The
evolution equation of the state a = (a1, a2, . . . , a6) reads:

(3.1)

da1

dt
= σ1a1−a2,

da3

dt
= σ2a3−πa4,

da5

dt
= σ3a5−π2a6,

da2

dt
= σ1a2+a1,

da4

dt
= σ2a4+πa3+b,

da6

dt
= σ3a6+π

2a5+b,

σ1 = −r21+r22−r23, σ2 = 0.1−r22, σ3 = −0.1,
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where r21 = a2
1 + a2

2, r
2
2 = a2

3 + a2
4 and r23 = a2

5 + a2
6 denote the fluctuation

level of the three oscillators, respectively. The growth rate for each oscillator is
denoted by σi, i = 1, . . . , 3. Without forcing b ≡ 0, the first and second system
are linearly unstable and damped by a Landau-type cubic term to asymptotic
amplitudes ru

1 = ru
2 =

√
0.1. Here, and in the following, the superscript ‘u’

refers to asymptotic values for unforced dynamics. The third system is linear
and stable, i.e. converges to the vanishing amplitude ru

3 = 0. The forcing b is
only applied on the second and third oscillators. A linearization of Eqs. (3.1)
around the fixed point a = 0 yields a system in which the first oscillator is
uncontrollable.

The effect of the forcing on the first oscillator can be inferred from the growth
rate formula for σ1 (see first column in Eqs. (3.1)). The fluctuation level r2 of the
second system destabilizes the first oscillator, while the third system stabilizes it
with increasing fluctuation level r3. Hence, stabilization of the first oscillator may
be achieved by exploiting one of two frequency crosstalk mechanisms: stabilizing
the second system or exciting the third one. Evidently stabilization of the second
system requires feedback b = K(a) while excitation of the stable oscillator can be
performed with the periodic forcing b(t) = B sin(π2t) at the resonance frequency
and sufficiently large amplitude B.

The cost function to be minimized is the averaged energy of the unstable os-
cillator Ja = a2

1 + a2
2 penalized by the actuation cost Jb = b2. Here, the temporal

averaging is indicated by the overbar. Without forcing, Ju
a = (ru

1 )2 and Jb ≡ 0.
We normalize the total cost by the unforced value Ju

a of the first oscillator to
characterize the relative benefit of actuation:

(3.2) J =
Ja + γJb

Ju
a

,

with γ = 1 as the penalization coefficient. By definition, J = 1 for the unforced
system.

The numerical evaluation of J is based on the integration of the dynamical
system (3.1) with the initial condition a(0) = (0.1, 0, 0.1, 0, 0.1, 0) at t = 0. In the
first 10 periods of the target oscillator, i.e. for t ∈ [0, t0] with t0 = 102π

ω1
= 20π, no

forcing is applied and the system converges to unforced quasi-periodic dynamics
(ru

1 )2 = 0.1, (ru
2 )2 = 0.1, ru

3 = 0. The cost function is evaluated in the next
500 periods, t ∈ [20π, 1020π]. This time interval contains an actuated transient
but is dominated by the post-transient dynamics, i.e. sufficient for statistical
averaging.

3.2. Open-loop periodic forcing

First, the open-loop periodic forcing is studied, following a practice of many
turbulence control experiments. The goal is to minimize the cost function
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Eq. (3.2) with the periodic forcing bOL(t) = B sin(ωt) employing a paramet-
ric variation of the amplitude B and frequency ω in the range of [0, 1] and
[0, 4π], respectively. The performance (Eq. (3.2)) at amplitude B and frequency
ω is scanned with increments 0.01 and 0.01π, respectively. The corresponding col-
ormap of J is shown in Fig. 3. This figure displays a local minimum of J◦ = 0.031.
The corresponding parameters are denoted by the superscript ‘◦’ in the follow-
ing. The low value indicates a stabilization by over one order of magnitude in
the fluctuation level, accounting for the actuation expense. The minimum J is
reached at the eigenfrequency of the third oscillator ω◦ = π2, as σ1 < 0 for
r23 > 0.1, numerically observing that the second oscillator is hardly affected by
the forcing at a non-resonant frequency, r◦2 ≈ ru

2 =
√

0.1. The optimal ampli-
tude B◦ = 0.07 is numerically determined as the best trade-off between the
achieved stabilization and actuation cost. This amplitude leads to r23 ≈ 0.12 and
σ1 ≈ −0.02. For a larger time evaluation horizon, the current results suggest
a better performance at lower actuation B ≈ 0.05 leading to r23 ≈ 0.1 which
just neutrally stabilizes the first oscillator σ1 ≈ 0, exploiting that the second
oscillator is unaffected by forcing. The corresponding analytical approximations
are described in Chapter 5 of [4].

Fig. 3. Colormap of cost value J under the periodic forcing b(t) = B sin(ωt).

On the other hand, the maximal J value is associated with the forcing at
the eigenfrequency of the second oscillator ω = π, as the excitation of r2 leads
to σ1 > 0, resulting in an increase of r1. These results show that the enabler of
open-loop control is the third oscillator rather than the second.

The unforced transient and actuated dynamics of the system are illustrated
in Fig. 4 under the optimal periodic forcing b◦(t) = 0.07 sin(π2t). The unforced
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state during the time window t ∈ [0, 20π] is depicted by a blue dashed line
and the forced one at t > 20π by a red curve. For clarity, only the first 110
periods are shown in Fig. 4(a-d). Figure 4(e,f) covers the whole time interval
t ∈ [0, 1020π]. When unforced, the unstable oscillators self-amplify towards the
limit cycle r21 = r22 = 0.1, whilst the stable oscillator vanishes to r23 = 0. Conver-
gence is implied by σ1 = 0 and σ2 = 0. Once b starts at t0 = 20π, r3 is rapidly
excited to an energy level of r23 = 0.12, while r2 keeps its original fluctuation
level r22 = 0.1. The resulting system yields σ1 < 0 which leads consequently to
the stabilization of (a1, a2), i.e. r21 ≈ 0. The phase portraits in Fig. 4(e) and (f)
illustrate the interactions between different oscillators. The circle indicates the
initial point and the arrows the time direction. The forced trajectories represent
low-pass filtered data, i.e. do not resolve cycle-to-cycle variation. In particular,

Fig. 4. Dynamics of the model system (3.1) with the optimal periodic forcing
b◦(t) = 0.07 sin(π2t) applied at t/(2π) > 10. Unforced state: blue dashed line; forced state:
red line. (a-d) Time evolution of r2

1, r2
2, r2

3, σ1 and σ2. Only the first 110 periods are shown
here for clarity. (e) Phase portrait of r2

2 against r2
3 and (f) r2

1 against r2
3.
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Fig. 4(f) shows clearly that r21 decreases with the increase of r23, corroborating
that a high-frequency forcing stabilizes a low-frequency unstable oscillator via
frequency crosstalk.

3.3. Results of LGPC

LGPC is applied to solve the control problem of Section 3.1. For all LGPC
tests, up to N = 50 generations with M = 500 individuals in each are evaluated.
Hereafter, we denote the cost value of themth individual in the nth generation by
Jn

m (m = 1, . . . ,M ;n = 1, . . . , N). After generating the individuals, each is pre-
evaluated based on the state a of the unforced system. The resulting actuation
command is an indicator for their feedback control performance. If no actuation
(b = 0,∀t) is obtained in the pre-evaluation, this individual cannot change the un-
forced state. As a consequence, the individual is not subjected to a testing and is
assigned a high cost value. This pre-evaluation step saves numerical testing time.

The parameters of linear genetic programming are similar to those of most
GPC studies (see, e.g. the textbook [4]). Elitism is set to Ne = 1, i.e. the best
individual of a generation is copied to the next one. The probabilities for replica-
tion, crossover and mutation are 10%, 60% and 30%, respectively. The individuals
on which these genetic operations are performed are determined from a tourna-
ment selection of size Nt = 7. The instruction number in the initial generation is
selected between 2 to 30 with a uniform probability distribution. In the follow-
ing generations, the maximum instruction number for each individual is capped
by 100. Elementary operations comprise +, −, ×, ÷, sin, cos, tanh and ln. The
operation ÷ and ln are protected, i.e. the absolute value of the denominator of
÷ is set to 10−2 when |x| < 10−2. Similarly, ln(x) is modified to ln(|x|) where
|x| is set to 10−2 when |x| < 10−2. In addition, we choose six random constants
in the range [−10, 10] with the uniform probability distribution.

In the following, we introduce successively the results of open-loop multi-
frequency forcing LGPC-1 (Section 3.4), full-state feedback control LGPC-2
(Section 3.5) and non-autonomous control LGPC-3 (Section 3.6).

3.4. LGPC-1

First, we search for generalizing the open-loop control by including the best
periodic forcing at all eigenfrequencies, i.e. b = K(h) where h = (h1, h2, h3) =(
sin(t), sin(πt), sin(π2t)

)
. This approach, called LGPC-1, contains the best peri-

odic forcing frequency ω◦ = π2, thus it should be at least as good as the optimal
periodic forcing b◦. Figure 5 displays the ‘spectrogram’ of the cost values for the
whole collection of control laws. Each generation n is seen to consist of a large
range of cost values. The decreasing J values towards the right bottom with
increasing generation evidences the learning of increasingly better control laws.
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Fig. 5. ‘Spectrogram’ of all computed Jn
m (m = 1, . . . , M ; n = 1, . . . , N) for LGPC-1. For

each generation n, Jn
m is ordered with respect to their cost Jn

1 ≤ Jn
2 ≤ . . . ≤ Jn

M . The color
shows the distribution of cost values. Darker color indicates larger proportion. The red line

highlights the best cost value of each generation Jn
1 .

The best cost value of each generation is highlighted by a red line. The best
individual (m = 1) in the last generation (n = 50) reads

(3.3) b⊙(t) = 0.37 sin
(
0.18 sin(π2t)

)
.

Here, and in the following, the superscript ‘⊙’ refers to LGPC-1. When applying
a first order approximation on b⊙, we get b⊙(t) ≈ 0.067 sin(π2t). This expression
resembles that of the optimal periodic forcing b◦(t) = 0.07 sin(π2t), and leads to
a slightly better cost J⊙ = 0.03 as a better amplitude with a higher precision is
explored by LGPC-1. The dynamics of the system with b⊙ are similar to Fig. 4
and are not shown here for brevity.

If we increase the precision of B to 0.001 in the parameter scan of the periodic
forcing in Section 3.2, we should find the same result. However, the number of
evaluations raises to NB × Nω = 1001 × 401 = 401000 (NB and Nω being the
number of the amplitudes and frequencies to be tested, respectively) which is 16
times that of LGPC-1 which equals M × N = 500 × 50 = 25000. In summary,
LGPC-1 identifies automatically the optimal frequency ω⊙ = π2 and the optimal
amplitude B⊙ = 0.067 by employing less time than that for the periodic forcing
with an exhaustive parameter sweep.

3.5. LGPC-2

Next, an autonomous full-state feedback law (LGPC-2) is optimized,

b = K(a) = K(a1, a2, a3, a4, a5, a6).
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Fig. 6. Same as Fig. 5, but for LGPC-2.

The ‘spectrogram’ of the cost values is shown in Fig. 6. The successive jumps of
the best cost value for each generation (red line) reflect the evolution process to
better individuals. The targeted LGPC-2 feedback law, i.e. the best individual
in the last generation, reads as follows:

(3.4) b� = tanh

(
sin

(
tanh

(
tanh

(
tanh

((
ln(a4) +

5.8
a6

1−a6

a4

)
a4

)))))
.

Here, and in the following, the superscript ‘�’ refers to LGPC-2. The correspond-
ing cost J� = 0.0038 is more than seven times better than the value achieved
with optimal open-loop control b◦. Closed-loop control b� leads to both, a smaller
fluctuation level Ja and a lower actuation energy Jb. The corresponding dynamics
are depicted in Fig. 7.

Instead of the regular excitation of periodic forcing, Fig. 7(a) shows that
b� gives a strong initial ‘kick’ on the system by exciting the third oscillator to
a high energy level of r23 = 0.5 (see Fig. 7(d), (f) and (g)), while simultaneously
stabilizing the second oscillator, r22 ≈ 0 (see Fig. 7(c) and (f)). The first oscillator
exhibits consequently a fast decay as σ1 has decreased to σ1 = −0.5 due to the
change in r22 and r23 (see Fig. 7(b), (e) and (g)). This fast transient takes about
one period ∆t = 2π, see the close view of forcing b in Fig. 7(a). It should
be emphasized that LGPC-2 discovers and exploits both frequency crosstalk
mechanisms, the excitation of the third oscillator for a quick transient and the
suppression of the second oscillator to sustain the low fluctuation level of the
target dynamics.

Following this fast transient, the first and second oscillators enter into a quasi-
stable state at nearly vanishing fluctuation levels. Subsequently, the control com-
mand vanishes as the full-state feedback shows no need to actuate after the
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Fig. 7. Dynamics of the dynamical system (3.1) with the LGPC-2 control b� applied at
t/(2π) > 10. Unforced state: blue dashed line; forced state: red line. (a-e) Time evolution of b,
r2
1, r2

2, r2
3, σ1 and σ2. Only the first 110 periods are shown here for clarity. (f) Phase portrait

of r2
2 against r2

3 and (g) r2
1 against r2

3.

energy is defeated. With vanishing b, the third oscillator decays exponentially
fast. This transient process converges to the fixed point as depicted in Fig. 7(f)
and (g). Now, the first oscillator has a stabilizing growth rate σ1 ≈ −r21. LGPC-2
shows an example of feedback control better than the open-loop control. With
only a tiny investment of actuation energy at the very beginning of the control,
the whole system remains stabilized without actuation even after thousands of
periods.
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It should be noted that closed-loop control is not necessarily better than
open-loop actuation. Suppose the growth-rate of the first oscillator reads

(3.5) σ1 = 0.1 − r21 + r22/100 − r23.

In this case, exciting the third oscillator is the only effective stabilizing mecha-
nism and this excitation can already be performed with the open-loop forcing.

3.6. LGPC-3

Finally, we explore a more general class of control laws which combines
full-state feedback a and the best periodic forcing at all eigenfrequencies h =
(sin(t), sin(πt), sin(π2t)), as discussed in Section 2. Then, the generalized LGPC-3
control law b = K(a,h) includes the pure full-state feedback and the best peri-
odic forcing frequency ω◦. Hence, it should be at least as good as LGPC-2. The
learning process is similar to Fig. 6, thus we do not show the convergence of cost
values here for brevity. The optimal control law from LGPC-3 reads

(3.6) b•(t) = tanh

(
sin

(
tanh

((
3a2 sin(t) sin(π2t) − a4

)))
)
.

Here, and in the following, the superscript ‘•’ refers to LGPC-3 results. This
control law achieves a better cost value J• = 0.0025 compared to LGPC-1 with
similar dynamics. Hence, the results are not detailed here to avoid redundancies.

Fig. 8. Time evolution of b•, h1h3, a3 and a4.
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It is worth to note that Eq. (3.6) can also be expressed as b• = K1(3a2h1h3 − a4)
where K1 represents the operator ‘tanh(sin(tanh(·)))’. To shed light on the con-
tribution of each term to b•, Fig. 8 displays the temporal evolution of the actua-
tion command b• and the relevant input from the states and from the harmonic
functions. It shows that the harmonic component h1h3 destabilizes the stable os-
cillator by a quasi-periodic forcing while the states a2 and a4 act as an amplitude
regulator.

Fig. 9. Synthesis of J for different controls.

1

1 2

3
Oscillator

1

1 2

3
Oscillator

3

1
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3
Oscillator

2

(a) (b) (c)

2

Fig. 10. Synthesis of system dynamics under the forcing. The energy level of each oscillator
is qualitatively indicated by circles. Unforced state: white circles connected by black line;
forced state: colored circles connected by colored line. (a) Open-loop forcing at actuation
frequency ωa = π. (b) Open-loop forcing at actuation frequency ωa = π2. (c) Feedback

control. The triangles indicate the oscillator(s) contributing to alter the first oscillator. The
arrows show the transition state when control is applied.

To summarize, optimal periodic forcing (PF), open-loop multi-frequency forc-
ing (LGPC-1), full-state feedback (LGPC-2), and generalized feedback (LGPC-3)
are compared. The contributions to the cost function are depicted in Fig. 9,
showing that the generalized feedback outperforms optimal periodic forcing and
full-state feedback. The stabilizing mechanisms are schematically depicted in
Fig. 10.
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4. Drag reduction using LGPC

In this section, we apply LGPC to a turbulence control experiment targeting
the drag reduction of a simplified car model. Given that the drag of a ground
vehicle is dominated by pressure drag, we aim to increase the base pressure
and thus reduce the drag. For that, active control is applied on the wake flow
using fluidic actuators. Unlike three-oscillator dynamical system before, no model
is established here for the three-dimensional turbulent wake. The modeling of
such a flow constitutes a significant challenge even without forcing [21]. Here,
we simply apply LGPC to search automatically effective nonlinear control laws
within few hours of testing time. In the following, the experimental setup is
presented in Section 4.1. The implementation and results of LGPC are discussed
in Section 4.2. Section 4.3 illustrates the effect of the optimal forcing on the near
wake dynamics.

4.1. Experimental setup

A sketch of the experimental setup is shown in Fig. 11. The experiment is
performed in a closed-circuit wind tunnel, the test section of which is 2.4 m ×
2.6 m× 6 m. The model is similar to the square-back Ahmed body [22] and has
the following dimensions: height H = 0.297 m, width W = 0.350 m and length
L = 0.893 m. The ground clearance is set to G = 0.05 m ≈ 0.17H as in [22]. The
experiment is conducted with the constant free-stream velocity U∞ = 15 m · s−1

corresponding to the Reynolds number ReH = U∞H/ν = 3× 105. The actuator
consists of four independent actuation slits along the trailing edges, as shown
in Fig. 11(b). The slit thickness is hslit = 1 mm ≈ 0.003H. Pulsed jets, which
are driven by 32 solenoid valves and supplied by a compressed air reservoir (see
Fig. 11(a)), are blown tangentially to the free-stream velocity through these slits.
The solenoid valves are distributed homogeneously along the trailing edges, and
the zone between the valves and the slit exit is specifically designed so that the

(a) (b) (c)

Fig. 11. Experimental setup. (a) A slice of the model illustrating the actuation setup.
(b) Side-view of pulsed jets. (c) Distribution and number of pressure sensors over the base

surface. The first 12 pressure sensors are used for the feedback. x, y, z represent the
streamline, wall-normal and spanwise directions respectively.



522 R. Li et al.

exiting flow is continuous along the periphery of four edges. The solenoid valve
generates pulsed jet in ON/OFF mode within the frequency range [0,500] Hz.
Besides, a rounded surface of radius 9hslit is installed immediately beneath each
slit as an additional passive device, as shown in Fig. 11(a). In the present study,
all actuation slits are controlled simultaneously. The actuation command b is
binary. The valves are closed at b = 0 and open at b = 1. The flow is monitored
by 16 pressure sensors distributed over the base surface, 12 of which are used as
feedback sensors, see Fig. 11(c). Particle Image Velocimetry (PIV) is performed
to capture the flow dynamics in the near wake and to identify the control ef-
fects. The measured plane is the vertical (normal to ground) symmetry plane
downstream the base. The first and second order statistics of the streamwise
(along x) and cross-stream (along y) velocity are computed based on 1000 im-
ages with a spatial resolution of 0.8% of the model’s height. For more details on
the experimental setup, see [23].

4.2. Results of LGPC

In the following, we apply LGPC on the plant for the purpose of increasing
the base pressure. We define the cost function J as

(4.1) J =
Ca

pb

Cu
pb

,

where Ca
pb

and Cu
pb

represent the time- and area-averaged base pressure coef-
ficients in the actuated and unforced flow, respectively. For estimating these
quantities, all the pressure sensors in the base surface are used. By definition,
J = 1 for the unforced flow. J < 1 (J > 1) represents the increase (decrease) of
the base pressure.

The included sensors are s′ = [s′1, . . . , s
′
12], where s′i is the fluctuating com-

ponent of the ith pressure sensor signal. As the control command b is binary, we
apply the Heaviside function H to transform the continuous output of a control
law to a binary output, i.e. b = H(K(s′)) where H(x) = 0, if x ≤ 0; H(x) = 1,
otherwise. The control law is evaluated for a time period of T = 10 s. This value
is approximately 500 convective time units defined by H/U∞. This period has
been found to be sufficient for good statistical accuracy [18].

Before testing LGPC, a preliminary periodic forcing is performed as bench-
mark. The tested frequencies and duty cycles (DC) are constrained by the sam-
pling rate Fs = 2 kHz, see details in [18]. The optimal periodic forcing b◦ is found
at St◦H = f◦H/U∞ = 6.6 and DC◦ = 33%, resulting in J = 0.66 and increasing
the base pressure by 33%. Hereafter, this optimal periodic forcing will be used
as reference.

First, we explore the open-loop multi-frequency control (LGPC-1) optimiz-
ing the frequency combination. Let h comprise 9 harmonic functions hi(t) =
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Table 1. Harmonic functions hi(t) = sin(2πfit) used as inputs of LGPC-1.

Controller input h1 h2 h3 h4 h5 h6 h7 h8 h9

fi (Hz) 10 20 50 100 200 250 333 400 500

StHi
0.2 0.4 1 2 4 5 6.6 8 10

sin(2πfit), i = 1, . . . , 9 listed in Table 1. In this case, the control law reads
b = H(K(h)). Up to N = 4 generations with M = 50 individuals in each are
evaluated. We stop at the fourth generation because half of the individuals have
similar J values near the optimal one. The optimal control law reads:

(4.2) b⊙ = H(h5/h8 − 0.622).

The resulting cost J⊙ = 0.65 beats the optimized periodic forcing, leading to
35% base pressure recovery associated with 22% drag reduction. The actuation
energy defined by the time-averaged momentum of pulsed-jets is about 7% for
both control laws. The optimal control law contains two frequencies, indicating
that LGPC-1 explores a multi-frequency forcing which outperforms the reference
periodic forcing.

The results for LGPC-2, b = H(K(s′)), have been discussed in an earlier
study [18] and are not shown here. Intriguingly, LGPC-2 provides a sensor opti-
mization by reproducibly selecting only one sensor s′4 near the centre of bottom
edge in the optimal control law. The corresponding control emulates the opti-
mal high-frequency periodic forcing but is slightly worse (J� = 0.72). A sim-
ilar observation has been made for stabilization of the mixing layer [3], where
the optimized high-frequency periodic forcing has outperformed GPC-optimized
sensor-based feedback in stabilizing the flow. At high frequencies, time delays
and noise in sensor-based feedback give rise to low-frequency actuation com-
ponents which are detrimental to the cost function. We could even change the
dynamical system (3.1) to have an unbeatable periodic forcing, as discussed at
the end of Section 3.5.

Finally, a test of the generalized non-autonomous control LGPC-3 is per-
formed by combining the sensors s′ and the optimal harmonic forcing h◦(t) =
sin(2πf◦t), i.e. b = H(K(s′, h◦)). Up to N=5 generations are evaluated with
50 individuals in each generation. LGPC-3 converges to the optimal periodic
forcing b◦ from the second generation and no improvement is observed in sub-
sequent generations. The finding is in agreement with the LGPC-2 result where
the optimal control emulates the optimal periodic forcing but is slightly worse.
LGPC-3 prefers to select the optimal periodic forcing to the sensor feedback.
Upon these results, we do not pursue LGPC-3 b = H(K(s′,h)) by including
multiple frequencies in this experiment. We assume the result will be the same
with LGPC-1.
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In summary, LGPC identifies an open-loop multi-frequency forcing as the
best control for drag reduction. The underlying dynamics is presented in the
following section. Note that this control has been identified by testing only 200
individuals in less than one hour. The required optimization time is less than
that for finding the best frequency and duty cycle for the periodic reference with
a thorough parameter scan.

4.3. Near wake dynamics of LGPC-1

In this section, we investigate the impact of the best control b⊙ from LGPC-1
on the near wake dynamics. To illustrate the actuation characteristics of b⊙,
Fig. 12 displays (a) its phase-averaged jet velocity over one period and (b) its
power spectral density Sb. The results of b◦ are also presented for comparison.
Intriguingly, b⊙ exhibits a multi-frequency dynamic, showing two frequencies at
StH = 4 and StH = 8, respectively.

Fig. 12. (a) Phase-averaged jet velocity Vj for the optimal periodic forcing b◦ and the
optimal LGPC-1 control b⊙. (b) Power spectral density Sb of b◦ and b⊙. (c) Power spectral

density Sp of the area-averaged pressure coefficient.

It has been reported that forcing at frequencies several times that of the
natural vortex shedding can stabilize the wake fluctuations by inducing large
dissipation and inhibiting the entrainment of fluid into the recirculation region
[23–25]. Here, LGPC-1 exploits similar actuations in an unsupervised manner.
The actuation frequencies in b⊙ are one order of magnitude larger than that of
the natural vortex shedding frequency Stvs

H = 0.2. The impact of the actuation on
the wake dynamics can be further inferred from the base pressure fluctuation. We
use the area-averaged base pressure coefficient 〈Cp〉 as a global indicator of the
dynamics. Figure 12(c) compares the spectral energy of 〈Cp〉 for the unforced and
optimal forced flows, where Sp represents its power spectral density. The high-
frequency forcing has two major effects: (1) it significantly excites the frequencies
over StH > 1, and (2) it suppresses a range of frequencies below StH < 0.2.
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The high level of energy around StH = 0.1 in the unforced flow is associated
with the bubble pumping frequency, which is induced by an axial oscillation of
the recirculation bubble [26]. It seems that the damping of this pumping mode
contributes to reduce the drag. The benefit in drag reduction by the suppression
of this mode has been also observed in [27]. This result is a good illustration of
the frequency crosstalk between low- and high-frequencies, and corroborates the
mechanisms proposed in [24].
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Fig. 13. Near wake dynamics for the unforced baseline flow (a, c, e) and forced flow (b, d, f).
(a, b) Time-averaged velocity norm ‖U‖ and 2D streamlines; (c, d) 2D estimation of the

turbulent kinetic energy k for the upper shear layer; (e, f) k for the lower shear layer.

Now, we focus on the effects of the best LGPC-1 control b⊙ on the wake dy-
namics identified from the PIV measurements. Figure 13 shows the color map of
the time-averaged velocity norm ‖U‖ =

√
u2 + v2 overlapped with 2D stream-

lines (a, b) and 2D estimation of the turbulent kinetic energy k = 1
2(u′2 + v′2)

(c-f) for the baseline (a,c,e) and controlled flow (b,d,f). u and v represent the
time-averaged streamwise and cross-stream velocity, respectively; u′ and v′ are
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their corresponding velocity fluctuations. The values of these quantities are nor-
malized by U∞.

The mean wake of the baseline flow consists of two counter-rotating structures
with a very low velocity inside, leading to a recirculating bubble extending up to
Lr/H ≈ 1.42, where Lr = maxx(u(x) = 0) denotes the bubble length. The upper
recirculating structure dominates the wake and results in an asymmetry in the
cross-stream direction. The distribution of k is concentrated in the shear layers,
indicating its important role in the wake dynamics. In addition, higher values
of k are noticeable at the lower shear layer near the ground which corroborates
the asymmetry observed above. Such asymmetry is ascribed to the presence of
ground as a perturbation.

The forcing induces significant changes in the wake. First, the shear layers
are highly deviated toward the model base, resulting in a thinner and shorter
recirculation bubble, the length of which is Lr/H ≈ 1.06, reduced by 25%
compared with the baseline flow. The vectorization of the shear layer modi-
fies the streamline curvature near the separation and thus results in a local
rise in base pressure. Secondly, the vectorization of shear layers is accompa-
nied by an overall reduction of turbulent kinetic energy inside the recirculation
bubble, which can be qualitatively observed in Fig. 13(d) and (f). The injec-
tion of high-frequency jet structures enhances the interaction of the small- and
large-structures, and thus diminish the turbulent dynamics [23], resulting a more
stabilized wake. In summary, it is the combined effect of shear layer deviation
and wake stabilization that lead to ultimately a base pressure recovery and drag
reduction.

5. Visualization of control laws

In this section, we illustrate the control laws and cost function values by an
easily interpretable ’topological landscape’, generalizing earlier work [28]. First
(Section 5.1), the visualisation technique is described, employing a control-law
distance metric and multidimensional scaling for feature extraction. Then, (Sec-
tion 5.2), the LGPC laws for the dynamical system and the turbulence control
experiment are depicted.

5.1. Multidimensional scaling

LGPC systematically explores the control law space by generating and eval-
uating a large number of control laws from one generation to the next. An
assessment of the similarity of control laws gives additional insights into their
diversity and convergence to optimal control laws, i.e. into the explorative and
exploitative nature of LGPC. For that purpose, we rely on Multidimensional
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Scaling (MDS) [29], a method classically used to visualize abstract data in a low-
dimensional space. The main purpose of MDS is to visualize the (dis)similarity
of objects or observations. MDS comprises a collection of algorithms to detect
a meaningful low-dimensional embedding given a dissimilarity matrix. Here, we
employ Classical Multidimensional Scaling (CMDS) which originated from the
works of [30] and [31].

Let us defineNK as the number of objects to visualize, and D=(Dij)1≤i,j≤NK

as a given distance matrix of the original high-dimensional data. The aim of
CMDS is to find a centred representation of points Γ = [γ1 γ2 . . . γNK

]
with γ1, . . . ,γNK

∈ R
r, where r is typically chosen to be 2 or 3 for visualization

purposes, such that the pairwise distances of the points approximate the true
distances, i.e. ||γi − γj ||2 ≈ Dij .

We choose to visualize all control laws in a two-dimensional space r = 2.
Thus, the number of objects is NK = M ×N , where M is the number of indi-
viduals in a generation, and N is the total number of generations. The distance
between two control laws bi and bj , i, j ∈ {1, . . . , NK} shall measure their ‘ef-
fective difference’. Let us consider the non-autonomous feedback bi = bi (si,hi).
Here, si(t) are the sensor readings collected when bi is applied and hi(t) are the
harmonic arguments of the control law bi. The squared difference between bi and
bj is defined as

(5.1) D2
ij =

〈|bi(si(t),hi(t)) − bj(si(t),hi(t))|2 + |bi(sj(t),hj(t)) − bj(sj(t),hj(t))|2〉
2

+ α |Ji − Jj |.

The time average 〈·〉 is taken over the evaluation time interval. Thus, D2
ij rep-

resents the difference between the ith and jth control law in an average sense
evaluated in the relevant sensor space. The permutation of control laws bi and bj
with its arguments guarantees that the distance matrix is symmetric. More im-
portantly, this ensures that the control laws are compared in the relevant sensor
space with an equal probability of both forced attractors.

The second term in (5.1) penalizes the difference of their achieved costs J with
the coefficient α. The penalization coefficient α is chosen as the ratio between the
maximum difference of two control laws (first term of D2

ij) and the maximum
difference of the cost function (second term of D2

ij). Thus, the dissimilarities
between control laws and between the cost functions have comparable weights
in the distance matrix Dij . This penalization evidently smoothes the control
landscape J(γ).

A problem may arise for the comparison of two pure open-loop forcings bi
and bj . We expect, for instance, that bi = cos t and bj = sin t give rise to the
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same actuation response modulo a time shift τ = π/2 and would consider these
control laws as equivalent. Even for sensor-based feedback enriched by a har-
monic input, we expect the actuation response to be ’in phase’ or synchronized
with the harmonic input. This expectation is taken into account by minimiz-
ing the difference between two control commands modulo a minimizing time
shift:

(5.2) D2
ij = min

τ

1

2

(
〈|bi(si(t),hi(t)) − bj(si(t− τ),hi(t− τ))|2

+ |bi(sj(t),hj(t)) − bj(sj(t− τ),hj(t− τ))|2〉
)

+ α|Ji − Jj |.

Evidently, (5.1) and (5.2) concide at τ = 0.
Summarizing, the square of the distance matrix D2 = (D2

ij) is defined as
follows:

(1) If both control laws have a non-trivial harmonic input (are non-autono-
mous), (5.2) defines the distance.

(2) Otherwise, (5.1) is employed.
Applying CMDS to the distance matrix D, each control law bi is associated

with a point γi = (γi,1, γi,2) such that the distance between different γi emulates
the distance between control laws defined by (5.1) and (5.2). More generally,
γi are feature vectors which coefficients represent those features that contribute
most on average to the discrimination of different control laws.

5.2. Control landscapes for the LGPC runs

Figure 14 visualizes the control laws determined by LGPC-3 for the three-
oscillator model (a), and LGPC-1 for the simplified car model (b). Due to the
huge number of control laws in the three-oscillator model (NK = 500 × 50 =
25000), we present every 10th individual in every 10th generation for clarity. The
full ensemble of individuals are shown for the simplified car model as its number
is moderate (NK = 50×4 = 200). Each symbol represents a control law which is
color-coded with respect to its performance ranking, for instance the dark color
represents the best 10% of the presented control laws. The control laws in the first
generation cover a significant portion of the control space, like in a Monte-Carlo
search. When the value of n increases, we observe a global movement of control
laws towards the minimum where better performance is obtained (darker color).
Moreover, the distances between control laws of different generations are also de-
creased resulting in a dense distribution. This is illustrated in Fig. 14(a) where
the inserted figure gives a close view of the control laws near the origin point,
where the best control law(s) are found at [γ1, γ2] ≈ [−0.18, 0.02]. These obser-
vations show that LGPC has effectively explored the control space, evidenced
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Fig. 14. Visualization of the control laws obtained for (a) the three-oscillator model by
LGPC-3 (Sec. 3); and (b) the simplified car model by LGPC-1 (Section 4); n represents the
generation number. The color scheme corresponds to the percentile rank of the control laws

with respect to their performance J . Darker color presents a better performance. The control
law bi is presented by the point γ = (γ1, γ2). The distance between two control laws, i.e. two

points, approximates their respective dissimilarity.

by the extended distribution of control laws. In summary, the visualization pro-
vides not only a simple and revealing picture of the exploration and exploitation
characteristics of the control approach, but also inspires further improvement of
the methodology.

6. Conclusions and outlook

We have demonstrated that linear genetic programming control (LGPC) is
a simple yet effective model-free control strategy for strongly nonlinear dynam-
ics with frequency crosstalk. This nonlinearity is a considerable challenge for the
model-based control design due to the difficulties in the corresponding mathe-
matical modeling and limited knowledge about the flow in experiments. LGPC is
shown to discover and exploit the most effective nonlinear open- and closed-loop
control mechanisms in dynamical systems and turbulence control experiments
in an automated unsupervised manner without any model or knowledge of the
plant.

Three categories of LGPC are investigated in this work: an open-loop multi-
frequency control b = K(h), named LGPC-1, an autonomous sensor-based feed-
back control b = K(s), termed LGPC-2, and a generalized non-autonomous con-
trol b = K(s,h) comprising the sensors s and time-periodic functions h, called
LGPC-3. All of them are successfully applied to the stabilization of a forced
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nonlinearly coupled three-oscillator model (Section 3). The obtained control laws
stabilize the first unstable oscillator by exploiting two frequency crosstalk mech-
anisms: (1) the excitation of the third oscillator by a hard ’kick’ for a quick
transient and (2) the suppression of the second oscillator to sustain the low
fluctuation level of the target dynamics. Following the quick transient, the first
and second oscillators enter into a quasi-stable state at nearly vanishing fluc-
tuation levels. Hence, the full-state feedback hardly needs to actuate and the
control command starts to vanish. The whole system is stabilized with only
a small investment of the actuation energy at the very beginning of the control.
Thus, LGPC laws show a performance over the optimal open-loop control as
both a lower fluctuation level and a lower actuation energy are obtained. The
explored control demonstrate the vital importance of frequency crosstalk for
control design.

LGPC is applied to a turbulence control experiment targeting drag reduction
of a car model (Section 4). It finds that multi-frequency forcing beats optimized
periodic forcing by 22% over 19%, the current benchmark for this car configura-
tion. This performance increase of 3% pays for almost half of the invested actua-
tion energy. Perhaps surprisingly, the maximum actuation frequency is about 33
times that of the von Kármán vortex shedding. This high-frequency forcing leads
to a broadband suppression at very low frequencies of base pressure signals and
a global attenuation of averaged and turbulent kinetic energy in the near wake,
resulting in a more stabilized wake. On the other hand, the mean wake geometry
is modified such that the shear layers are deviated towards the center, resulting
in a shorter, narrower, more stream-lined shaped bubble. The drag reduction
is ultimately achieved by the combined effect of the wake stabilization and the
shear layer deviation and can legitimately be called fluidic boat tailing.

One of the many benefits of LGPC is that it explores automatically the
control space with little or no prior knowledge of the system being controlled.
Moreover, LGPC-3 for the control law can make the evolutionary algorithm
choose between sensor-based feedback, multi-frequency forcing and combinations
thereof. In addition, the number of control laws evaluations for the Ahmed body
drag reduction was quite comparable to a single frequency optimization but
yields a much more general multi-frequency actuation which is hardly accessible
to a parametric study. In an even more general framework, noise signals n could
also be included in the control law arguments, leading to b = K(s,h,n). Thus
stochastic forcing and its generalizations are included. Another generalization
is the use of temporal filters as considered operations. In [4], a filter-enriched
GPC has successfully discovered the optimal linear quadratic gaussian control
for the stabilization of a noise-driven oscillator. In summary, LGPC can work
in a search space which includes in principle any perceivable control logic with
finite amount of operations.
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Visualization of the ensemble of the control laws in a two-dimensional plane
sheds light on the explorative and exploitative nature of LGPC, and thus ad-
dresses the need to monitor the search space and guide the improvement of the
algorithm. The example given in Fig. 14 indicates clearly the search space topol-
ogy and distills the local extrema in this feature space. Evidently, in a future
development of LGPC, this feature space has been shown to estimate the cost
function of an untested control law [32] and may be used to avoid the redun-
dant testing of control laws in unpromising terrain. Thus, experimental testing
time can be reduced. The visualization is becoming an important component
of LGPC for on-line decisions during a control experiment. Further increases in
the learning rate are expected from incorporating over 50 years of experience in
evolutionary algorithms [33, 34].

The authors currently improve the LGPC methodology, and pursue car model
experiments for reducing the drag and yaw moment during cross-wind gusts.
LGPC opens refreshingly new paths in fluid mechanics, as estimation, predic-
tion and control tasks are all regression problems minimizing a cost function.
LGPC exploits that control is a mapping from the plant sensors (output) to ac-
tuations (input) optimizing aerodynamic or other goals. Prediction is the map-
ping from the state to its time derivative or future state. And estimation maps
sensor signals to flow fields. Evidently all these tasks can be solved with LGP.
Moreover, a single LGPC run yields already rich actuation response data for the
computation of a control-oriented nonlinear black-box model [35]. Soon, we will
see turbulence control experiments in which control laws, dynamical models and
flow estimations are learned in few hours of wind tunnel testings—instead weeks
or months’ time of parameter studies or model development. LGPC and, more
generally, machine learning control [4] can be expected to be a game changer in
future flow control and in fluid mechanics in general.
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