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In this study, the plane receding contact problem for a functionally graded
(FG) layer resting on two quarter-planes is considered by using the theory of linear
elasticity. The layer is indented by a rigid cylindrical punch that applies a concen-
trated force in the normal direction. While the Poisson’s ratio is kept constant, the
shear modulus is assumed to vary exponentially through-the-thickness of the layer.
It is assumed that the contact at the layer-punch interface and the layer-substrate
interface is frictionless, and only the normal tractions can be transmitted along the
contact regions. Applying the Fourier integral transform, the plane elasticity equa-
tions are converted to a system of two singular integral equations, in which the contact
stresses and the contact widths are unknowns. The singular integral equations are
solved numerically by Gauss–Jacobi integration formula. Effects of the material inho-
mogeneity, the distance between quarter-planes and the punch radius on the contact
stresses, the contact widths, and the stress intensity factors at the sharp edges are
shown. Although the theoretical analysis is formulated with respect to elastic quarter
planes, the numerical studies are carried out only for rigid ones.
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Notation

a contact width under the punch,
b, c contact widths between the layer and quarter planes,
h layer thickness,
k(c) stress intensity factor,
N collocation points,
p1(x) contact pressure under the punch,
p2(x) contact pressure between the layer and quarter plane,
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P concentrated normal force,
R radius of the cylindrical punch,
W N weighting constant,
γ inhomogeneity parameter,
µ shear modulus,
ν Poisson’s ratio,
φ(x) dimensionless contact pressure,
Γ Gamma function,
χ shear modulus ratio of the layer (top surface to the bottom surface),
Ω, Ψ inverse Fourier transforms of the displacement.

1. Introduction

Since the most structural and mechanical system components are
in contact with each other, contact mechanics finds a wide practical application
in the field of solid mechanics. The stress distribution and deformation at the
contact surfaces play a fundamental role on the behavior of engineering structures
such as road pavements, railway ballasts, foundations, brake disks and abradable
seals in gas turbine components.

When two bodies are in contact without bond upon loading, the contact
zone shrinks as the bodies are deformed, and the initial contact area decreases
to a finite size. This type of contact is called as receding contact [1]. There are
numerous studies focusing on the receding contact problems related to the homo-
geneous solids in the literature. For example, the axisymmetric receding contact
problem for an elastic plate pressed against the half-space with a concentrated
force was studied by Weitsman [2] and Pu and Hussain [3]. Keer et al. [4]
studied both plane and axisymmetric receding contact problems between a layer
and a half space pressed with concentrated and uniformly distributed loads. Ax-
isymmetric double receding contact problems were evaluated by Civelek and
Erdogan [5] and Geçit [6]. Ratwani and Erdogan [7], Comez et al. [8],
Kahya et al. [9] and Adıbelli et al. [10] studied plane double receding con-
tact problems. Above mentioned researchers neglected the frictional forces at
the contact surfaces, and they assumed only that compressive normal tractions
can be transmitted through the contact surface. On the other side, Çömez [11]
investigated the frictional effect on the double receding contact problem.

Functionally graded materials (FGM) are inhomogeneous composites that the
volume fractions of constituent materials vary gradually along spatial direction.
Contact problems involving FG layer/substrate have been studied increasingly
in recent years because such materials are widely used in load transfer compo-
nents. Giannakopoulos and Pallot [12], Dag et al. [13], and Chen et al. [14]
studied the frictional contact problems of a rigid punch on an FG half-plane. In
these studies, the elastic moduli of the half-plane was assumed to vary with
depth according to the power-law [12], or in exponential form either in a lateral
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direction [13], or in an arbitrary direction [14]. Guler and Erdogan [15], Liu

et al. [16], and Chen and Chen [17] investigated the contact problem of a ho-
mogeneous half-space coated with exponential or linear graded layers. Guler

and Erdogan [15] and Chen and Chen [17] considered the frictional plane
contact problem by using the Fourier transform, while Liu et al. [16] studied on
the frictionless axisymmetric contact problem by using the Hankel transform.
Yang and Ke [18] and Chidlow et al. [19] examined the frictionless and fric-
tional contact problems between a coating-graded layer-substrate and a rigid
punch, respectively. The thermoelastic frictional contact and contact instability
problems of FG layer were studied by Liu et al. [20] and Mao et al. [21, 22].

The receding contact problem of an FG layer resting on a half-plane was con-
sidered by El-Borgi and colleagues. They studied the frictionless plane problem
when the components were pressed by normal tractions [23]. In another study,
these researchers extended the frictionless problem to the frictional case [24].
Rhimi et al. [25] studied the axisymmetric contact problem when the system
was pressed by a rigid punch. Çömez et al. [26] studied the double contact
problem of FG bi-layer bonded to the rigid substrate. El-Borgi and Çömez

[27] examined the frictional receding contact problem of a FG layer resting on
a homogeneous half plane. Yan and Li [28] studied the double receding plane
contact problem for an FG layer resting on an elastic homogeneous layer. In
their studies, Yan and Mi [29, 30] examined the FG coated homogeneous layer
or homogeneous coated FG layer resting on a homogeneous half plane.

If one of the contacting bodies has a sharp edge at the boundary of contact
surface, locally high stresses can be anticipated [31]. Such a problem arises, for
instance, in contact problems of quarter-planes. By using the reflection method,
Hetenyi [32] found a solution for quarter space subjected to a normal point load.
Based on the Hetenyi’s reflection method, the first numerical investigation re-
lated to the frictionless flat punch problem on a quarter-plane and a quarter space
was carried out by Gerber [33]. The plane problem of two dissimilar cylindrical
composite wedges was discussed by Boggy and Wang [34] using the Mellin
transforms, and they developed the stress singularities at the corner for the ma-
terial constants and corner angle. In the framework of the Fourier and Mellin
transforms, Erdogan and Ratwani [35] examined the receding contact prob-
lem of an elastic layer supported by two elastic quarter-planes. Bakioglu [36]
studied the contact problem of an elastic layer pressed to the elastic wedge with
a rigid cylindrical punch. By using the integral transform technique, Keer et al.
[37] solved the frictionless contact problem between a quarter space and a rigid
cylinder. The non-symmetrical contact problem of an elastic layer supported with
two elastic quarter-planes was examined both analytically and numerically by
Aksogan et al. [38]. Yaylacı and Birinci [39] considered the contact problem
of two homogeneous layers supported by two elastic quarter-planes.
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The receding contact problem of FG layer resting on two quarter planes
was examined by Adıyaman et al. [40]. The top of the layer is subjected to
a distributed load. In the present study the prescribed traction load is replaced
by a cylindrical rigid punch. Since FGM coatings have a potential application to
improve the properties of surfaces in contact, the layer is modeled as FG instead
of homogeneous. The FG layer is pressed to the quarter-planes through a rigid
cylindrical punch that applies a concentrated force in the normal direction. The
shear modulus is assumed to vary exponentially through-the-thickness of the
layer. By using the Fourier transform, the plane elasticity equations are converted
to a system having two singular integral equations, in which the unknowns are the
contact stresses and the contact widths. The singular integral equations are then
solved numerically by the Gauss–Jacobi integration formulae. The main objective
of the study is to examine the contact stresses, the contact widths, and the stress
intensity factors at sharp edges depending on the material inhomogeneity, the
distance between the quarter-planes and the punch radius. Note that the problem
is formulated with respect to elastic quarter planes however the numerical studies
are performed only for rigid ones.

2. Formulation of the problem

The geometry of the two-dimensional (2D) frictionless contact problem is
shown in Fig. 1. FG elastic layer of thickness (h)is supported by two quarter-
planes. The rigid cylindrical punch with radius (R) is pressed against the layer
by a concentrated normal force (P ). a and b refers to the contact half-widths
between the rigid punch and the FG layer, and between the FG layer and quarter-

Fig. 1. Geometry of the plane contact problem.
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planes, respectively. The distance between the quarter-planes is defined as 2c.
The Poisson’s ratio (ν) is taken to be a constant while the shear modulus of the
layer (µ) varies exponentially according to the following law:

(2.1) µ1(y) = µ0e
γy, γh = ln

(
µh

µ0

)
.

where γ is the material gradation parameter, µ0 and µh are the shear moduli
on the bottom and top surfaces of the layer, respectively.

The stress-displacement relations of the FG layer can be written as:

σx1(x, y) =
µ1(y)

κ1 − 1

[
(κ1 + 1)

∂u1(x, y)

∂x
+ (3 − κ1)

∂v1(x, y)

∂y

]
,(2.2)

σy1(x, y) =
µ1(y)

κ1 − 1

[
(3 − κ1)

∂u1(x, y)

∂x
+ (κ1 + 1)

∂v1(x, y)

∂y

]
,(2.3)

τxy1 = µ1(y)

[
∂u1(x, y)

∂y
+
∂v1(x, y)

∂x

]
,(2.4)

where u1(x, y), v1(x, y) are the x- and y- components of the displacements and
κ1 = 3 − 4ν1 for the plane strain model.

The governing partial differential equations for the plane contact problem
can be given as:

(κ1+1)
∂2u1

∂x2
+(κ1−1)

∂2u1

∂y2
+2

∂2v1
∂x∂y

+γ(κ1−1)

[
∂u1

∂y
+
∂v1
∂x

]
= 0,(2.5)

(κ1−1)
∂2v1
∂x2

+(κ1+1)
∂2v1
∂y2

+2
∂2u1

∂x∂y
+γ

[
(3−κ1)

∂u1

∂x
+(κ1+1)

∂v1
∂y

]
= 0.(2.6)

Equations (2.5) and (2.6) can be solved by using the Fourier transforms which
are defined as follows:

u1(x, y) =
2

π

∞∫

0

Ω(α, y) sin(αx)dα,(2.7)

v1(x, y) =
2

π

∞∫

0

ψ(α, y) cos(αx)dα,(2.8)

where α is the transform variable, Ω(α, y) and ψ(α, y) are the Fourier transforms
of u1(x, y) and v1(x, y), respectively. By substituting Eqs. (2.7) and (2.8) into
Eqs. (2.5) and (2.6), the following partial differential equations can be obtained:

−(κ1+1)α2Ω+(κ1−1)
d2Ω

dy2
−2α

dψ

dy
+γ(κ1−1)

[
dΩ

dy
−αψ

]
= 0,(2.9)

−(κ1−1)α2ψ+(κ1+1)
d2ψ

dy2
+2α

dΩ

dy
+γ

[
(3−κ1)αΩ+(κ1+1)

dψ

dy

]
= 0.(2.10)



490 İ. Çömez, V. Kahya, R. Erdöl

Through applying some mathematical manipulations, Eqs. (2.9) and (2.10) can
be combined in the following ordinary differential equation for Ω:

(2.11)
dΩ4

dy4
+2γ

dΩ3

dy3
+(γ2−2α2)

dΩ2

dy2
−2α2γ

dΩ

dy
+α2

(
α2+γ2 3−κ1

1+κ1

)
Ω = 0,

solution of which can be written as

(2.12) Ω(α, y) =
4∑

j=1

Aje
njy,

where nj is defined by two complex conjugates as n3 = n̄1, n4 = n̄2, and Aj refers
to the unknown coefficients to be determined from the boundary conditions of
the problem; n1 and n2 are given as

n1 = −1
2

(
γ +

√

4α2 + γ2 + 4Iα|γ|
√

3 − κ1

κ1 + 1

)
,(2.13)

n2 = −1
2

(
γ −

√

4α2 + γ2 + 4Iα|γ|
√

3 − κ1

κ1 + 1

)
.(2.14)

By substituting Eq. (2.12) into Eqs. (2.9) and (2.10), ψ(α, y) can be obtained as

(2.15) ψ(α, y) =

4∑

j=1

Ajmje
njy,

where

(2.16) mj =
(2nj + γ(3 − κ1))(n

2
j + γnj − α2

(
3+κ1

1+κ1
)
)

α(4α2 + γ2(3 − κ1))
.

Through inserting Eqs. (2.12) and (2.15) into Eqs. (2.17) and (2.18), the dis-
placement components for the FG layer can readily be obtained as follows:

u1(x, y) =
2

π

∞∫

0

4∑

j=1

Aje
njy sin(αx)dα,(2.17)

v1(x, y) =
2

π

∞∫

0

4∑

j=1

Ajmje
njy cos(αx)dα.(2.18)
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Substituting Eqs. (2.17) and (2.18) into Eqs. (2.2)–(2.4) yields the expressions
of the stress field in the FG layer as follows:

σx1(x, y) =
2

π

∞∫

0

4∑

j=1

µ1(y)

κ1−1
[(3−κ1)mjnj+α(κ1+1)]Aje

njy cos(αx)dα,(2.19)

σy1(x, y) =
2

π

∞∫

0

4∑

j=1

µ1(y)

κ1−1
[(κ1+1)mjnj+α(3−κ1)]Aje

njy cos(αx)dα,(2.20)

τxy1(x, y) =
2

π

∞∫

0

4∑

j=1

µ1(y)[(nj−αmj)]Aje
njy sin(αx)dα.(2.21)

3. Boundary conditions and singular integral equations

Due to symmetry, only half of the problem can be considered. Therefore, we
can write the boundary conditions of the considered plane contact problem as
follows:

σy1(x1, h) =

{
−p1(x1) 0 < x1 < a,

0 a ≤ x1 <∞,
(3.1)

τxy1(x1, h) = 0, 0 ≤ x1 <∞,(3.2)

σy1(x2, 0) =

{
−p2(x2) c < x2 < c+ b,

0 c+ b ≤ x2 <∞,
(3.3)

τxy1(x2, 0), = 0 0 ≤ x2 <∞,(3.4)

where p1(x1) and p2(x2) are the unknown contact stresses under the punch and
between the FG layer and the quarter-planes, respectively.

Applying the Fourier transforms to the boundary conditions given by Equa-
tion (3.1–3.4) with considering Equations (2.17), (2.18), and (2.19)–(2.21) pro-
vides a linear algebraic system of equations. Solving these equations gives the
unknown functions Aj in terms of the Fourier transforms of the unknown trac-
tions p1(x1) and p2(x2) as follows:

Aj =
1

µ0
Aj1

a∫

0

p1(x1) cos(αt1)dt1(3.5)

+Aj2

c+b∫

c

p2(x2) cos(αt2)dt2 (j = 1, . . . , 4),
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where Aj1 and Aj2 are the coefficients of p1(x1) and p2(x2) (the expressions of
p1(x1) and p2(x2) are not given here since they are very long). The unknown
contact pressures p1(x1) and p2(x2) can be determined from the following mixed
boundary conditions related to the vertical displacements on the contact areas:

∂v1(x1, h)

∂x1
=
x1

R
(0 < x1 < a),(3.6)

∂

∂x2
[v1(x2, 0) − v2(x2, 0)] = 0 (c < x2 < c+ b),(3.7)

where v2 is the vertical displacement of the quarter-plane. The above conditions,
written in the derivative form, ensure the continuity of the normal displacement
but eliminate the rigid-body displacements.

Using the Airy stress function and the Mellin transform, the vertical dis-
placement on the top surface of quarter-plane can be written as follows [35]:

(3.8)
∂v2(x2, 0)

∂x2
= −κ2 + 1

4µ2

c+b∫

c

p2(t2)k̄23(x2, t2)dt2,

where

(3.9) k̄23(x2, t2) =

1

x2 − c

{ ∞∫

0

(
sinh(πy)

−2y2 − 1 + cosh(πy)
− 1

)
sin

[
log

(
x2 − c

t2 − c

)
y

]
dy

+
1

log
(

x2−c
t2−c

) − π2

π2 − 4

}
.

Substituting the unknown functions Aj into the mixed conditions in (3.6)
and (3.7), and extracting the Cauchy singularities from the kernels give the
following system of singular integral equations:

(3.10)
1

π

a∫

−a

p1(t1)

[
1

t1 − x1
+ k11(x1, t1)

]
dt1

+
1

π

c+b∫

c

p2(t2)k12(x1, t2)dt2 =
µ01

ϕ1

x1

R
,

(3.11)
1

π

a∫

−a

p1(t1)k21(x2, t1)dt1

+
1

π

c+b∫

c

p2(t2)

[
1

t2 − x2
+ k22(x2, t2) + k23(x2, t2)

]
dt2 = 0.
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The expressions for k11(x1, t1), k12(x1, t2), k21(x2, t1), k22(x2, t2), k23(x2, t2) and
ϕ1 are given in Appendix A. In addition to the contact pressures p1(x) and p2(x),
the contact widths a and b are also unknown in the singular integral equations. To
be able to complete the solution of the problem, the following global equilibrium
conditions must be ensured by p1(x) and p2(x):

(3.12)

a∫

−a

p1(t1)dt1 = P,

c+b∫

c

p2(t2)dt2 =
P

2
.

4. Numerical solution of the singular integral equations

By introducing the following dimensionless quantities:

s1 = x1/a, r1 = t1/a,(4.1)

s2 = 2(x2 − c− b/2)/b, r2 = 2(t2 − c− b/2)/b,(4.2)

φ1(r1) =
p1(r1)

P/h
, φ2(r2) =

p2(r2)

P/h
,(4.3)

the singular integral Eqs. (3.10) and (3.11), and the equilibrium conditions (3.12)
can be rewritten as

1

π

1∫

−1

φ1(r1)

[
1

r1 − s1
+
a

h
k11(s1, r1)

]
dr1(4.4)

+
1

π

1∫

−1

φ2(r2)
b

2h
k12(s1, r2)dr2 =

1

ϕ1

µ0/(P/h)

R/h

a

h
s1,

1

π

1∫

−1

φ1(r1)
a

h
k21(s2, r1)dr1(4.5)

+
1

π

1∫

−1

φ2(r2)

[
1

r2 − s2
+

b

2h
[k22(s2, r2) + k23(s2, r2)]

]
dr2 = 0,

a

h

1∫

−1

φ1(r1)dr1 = 1,(4.6)

b

h

1∫

−1

φ2(r2)dr2 = 1.(4.7)
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Due to the smooth contact at the end of the rigid cylindrical punch, the
singular integral equation in Eq. (4.4) has an index −1; however, thanks to the
geometry, the index of the integral equation in (4.5) is 0. The numerical method
proposed by Erdogan [41] and Krenk [42] may be used to solve the system of
integral equations given by Eqs. (4.4) and (4.5). In this method, the unknown
functions φi(ri) may be expressed as

φ1(r1) = g1(r1)
√

1 − r21,(4.8)

φ2(r2) = g2(r2)(1 − r2)
α2(1 + r2)

β2 ,(4.9)

where gi(ri) are the continuous and bonded functions in the interval [−1, 1].
By using the Gauss–Jacobi quadrature formulae, the integral equations can be
converted to the equivalent system of algebraic equations as follows:

(4.10)
N∑

i=1

WN
1i

[
1

r1i−s1k
+
a

h
k11(s1k, r1m)

]
g1(r1i)

+
N∑

i=1

WN
2i

b

2h
k12(s1k, r2i)g2(r2i) =

1

β1

µ0/(P/h)

R/h

a

h
s1k, k = 1, . . . , N+1,

(4.11)
N∑

i=1

WN
1i

a

h
k21(s2k, r1i)g1(r1i)

+
N∑

i=1

WN
2i

[
1

r2i−s2k
+
b

2h
[k22(s2k, r2i)+k23(s2k, r2i)]

]
g2(r2i) = 0, k = 1, . . . , N.

Also, the equilibrium conditions in Eq. (3.12) become

(4.12)
a

h

N∑

i=1

WN
1i g1(r1i) =

1

π
,

b

h

N∑

i=1

WN
2i g2(r2i) =

1

π
,

where r1i and s1k are the roots of the related Chebyshev polynomials, r2i and
s2k are the roots of the related Jacobi polynomials, and WN

1i and WN
2i are the

weighting constant as:

r1i = cos

(
iπ

N + 1

)
i = 1, . . . , N,(4.13)

s1k = cos

(
π

2

2k − 1

N + 1

)
k = 1, . . . , N + 1,(4.14)

P
(α2,β2)
N (r2i) = 0, i = 1, . . . , N,(4.15)

P
(−α2,−β2)
N (s2k) = 0, k = 1, . . . , N,(4.16)
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WN
1i =

1 − r21i

N + 1
,(4.17)

WN
2i = − 1

π

(2N + 2 + α2 + β2)Γ (N + 1 + α2)Γ (N + 1 + β2)

(N + 1)!Γ (N + 1 + α2 + β2)
(4.18)

× 2α2+β2

P
(α2+β2)
N+1 (r2i)

d
drP

(α2,β2)
N (r2i)

,

where Γ refers to the Gamma function. It should be noted that there are 2N +1
possible collocation points to determine the 2N unknowns g1(r1i) and g2(r2i).
It can be shown that the (N/2 + 1)th equation in Eq. (4.10) is automatically
satisfied. Thus, Eqs. from (4.10) to (4.12) give 2N+2 equations in order to de-
termine the 2N + 2 unknowns, which are g1(r1i), g2(r2i), a, and b. The system
of equations is linear in terms of g(ri) but they are highly nonlinear in variables
a and b. Therefore, an iterative method is used to identify unknowns. Firstly,
initial values for a and b are estimated, then, the system of Eqs. (4.10) and (4.11)
is solved for g(ri). Equations given in (4.12) are, then, verified in terms of the
fact that the equilibrium conditions are satisfied or not. The iteration continues
until the desired accuracy is obtained in the equations presented in (4.12).

5. Stress intensity factor

The stress intensity factor (SIF), which describes the stress state at a crack
tip, is related to the rate of crack growth, and it is used to determine the failure
criteria emerging due to the fracture. In terms of our problem, at the corner
of the quarter-planes, the stresses in the FG layer have integrable singularity
with the power α2. The strength of the stress singularity or SIF gives some ideas
about the intensity of stresses in the vicinity of the singular point [43].

After calculating g2(r2i), the SIF at x2 = c can be obtained through

(5.1) k(c) = lim
x2→c

p2(x2)b
β2

(x2 − c)β22α2+β2

or in dimensionless form

(5.2)
k(c)

P/h
= g2(−1).

For the latter equation, g2(−1) can be calculated as [44]

(5.3) g2(−1) =
N−1∑

m=0

dmP
(α2,β2)
m (−1),
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where

dm =
1

hm
π

N∑

i=1

WN
2i P

(α2,β2)
m (r2i)g2(r2i),(5.4)

hm = 2α2+β2+1 2N + 2 + α2 + β2

(2m+ α2 + β2 + 1)m!

Γ (m+ α2 + 1)Γ (m+ β2 + 1)

Γ (m+ α2 + β2 + 1)
.(5.5)

6. Results and discussion

In this study, some numerical results related to the contact widths, the con-
tact stresses, and the SIFs depending on the punch radius, the distance between
quarter-planes, and the material inhomogeneity are presented. Based on the
study carried out by Erdogan and Gupta [43], α2 = 0.5 is assumed in Eqs.
(3.1) and (3.4). In the contact problems, geometric singularities occur in the
case that one of the contacting bodies has a sharp edge. The nature of the ge-
ometric singularities and the way to find β2 for homogeneous elastic materials
have been explained in frictionless cases by Dundurs and Lee [31] and Boggy

and Wang [34] and in a frictional case by Comninou [45]. In the existing lit-
erature, the index values for homogeneous materials have been well-established.
However, there is no study related to the geometric singularities and the indices
for FGMs in the literature. Although the formulations given in previous sections
are rather general, the numerical values are, thus, calculated only in case of rigid
quarter-planes for simplicity, i.e., β2 = −0.5.

Table 1 shows the convergency of the number of discrete points for numerical
analyses carried out to calculate the contact areas. As it is seen, when the num-
ber of discrete points increases, a/h decreases while b/h increases. However, they
almost remain constant after N = 20. The number of discrete points is taken as
N = 80 for the required accuracy. In order to solve Eq. (2.4), the numerical in-
tegration of k11(x1, t1), k12(x1, t2), k21(x2, t1), k22(x2, t2), k23(x2, t2) are needed.

Table 1. The effect of the discrete point number on the contact areas (c/h = 0.2,
µ0/(P/h) = 100, ν = 0.25, µh/µ0 = 2)a/h.

R/h = 100 R/h = 250 R/h = 500

Discrete points (N) a/h b/h a/h b/h a/h b/h

2 0.55270 0.77134 0.87675 0.92261 1.24011 1.12990

4 0.54952 0.78169 0.84752 0.93150 1.13078 1.13603

10 0.54775 0.78155 0.84628 0.93847 1.12918 1.14797

20 0.54722 0.78217 0.84752 0.94171 1.14203 1.15288

40 0.54722 0.78217 0.84747 0.94087 1.14058 1.15210

80 0.54722 0.78217 0.84745 0.94085 1.14014 1.15105
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Table 2 shows the effect of the upper limit of integration on the contact areas. The
contact areas almost remain constant after the upper limit 5. The upper limit is
chosen as 50 for numerical integration, and Gauss–Kronrod quadrature is used.

Table 2. The effect of the upper limit of the integrals on the contact areas

(c/h = 0.2, R/h = 100, µ0/(P/h) = 100, ν = 0.25).

Integration
upper limit

µh/µ0 = 0.5 µh/µ0
∼= 1 µh/µ0 = 2

a/h b/h a/h b/h a/h b/h

1 0.73951882 1.0494238 0.5773458 1.0566973 0.4428517 1.0988307

2 0.83617745 0.9278073 0.6651271 0.8667501 0.5110582 0.8555855

5 0.79770622 0.9236048 0.6645431 0.8253862 0.5438148 0.7839617

10 0.79567329 0.9172478 0.6644924 0.8267107 0.5450270 0.7831598

20 0.79507778 0.9207643 0.6644952 0.8267134 0.5457131 0.7784540

50 0.79675720 0.9201936 0.6657338 0.8273819 0.5473066 0.7778107

100 0.81612336 0.9377490 0.6828821 0.8367600 0.5594445 0.7854685

Figure 2 shows the variation of the normalized contact widths with µh/µ0

for various c/h. Increasing of µh/µ0, (i.e., the increase in the rigidity of the
upper part), causes the decrease in both contact widths because the layer is
more resistant to bending in this case. As seen in the figures, while c/h increases
(i.e., the distance between quarter-planes increases), the contact width under the
punch also increases since the layer is more affected by bending. On the contrary,
the contact width at the interface of layer-quarter-plane decreases because the
contact area at this region will inevitably be smaller when the layer more bends.

Fig. 2. Variation of the contact widths with µh/µ0 for various c/h (R/h = 500,
µ0/(P/h) = 100).
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In Fig. 3, the contact pressures in a non-dimensional form are presented by
depending onµh/µ0. In this figure, it is seen that the non-dimensional contact
stresses increase when µh/µ0 increases since they distribute over a smaller con-
tact area as explained in the preceding paragraph.

Figure 4 present the normalized contact stresses for various c/h. Since the
contact widths under the punch increase with increasing the distance between
quarter-planes, the contact stresses become smaller as seen. However, the contact

Fig. 3. Contact stress distributions under the punch and between the layer and the rigid
quarter-planes for various values of µh/µ0 (c/h = 0.2, R/h = 500, µ0/(P/h) = 100).

Fig. 4. Contact stress distributions under the punch and between the layer and the rigid
quarter-planes for various c/h (µh/µ0 = 2, R/h = 500, µ0/(P/h) = 100).
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stresses at the layer-quarter-plane interface increase with increasing c/h since
the contact area becomes smaller. When c/h = 0, the space between the quarter
planes is closed, and a half plane is obtained. Thus, when c/h = 0, there is no
singularity while thex coordinate is approaching to −1.

Figure 5 shows the normalized contact stresses for various punch radii R/h.
As the punch radius increases, the contact width under the punch also increases
(see also Table 1); thus, the contact stresses become smaller since they distribute
over a greater area. As it is seen, since the increase in R/h has less effect on b/h
compared to a/h, the stresses at the interface between the layer-quarter-planes
are not changed in a significant amount.

Fig. 5. Contact stress distributions under the punch and between the layer and the rigid
quarter-planes for various R/h (µh/µ0 = 2, c/h = 0.2, µ0/(P/h) = 100).

As can be seen in Figs. 3–5, in order for receding the contact stresses, they
show a sharp increase in vicinity of the corners of quarter-planes. Table 3 presents
the stress intensity factors (SIFs) at these corners for various µh/µ0 and c/h.
As can be observed from the table, SIFs increase when the top of the layer

Table 3. Stress intensity factors at the corners of rigid quarter-planes

(R/h = 500, µ0/(P/h) = 100).

µh/µ0

k(c)/(P/h)

c/h = 0 c/h = 0.2 c/h = 0.5 c/h = 1

0.2 0.00266 0.08860 0.16799 0.26274

0.5 0.00352 0.11754 0.20630 0.31258

1.0 0.00429 0.14325 0.24696 0.34724

2.0 0.00461 0.15288 0.24595 0.36978

5.0 0.00516 0.16656 0.25783 0.39205



500 İ. Çömez, V. Kahya, R. Erdöl

becomes stiffer compared to its bottom; that is, µh/µ0 increases. From the table,
it can be also seen that as the distance between quarter-planes increases, SIF
also increases. As explained in the preceding, when c/h increases, the receding
contact area decreases since the layer more bends. This results in increasing of
the contact stresses at this region, thus, SIFs also increases at the corners.

7. Conclusions

In this study, the receding contact problem of an FG layer resting on two
quarter-planes by the classical theory of elasticity was presented. Using the
Fourier integral transform, the plane elasticity equations were converted to a sys-
tem of two singular integral equations, in which the contact stresses and con-
tact widths were unknowns. The singular integral equations were numerically
solved by the Gauss-Jacobi integration formulae. The effect of material inho-
mogeneity, the distance between the quarter-planes, and the punch radius on
the contact stresses, the contact widths and the stress intensity factors at the
sharp edges were studied. As a result of the study, we reached the following
conclusions:

1. The material inhomogeneity described by µh/µ0 has a significant effect
on the contact widths and thus the contact stresses. When µh/µ0 increases, the
contact widths under the punch and at the layer-quarter-plane interface decrease.
This results in that the contact stresses over these areas becomes greater.

2. The distance between quarter-planes is another important parameter on
the contact widths and thus the contact stresses. When c/h increases, the contact
area under the punch increases while the receding contact area decreases. This
is exactly due to the increase in the layer’s bending. This causes smaller contact
stresses over the contact area under the punch, while greater stresses over the
receding contact area.

3. The punch radius has great effects on the contact widths and thus corre-
sponding contact stresses. However, R/h has little effect on the receding contact
width, thus there is almost no effect on the receding contact stresses.

4. The stress intensity factors (SIFs) become more important for this problem
since the quarter-planes have sharp edges at which stress concentrations occur.
SIFs increase with increasing of the material inhomogeneity µh/µ0. That is, SIFs
increase when top of the layer becomes stiffer compared to its bottom.

Appendix A

Expressions of k11(x1, t1), k12(x1, t2), k21(x2, t1), k22(x2, t2) and ϕ1 appearing
in (3.10) and (3.11) are given below:
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k11(x1, t1) =

∞∫

0

K11(α) − ϕ1

ϕ1
sinα(t1 − x1)dα,(A1)

k12(x1, t2) = −2

∞∫

0

K12(α)

ϕ1
sinα(t2 − x1)dα,(A2)

k21(x2, t1) =

∞∫

0

K21(α)

ϕ2
sinα(t1 − x2)dα,(A3)

k22(x2, t2) = −2

∞∫

0

K22(α) − ϕ2

ϕ2
sinα(t2 − x2)dα,(A4)

k23(x2, t2) =
ϕ1

µ0
k23(x2, t2),(A5)

where

K11(α) =
4∑

j=1

αmje
njhAj1, K12(α) =

4∑

j=1

αmje
njhAj2,(A6)

K21(α) =

4∑

j=1

αmjAj1, K22(α) =

4∑

j=1

αmjAj2.(A7)

In above, ϕ1 and ϕ2 are the singular terms which can be obtained as follows:

ϕ1 = lim
α→∞

K11(α) = −κ+ 1

4
eγh,(A8)

ϕ2 = lim
α→∞

K22(α) =
κ+ 1

4
.(A9)
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