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In this paper rigorous formulae for natural frequencies of in-plane and
out-of-plane free vibrations of a rotating ring are derived. An in-plane vibration mode
of the ring is characterised by coupled flexural and extensional deformations, whereas
an out-of-plane mode is distinguished by coupled flexural and torsional deformations.
The expressions for natural frequencies are derived from a generalised toroidal shell
theory. For the in-plane vibrations, the ring is considered to be a short top segment
of a toroidal shell. For the out-of-plane vibrations, the ring is considered to be a side
segment of the shell. Natural vibrations are analysed by the energy approach. The
expressions for the ring strain and kinetic energies are deduced from the corresponding
expressions for the torus. It is shown that the ring rotation causes bifurcation of
natural frequencies of the in-plane vibrations only. Bifurcation of natural frequencies
of the out-of-plane vibrations does not occur. Otherwise, for non-rotating rings, the
derived formulae for the natural frequencies of the in-plane and the out-of-plane
flexural vibrations are very similar. The derived analytical results are validated by
a comparison with FEM and FSM (Finite Strip Method) results, as well as with
experimental results available in the literature.
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1. Introduction

Vibration analysis of either stationary or rotating rings is rela-
tively simple due to their simple geometry. However, the dynamics of the ring
can, to some extent, reflect global dynamics of more complex axisymmetric shell
structures, such as cylindrical or toroidal shells. This is appearing because an-
alytical modelling vibration of shells can lead to very involved mathematical
formulations, [1, 2], in which the underlying physics may become blurred with
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mathematical complexity. It is thus instructive to study vibrations of simpli-
fied rotating structures, such as rings, in order to better understand vibrations
of more complex rotating axisymmetric structures. For example, a number of
authors have investigated vibrations of rotating rings as simplified models of
rotating automotive tyres [3–5].

Vibration of rotating rings has been of interest for well over a century. The
pioneering work on this subject was Bryan’s investigation of a rotating wine-
glass from 1890, [6]. The thin ring vibration theory is presented in Love’s book
in 1927, [7]. Since those times, the knowledge of the rotating ring dynamic be-
haviour has been steadily improved by many authors. The governing differential
equations were derived by Carrier and solutions of some special cases are shown
in [8]. An expression for natural frequencies of a rotating ring is given by John-

son [9].
The effects of shear stiffness and rotary inertia of thick stationary and rotat-

ing rings, as well as the influence of the elastic foundation supporting the ring,
have been systematically investigated by using different mathematical models,
[10–17]. A special attention has been paid to the Coriolis coupling effects, [18, 19].
Forced vibrations of rotating rings due to both harmonic and periodic excitations
have been investigated by modal expansion and Fourier series [20], and a closed
form solution has been obtained. A stationary ring subjected to travelling loads
has also been analysed in reference [20].

A very useful experimental investigation of vibrations of a thin rotating ring
is presented in [15]. The natural frequencies of forward and backward flexu-
ral travelling waves were measured using strain gauges. Different mathematical
models were evaluated by comparing numerical results with the measured ones.
It was ascertained that no instability phenomenon exists, i.e. natural frequencies
never become zero due to increasing rotation speed, in spite of some theoretical
models anticipating such phenomena.

Non-linear partial differential equations for coupled in-plane and out-of-plane
vibrations have been derived by the energy formulation, employing Hamilton’s
principle, [21]. Four mathematical models were established and linearized in [21].
The natural frequencies determined in the considered numerical examples were
mutually compared in order to recommend an appropriate model to describe the
non-linear dynamic behaviour more precisely [21].

In this paper a mathematical model for the in-plane and out-of-plane free
vibrations of a rotating ring is formulated, which is based on the toroidal shell
theory. This theory is rather complex due to the toroidal geometry involving
double curvature. However, the theory is universal since a toroidal shell, Fig. 1,
can take shape of the following basic shells: cylindrical shell (a = ∞, ϑ = π/2,
adϑ = dx), circular membrane and plate (a = ∞, ϑ = 0, adϑ = dr), conical
shell (a = ∞, ϑ = ϑ0, adϑ = dx), and spherical shell (R=0).
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Fig. 1. Rotating toroidal shell, main dimensions and displacements.

a) b) c)

Fig. 2. Thin-walled toroidal ring.

Moreover, if the ratio of a toroidal shell radii a/R ≪ 1, then it behaves like
a thin-walled ring of a cross-section area A = 2πah, and a moment of inertia
I = πa3h, Fig. 2a. For small values of the circumferential wave number n vi-
brations are global, without deformations of the cross-section, Fig. 2b. However,
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at higher n-values, local deformations of the cross-section become noticeable,
Fig. 2c, which are coupled with global deformations, shifting the natural fre-
quencies downwards. If the central angle between two adjacent global vibration
nodes, η, is small enough, such a segment of a thin-walled toroidal shell can be
considered as a simply supported cylindrical shell, [22].

A ring can perform vibrations either in the ϕ-plane or out of the ϕ-plane,
Fig. 1. In the former case the flexural vibrations are coupled with the extensional
vibrations, and in the latter case they are coupled with torsional vibrations.
These problems are analysed in the literature by solving differential equations of
motion, usually derived by the energy approach and the application of Hamilton’s
principle, [21]. The intention of this paper is to demonstrate the universality of
the toroidal shell theory in case of both in-plane and out-of-plane ring vibrations,
and to present a rigorous analytical solution of the characteristic equation for
the rotating ring in-plane vibrations.

The paper is structured in 6 sections. In Section 2 the basic theory for the
forthcoming analysis is derived as a starting point. In Section 3 the in-plane
vibrations of the rotating ring are discussed. In Section 4 the out-of-plane vibra-
tions of the rotating ring are analysed. Finally, in Section 5, numerical examples
are presented and the developed theories are validated by comparison with FEM,
FSM, and experimental results.

2. Basic expressions for strain and kinetic energies
of rotating toroidal shell

Vibration of a toroidal shell can be analysed by the Rayleigh–Ritz method,
which is based on the minimisation of the strain and kinetic energies, [23].
The extensional displacement in the cross-sectional ϑ-plane, u, the circumfer-
ential displacement, v, and the radial deflection, w, Fig. 1, are assumed in the
form

u(ϑ, ϕ, t) = U(ϑ) cos(nϕ+ ωt),

ν(ϑ, ϕ, t) = V (ϑ) sin(nϕ+ ωt),(2.1)

w(ϑ, ϕ, t) = W (ϑ) cos(nϕ+ ωt),

where functions U(ϑ), V (ϑ) and W (ϑ) are the cross-sectional mode profiles, and
ω is a natural frequency. The argument nϕ + ωt in the trigonometric functions
is used in order to be able to describe rotating modes which normally appear
with rotating shells.

The modal strain energy, after integration in the circumferential direction,
in the domain 0 ≤ ϕ ≤ 2π, reads
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Es =

∫

ϑ

[

1

2
p1(U

′)2+
1

2
p2U

2+p3U
′U+

1

2
p4(V

′)2+
1

2
p5V

2+p6V
′V(2.2)

+p7U
′V +p8UV

′+p9UV

+
1

2
q1(W

′′)2+
1

2
q2(W

′)2+
1

2
q3W

2+q4W
′′W ′+q5W

′′W+q6W
′W

+q7W
′′U ′+q8(W

′′U+W ′U ′)+q9W
′U+q10WU ′+q11WU

+q12W
′′V +q13W

′V ′+q14W
′V +q15WV ′+q16WV

]

dϑ,

where pi(ϑ), i = 1, 2, . . . , 9 and qj(ϑ), j = 1, 2, . . . , 16 are variable coefficients
which can be found in [23].

For the vibration analysis of a rotating toroidal shell the geometric strain
energy due to the centrifugal and Coriolis forces is given by, [23],

EG =

∫

ϑ

[

1

2
c1(U

′)2 +
1

2
c2U

2 +
1

2
c3(V

′)2 +
1

2
c4V

2(2.3)

+ c5V
′V +

1

2
c6(W

′)2 +
1

2
c7W

2 + c8UV

+ c9(U
′W − UW ′) + c10UW + c11VW

]

dϑ,

where ci(ϑ), i = 1, 2, . . . , 11 are variable coefficients which can be found in [23].
The kinetic energy is presented in the form

Ek =
1

2
πρha

∫

ϑ

r[(ω2 +Ω2 cos2 ϑ)U2 + (ω2 +Ω2)V 2(2.4)

+ (ω2 +Ω2 sin2 ϑ)W 2 + 4ωΩ(cosϑUV + sinϑVW )

+ 2Ω2 sinϑ cosϑUW ] dϑ,

where ρ is the mass density, h is the shell thickness, a and r are cross-sectional
and circumferential radii, respectively, and Ω is the rotational speed, Fig. 1.

The above equations are the starting point for the ring vibration analysis.

3. In-plane vibrations of rotating ring

For this purpose a toroidal shell segment in the vicinity of angle ϑ = π/2 is
considered, as shown in Fig. 3. For the in-plane vibrations the relevant displace-
ments are the circumferential and the radial ones, V and W . The expressions for
the strain energy, the geometric strain energy and the kinetic energy, Eqs. (2.2),
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(2.3) and (2.4), respectively, are after integration no longer functions of the
angle ϑ. Therefore they are reduced to the following form for a unit length of
the arch (b = 1):

Es =
1

2
p5V

2 +
1

2
q3W

2 + q16VW,

EG =
1

2
c4V

2 +
1

2
c7W

2 + c11VW,(3.1)

EK =
1

2
α[(ω2 +Ω2)V 2 + (ω2 +Ω2)W 2 + 4ωΩVW ],

where α = πρhar. The terms in EK with Ω2 and Ω represent the kinetic energy
due to the centrifugal and Coriolis forces, respectively. Coefficients pi, qi and ci
in (3.1) are specified according to [23], taking into account that ϑ = π/2 and
ν = 0 for the ring as a one-dimensional structural element

p5

α
=

K

ρhr2
n2

(

1 +
D

Kr2

)

,

q3
α

=
K

ρhr2

(

1 + n4 D

Kr2

)

,

q16
α

=
K

ρhr2
n

(

1 + n2 D

Kr2

)

,(3.2)

c4
α

=
c7
α

= (n2 + 1)Ω2,

c11
α

= 2nΩ2,

where

(3.3) K = Eh, D =
Eh3

12
.

The coefficients c4, c7 and c11 take into account the pre-stressing membrane force
Nϕ = ρhr2Ω2 due to the centrifugal load.

Minimizing the total energy E = ES + EG − EK by setting its derivatives
per V and W equal to zero, yields a symmetric matrix equation

(3.4)

[

a11 − ω2 a12 − 2Ωω
a21 − 2Ωω a22 − ω2

] {

V
W

}

= {0},

where

a11 =
p5

α
+
c4
α

−Ω2 =
p5

α
+ n2Ω2,

a22 =
q3
α

+
c7
α

−Ω2 =
q3
α

+ n2Ω2,(3.5)

a12 = a21 =
q16
α

+
c11
α

=
q16
α

+ 2nΩ2.
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Note that the coefficients related to the geometric strain energy, c4 and c7 in (3.2),
are summed up in (3.5) with those related to the kinetic energy, Ω2.

The non-trivial solution of Eq. (3.4) is obtained from the condition that the
determinant of the matrix in Eq. (3.4) vanishes. Applying this condition results
in the following characteristic equation in the form of a fourth order (quartic)
polynomial:

(3.6) ω4 − a2ω
2 + a1ω + a0 = 0,

where

a2 = a11 + a22 + 4Ω2,

a1 = 4a12Ω,(3.7)

a0 = a11a22 − a2
12.

Substituting Eqs. (3.5) into (3.7) one obtains

(3.8)

a2 =
K

ρhr2
(n2 + 1)

(

1 + n2 D

Kr2

)

+ 2(n2 + 2)Ω2,

a1 = 4Ωn

[

K

ρhr2

(

1 + n2 D

Kr2

)

+ 2Ω2

]

,

a0 =

(

K

ρhr2

)2

n2(n2 − 1)2
D

Kr2

+
K

ρhr2
n2(n2 − 3)

(

1 + n2 D

Kr2

)

Ω2 + n2(n2 − 4)Ω4.

Although it is possible to express the roots of the fourth order polynomial
(3.6) using standard formulae, the expressions would be long, cumbersome, not
useful for quick calculations, and not physically transparent. Therefore, equations
such as Eq. (3.6) are ordinarily solved numerically. However, it is still possible to
obtain approximate and reliable analytical solutions by combining some physical
reasoning with the fact that the third order term is missing in Eq. (3.6).

As can be seen in Eqs. (3.8) the coefficients a0 and a2 include centrifugal
force (terms with Ω2), while coefficient a1 includes both the Coriolis force (the
term with Ω) and the centrifugal force. If the Coriolis force is ignored, a1 = 0,
then Eq. (3.6) can be reduced to a bi-quadratic polynomial with roots

(3.9) ωe,b = ±
√

a2

2

√

√

√

√1 ±
√

1 − 4a0

a2
2

.

The second term in the inside square root, 4a0/a
2
2, is of order D/(Kr2) =

(h/r)2/12, which is much smaller than 1. Therefore the inner square root can be
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expanded into power series. Taking into account only the first two terms of the
expansion,

√
1 − ε ≈ 1−ε/2, the following expressions for the natural frequencies

are obtained

(3.10) ωe = ±√
a2, ωb = ±

√

a0

a2
.

Using the same reasoning as for the second term in the inside square root of
Eq. (3.9), it can be shown that the first root in Eq. (3.10) is much larger than
the second one. In fact, the first root, ωe, represents natural frequencies of a group
of modes characterised solely by extensional deformations of the ring along the
circumference. The second root, ωb, represents natural frequencies of the in-plane
bending modes.

The coefficient a1 in Eq. (3.6) is related to the Coriolis force. It causes bi-
furcation of natural frequencies (without it the quartic polynomial becomes bi-
quadratic). The value of a1 is relatively small, starting from zero if Ω = 0, Eqs.
(3.8). Therefore, the term a1ω in Eq. (3.6) can be grouped with a0, and the
solution of the pseudo-bi-quadratic equation can be presented in the form

(3.11) ω = ±
√

a2

2

√

√

√

√1 ±
√

1 − 4a0 + a1ω

a2
2

.

Equation (3.11) can be solved iteratively. In the first step of iteration for the
extensional vibrations ω = ωe = ±√

a2, Eqs. (3.10). Substituting ωe into (3.11)
and taking into account the fact that the natural frequencies of extensional
vibrations are much higher than those corresponding to the flexural vibrations,
yields

(3.12) ω̃e = ±
√

a2

2

√

1 +

√

1 − 4
a0

a2
2

∓ 4
a1

a2
2

√
a2.

Furthermore, the second term in the inside square root in Eq. (3.12) is again
negligible in comparison with unity, whereas the third term is very small in
comparison with unity. Therefore, the inside square root can be expanded into
power series. Taking into account only the first two terms of the expansion, one
can write

(3.13) ω̃e = ±√
a2 ∓

a1

2a2
.

Inserting Eqs. (3.8) for coefficients a0, a1 and a2 into (3.13), and keeping only the
dominant terms, one obtains an approximate formula for determining extensional
natural frequencies of a rotating ring

(3.14) ω̃e =
2n

n2 + 1
Ω ±

√

(ω0
e)

2 + 2(n2 + 2)Ω2,
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where

(3.15) ω0
e =

√

(n2 + 1)

(

1 + n2
D

Kr2

)

√

K

ρhr2

are the extensional natural frequencies of the non-rotating ring.
Flexural bending frequency, ωb, Eqs. (3.10), is the solution of the character-

istic Eq. (3.6) without a1ω. If ωb = ±
√

a0/a2 is inserted into (3.6), ω4 may be
ignored as a small quantity of higher order. The flexural natural frequency of the
rotating ring, ω̃b, can also be derived under this assumption if rotation speed Ω
is small. The solution of the corresponding quadratic equation

(3.16) a2ω̃
2
b − a1ω̃b − a0 = 0

represents an approximate solution of the bi-quadratic Eq. (3.6)

(3.17) ω̃b =
a1

2a2
±

√

(

a1

2a2

)2

+
a0

a2
.

Substituting expressions (3.8) for coefficients a0, a1 and a2 into (3.17) and taking
into account only their dominant terms, one obtains, in case that n and Ω are
relatively small,

(3.18) ω̃b =
2n

n2 + 1
Ω ±

√

(ω0
b )

2 +
n2(n2 − 1)2

(n2 + 1)2
Ω2,

where

(3.19) ω0
b =

n(n2 − 1)
√

(n2 + 1)
(

1 + n2 D
Kr2

)

√

D

ρhr2

is a flexural natural frequency of the non-rotating ring. If n = 1, ω0
b = 0 and the

ring performs rigid body motion in ϕ-plane.
Formula (3.18) is well-known in the relevant literature and has been de-

rived by solving governing differential equations of motion under the assumption
w(ϕ, t) = −∂v(ϕ, t)/∂ϕ, [1, 8, 9, 15]. Therefore, this intuitively introduced as-
sumption is justified.

The structure of formulae (3.14) and (3.18) for extensional and flexural natu-
ral frequencies is similar. Positive and negative values are related to the forward
and backward rotating modes. The values of natural frequencies of extensional
vibrations are much larger than those of flexural vibrations since the stiffness
ratio D/(Kr2) ≪ 1. However, the bifurcation of natural frequencies according
to the first term in Eqs. (3.14) and (3.18) is the same in both cases.
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Formulae (3.14) and (3.18) are applicable only for relatively small circum-
ferential wave number n in the domain 0 < Ω/ω0

e < 1 and 0 < Ω/ω0
b < 1

respectively. Otherwise, more reliable formulae (3.12) and (3.17) are on disposal.
However, if the rigorous solution is desired, it is necessary to find the roots

of a quartic polynomial, Eq. (3.6). For this purpose the characteristic equation
(3.6) is solved exactly in a sophisticated way in Appendix to the paper.

In case of a thin-walled toroidal ring one can write for the ratios in Eqs. (3.15)
and (3.19), K/(hr2) = E/R2, D/(hr2) = EI/(AR2) and D/(Kr2) = I/(AR2).
Taking into account that A = 2πah and I = πa3h, yields I/(AR2) = (a/R)2/2.
Inserting the above relations into Eqs. (3.15) and (3.19) one obtains

ω0
e =

√

(n2 + 1)

[

1 + 2n2

(

a

R

)2]
√

E

ρR2
,(3.20)

ω0
b =

n(n2 − 1)
√

(n2 + 1)
[

1 + 2n2
(

a
R

)2]

(

a

R

)

√

E

2ρR2
.(3.21)

Flexural natural frequencies linearly depend on ratio a/R.

4. Out-of-plane vibrations of rotating ring

This type of vibrations is analysed by considering the toroidal shell segment
in the vicinity of angle ϑ = π, with two degrees of freedom, i.e. deflection W
and twist angle Ψ , Fig. 3. Since extensional displacements U and V are zero, the
strain energy according to Eq. (2.2) is reduced to

(4.1) ES =
1

2
q1(W

′′)2 +
1

2
q2(W

′)2 +
1

2
q3W

2 + q4W
′′W ′ + q5W

′′W + q6W
′W,

where referring to [23], and setting K = 0

(4.2)

q1 = π
D

a2

r

a
,

q2 = π
D

ar
[1 + 2(1 − ν)n2],

q3 = π
a

r

D

r2
n2[n2 + 2(1 − ν)],

q4 = πν
D

a2
,

q5 = −πν D
ar
n2,

q6 = −π[1 + 2(1 − ν)]
D

r2
n2,
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where K and D are defined with Eq. (3.3). Poisson’s coefficient ν is not ignored
in (4.2) (like in the case of in-plane vibrations), since it is introduced through
the shear modulus G = E/(2(1 + ν)) at the very beginning of development of
toroidal shell vibration theory.

Fig. 3. Toroidal shell segments as rings.

The deflection derivative is actually the twist angle, Fig. 3, and a new variable
is introduced for simplicity

(4.3) W ′ =
dW

dϑ
= aΨ =

a

r
X.

In a similar way one can write for the curvature

(4.4) W ′′ =
d2W

dϑ2
= a2θ =

(

a

r

)2

Y.

Substituting expressions (4.3) and (4.4) into (4.1), yields

ES =
1

2
q1

(

a

r

)4

Y 2 +
1

2
q2

(

a

r

)2

X2 +
1

2
q3W

2(4.5)

+ q4

(

a

r

)3

XY + q5

(

a

r

)2

YW + q6

(

a

r

)

XW.



440 I. Senjanović et al.

Furthermore

(4.6)

∂ES

∂W
= q3W + q5

(

a

r

)2

Y + q6

(

a

r

)

X,

∂ES

∂X
= q2

(

a

r

)2

X + q4

(

a

r

)3

Y + q6

(

a

r

)

W,

∂ES

∂Y
= q1

(

a

r

)4

Y + q4

(

a

r

)3

X + q5

(

a

r

)2

W = 0.

Since the displacement Y is not accompanied with the inertia term and it is
also not present in the geometric strain energy, the right hand side of the last
equation of (4.6) is set to zero.

Hence, one obtains

(4.7) Y = −q4
(

a
r

)3

q1
(

a
r

)4X − q5
(

a
r

)2

q1
(

a
r

)4W.

Substituting (4.7) into the first two equations of (4.6) the system of equations is
reduced to

(4.8)

∂ES

∂W
= a∗11W + a∗12X,

∂ES

∂X
= a∗21W + a∗22X,

where coefficients aij , taking into account Eq. (4.3), are given by

(4.9)

a∗11 = π
a

r

D

r2
(1 − ν2)n2

(

n2 +
2

1 + ν

)

,

a∗22 = π
a

r

D

r2
(1 − ν2)

(

1 +
2

1 + ν
n2

)

,

a∗12 = a∗21 = −πa
r

D

r2
(1 − ν2)n2

(

1 +
2

1 + ν

)

,

The geometric strain energy, Eq. (2.3), has only one term, i.e.

(4.10) EG =
1

2
c7W

2,

where according to [23] and after applying the membrane force due to the cen-
trifugal load Nϕ = ρhr2Ω2

(4.11) c7 = π
a

r
n2Nϕ = πρharΩ2n2.
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The kinetic energy, Eq. (2.4), has also only one term, ρhω2W , which is related
to the inertia force. Since a rotation of the ring cross-section Ψ is introduced,
the rotary inertia must be taken into account, too. (If a thick toroidal shell is
considered such a term is a priory included in EK). Based on the analogy between
inertia force and the moment of rotary inertia, as well as taking into account
substitution Ψ = 1

rX, Eq. (4.3), one can write

(4.12) hW 2 : h
h2

12
Ψ2 =

ip
r2
X2, ip =

h3

12
.

In this way the kinetic energy can be written as

(4.13) EK =
1

2
πρharω2W 2 +

1

2
πρ
a

r
ipω

2X2.

Now Eq. (4.8) is extended to the total energy E = ES + EG − EK and one can
write

(4.14)

∂E

∂W
= a∗11W + a∗12X + αΩ2n2W − αω2W = 0,

∂E

∂X
= a∗21W + a∗22X − βω2X = 0,

where α = πρhar and β = πρ(a/r)ip. If the first and the second equation of
(4.14) are divided by α and β, respectively, one obtains an asymmetric matrix
equation

(4.15)

[

a11 − ω2 a12

a21 a22 − ω2

]{

W
X

}

= {0},

where

(4.16)

a11 =
D

ρhr2
(1 − ν2)n2

(

n2 +
2

1 + ν

)

+ n2Ω2,

a22 =
D

ρipr2
(1 − ν2)

(

1 +
2

1 + ν
n2

)

,

a12 = − D

ρhr2
(1 − ν2)n2

(

1 +
2

1 + ν

)

,

a21 = − D

ρipr2
(1 − ν2)n2

(

1 +
2

1 + ν

)

.

The determinant of the matrix in Eq. (4.15) must vanish, i.e.

(4.17) ω4 − a2ω
2 + a0 = 0,
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where

(4.18) a2 = a11 + a22, a0 = a11a22 − a12a21.

Inserting (4.16) into (4.18), yields

(4.19)

a2 = (1 − ν2)

[

D

ρhr4
n4

(

n2 +
2

1 + ν

)

+
D

ρipr2

(

1 +
2

1 + ν
n2

)]

+ n2Ω2,

a0 =

[

D

ρr2
(1 − ν2)

]2 1

hipr2
n2

×
[(

n2 +
2

1 + ν

)(

1 +
2

1 + ν
n2

)

−
(

1 +
2

1 + ν

)2

n2

]

+
D

ρipr2
(1 − ν2)n2

(

1 +
2

1 + ν
n2

)

Ω2.

Now, it is necessary to substitute all the shell parameters specified per unit
length with the ring parameters of breadth b, Fig. 3,

(4.20)
D(1 − ν2)

ip
=
EI

Ip
,

D(1 − ν2)

h
=
EI

A
,

ip
h

=
Ip
A
.

The moment of inertia of the shell cross-section ip = h3/12, related to the
rotary inertia, is substituted by the equivalent ring polar moment of inertia
Ip = (h2 + b2)bh/12.

Furthermore, formulae (4.19) are derived for a shell segment, and the strain
energy includes the energy of both twist moments at the meridional and cir-
cumferential shell cross-sections, M12 = M21. Their energy is represented in the
formula for the total strain energy in [23] by the term (1− ν)κ2

12/2, where κ12 is
the twist strain. This is shown in Eqs. (4.19) by the coefficient 2/(1+ ν). There-
fore, only one half of this coefficient must be taken into account in Eqs. (4.19).
In this way formulae (4.19) derived for the toroidal shell are modified in such
a way to be valid for a ring

(4.21)

a2 =
E

ρr2

[

I

Ar2
n2

(

n2 +
1

1 + ν

)

+
I

Ip

(

1 +
1

1 + ν
n2

)]

+ n2Ω2,

a0 =

(

E

ρr2

)2 I

Ar2
I

Ip

1

1 + ν
n2(n2 − 1)2 +

E

ρr2
I

Ip
n2

(

1 +
1

1 + ν
n2

)

Ω2.

The solutions of the bi-quadratic equation (4.17) can be presented in the
form

(4.22) ωt,b =

√

√

√

√

a2

2

[

1 ±
√

1 − 4a0

a2
2

]

.

The first solution represents natural frequencies of predominantly torsional vi-
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brations, while the second one represents natural frequencies of predominantly
flexural vibrations. This can be easily seen in the case of a non-rotating ring. By
setting Ω = 0 it becomes obvious that the second term under the square root
of Eq. (4.22) is very small. By using the approximation

√
1 − ε ≈ 1 − ε/2 one

obtains the following expressions for natural frequencies of torsional and flexural
vibrations of a stationary ring:

ω0
t =

√

(

1 +
n2

1 + ν

)

+
Ip
Ar2

n2

(

n2 +
1

1 + ν

)

√

E

ρr2
I

Ip
,(4.23)

ω0
b =

n(n2 − 1)
√

n2 + 1 + ν +
Ip

Ar2n2[(1 + ν)n2 + 1]

√

E

ρr2
I

Ar2
.(4.24)

For a toroidal ring I/Ip = 1/2 and Ip/(AR2) = (a/R)2, so that

ω0
t =

√

(

1 +
n2

1 + ν

)

+

(

a

R

)2

n2

(

n2 +
1

1 + ν

)

√

E

2ρR2
,(4.25)

ω0
b =

n(n2 − 1)
√

n2 + 1 + ν +
(

a
R

)2
n2[(1 + ν)n2 + 1]

(

a

R

)

√

E

2ρR2
.(4.26)

Formulae (4.25) and (4.26) for the out-of-plane vibrations are very similar to
those for the in-plane vibrations, Eqs. (3.20) and (3.21), respectively. If the small
terms (a/R)2 in Eqs. (3.20), (3.21), (4.25) and (4.26)) are ignored, the only dif-
ference between these two sets of formulae is Poisson’s coefficient ν in Eqs. (4.25)
and (4.26). This fact explains why the FEM vibration analyses presented in the
forthcoming Section 5 give pairs of the in-plane and out-of-plane bending modes
with almost the same natural frequencies for the same n.

It is observed that both the centrifugal load and the Coriolis load induced
by the ring rotation are involved in the ring in-plane vibrations (the terms with
Ω2 and Ω in Eqs. (3.8), respectively). With the out-of-plane vibrations only the
centrifugal load participates (the terms with Ω2 in Eqs. (4.19)). Hence, there is
no bifurcation of natural frequencies in the latter case.

5. Numerical examples

5.1. Thick-walled toroidal ring

As explained in Introduction, a toroidal shell of the small radius ration a/R
behaves like a ring, Fig. 2b. In this subsection a thick-walled toroidal ring
with the following geometric and physical properties is considered: R = 1 m,
a = 0.05 m, h = 0.01 m, E = 2.1 · 1011 N/m2, ν = 0.3, ρ = 7850 kg/m3. Natural
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frequencies for the first four flexural modes of the non-rotating ring are deter-
mined by the corresponding formulae (3.21) and (4.26) and are listed in Table 1.
Natural frequencies of the in-plane flexural vibrations are slightly higher than
those of the out-of-plane vibrations due to the reasons explained in Section 5.

Table 1. Flexural natural frequencies of stationary thin-walled toroidal ring,
ω (Hz), R = 1 m, a = 0.05 m, h = 0.01 m, Ω = 0.

Mode no. Mode type Eq. n Ring
Shell, FEM
20 × 416

FSM (3,3)
200 FS

1 In-plane (3.21) 2 77.32 75.02 84.85

2 Out-of-plane (4.26) 2 75.41 72.98 80.94

3 In-plane (3.21) 3 216.07 209.10 218.04

4 Out-of-plane (4.26) 3 214.68 205.61 216.85

The same problem is also solved by considering the ring to be a thick toroidal
shell. Software ABAQUS with 54R shell element is used [24]. The 3D FEM model
includes 20×416 = 8320 finite elements. The first four natural modes are shown
in Fig. 4. The natural frequencies determined by the FEM model agree very well
with those obtained by the ring model and calculated by the simple formulae,
Table 1.

Table 1 also includes natural frequencies determined by the finite strip
method (FSM), [25]. The toroidal shell cross-section is modelled with 200 three
nodes higher order strips. The natural frequencies calculated using the ring model
are bounded by the FEM and FSM values.

Natural frequencies of the in-plane vibrations of the rotating ring, i.e. flexural
and extensional, are determined analytically by employing the exact procedure,
Eq. (A17), approximated formulae, Eqs. (3.17) and (3.12), and formulae for
estimation, Eqs. (3.18) and (3.14), Table 2. Three values of the rotation speed

Table 2. Natural frequencies of rotating thin-walled toroidal ring in-plane
vibrations, ω̃ (Hz), R = 1 m, a = 0.05 m, h = 0.01 m, n = 2, ω0 = 75.41 Hz.

Ω/ω0 Method
Flexural, ω̃b Extensional, ω̃e

Forward Backward Forward Backward

0 All 77.97 77.97 1843.6 1843.6

1

Rigorous, Eq. (A17) 58.54 184.09 1796.0 1921.6

Approximated, Eqs. (3.17), (3.12) 58.53 182.73 1793.2 1919.9

Approximated, Eqs. (3.18), (3.14) 59.36 184.00 1802.6 1927.2

2

Rigorous, Eq. (A17) 73.51 327.23 1776.8 2030.5

Approximated, Eqs. (3.17), (3.12) 73.49 319.49 1762.2 2025.2

Approximated, Eqs. (3.18), (3.14) 77.90 327.18 1797.9 2047.2



Free in-plane and out-of-plane vibrations. . . 445

Fig. 4. Natural modes of thin-walled toroidal ring (Abaqus).

are selected, and n = 2 is assumed for illustration. The approximated formulae
give values of natural frequencies very close to the exact ones. The accuracy
of formulae for estimation of the natural frequencies are acceptable only for
relatively small values of the rotational speed.

Natural frequencies of the rotating ring out-of-plane vibrations, i.e. flexural
and torsional, determined by Eqs. (4.22), are shown in Table 3. In this case there
is no bifurcation and the natural frequencies of both spectra are increased by an
increasing rotation speed.
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Table 3. Natural frequencies of rotating thin-walled toroidal ring out-of-plane
vibrations, ω̃ (Hz), R = 1 m, a = 0.05 m, h = 0.01 m, ω0 = 75.41 Hz.

n Ω/ω0

Flexural, ω̃b,
Eq. (4.22)

Torsional, ω̃t,
Eq. (4.22)

2

0 75.57 1179.73

1 168.18 1179.80

2 309.79 1180.04

3

0 216.53 1646.82

1 312.30 1646.99

2 499.32 1647.52

4

0 417.39 2135.85

1 513.89 2136.12

2 730.33 2136.98

5

0 676.69 2634.81

1 773.38 2635.18

2 1009.05 2636.41

Next, natural frequencies of the rotating ring modelled as a thick toroidal
shell are determined by FEM in the fixed coordinate system for n = 2 and 3.
The dimensionless rotational speed Ω/ω0 is varied from 0 to 1. The obtained
results for the forward and backward rotating modes are listed in Table 4. They
are transformed into the rotating coordinate system by the following expres-

Table 4. Natural frequencies of rotating thin-walled toroidal ring, ω (Hz),
R = 1 m, a = 0.05 m, h = 0.01 m, fixed coordinate system, FEM, 20 × 416 FE,

ω0 = 72.98 Hz.

Ω/ω0 Ω (Hz)

n = 2 n = 3

Out-of-plane In-plane Out-of-plane In-plane

Forward Backward Forward Backward Forward Backward Forward Backward

0 0 72.98 72.97 75.01 75.01 205.58 205.58 209.06 209.06

0.1 7.29 59.85 88.91 66.73 84.28 184.89 228.45 192.20 227.30

0.2 14.52 49.38 107.52 59.42 94.52 166.34 253.47 176.70 246.90

0.3 21.89 41.19 128.40 53.02 105.68 149.85 280.54 162.52 267.83

0.4 29.19 34.82 151.10 47.47 117.68 135.25 309.52 149.61 290.02

0.5 36.48 29.83 175.17 42.65 130.41 122.38 340.22 137.88 313.39

0.6 43.78 25.87 200.29 38.48 143.80 111.05 372.46 127.25 337.86

0.7 51.08 22.68 226.17 34.87 157.73 101.07 406.04 117.62 363.33

0.8 58.38 20.07 252.63 31.73 172.14 92.24 440.80 108.90 389.71

0.9 65.68 17.90 279.53 28.98 186.94 84.43 476.56 100.99 416.90

1.0 72.98 16.06 306.76 26.56 202.08 77.48 513.19 93.80 444.82
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sions, [15], which take into account the Doppler effect

(5.1) ω̃F = ωF + nΩ, ω̃B = ωB − nΩ.

and are presented in Table 5. In case of the out-of-plane vibrations there is no
bifurcation of natural frequencies. The analytically determined natural frequen-
cies for the rotating toroidal ring are compared with FEM values for the thick-
walled toroidal shell and quite a good agreement can be noticed, Table 5. The
corresponding diagrams of natural frequencies for the out-of-plane and in-plane
vibrations are shown in Figs. 5 and 6, respectively.

Table 5. Natural frequencies of rotating thin-walled toroidal ring, ω (Hz),
R = 1 m, a = 0.05 m, h = 0.01 m, rotating coordinate system, FEM, 20 × 416 FE,

ω0 = 72.98 Hz; ∗ – Eq. (4.22), ∗∗ – Eq. (A17).

Ω/ω0

n = 2 n = 3

Out-of-plane
In-plane

Out-of-plane
In-plane

Forward Backward Forward Backward

0
72.98 75.01 75.01 205.58 209.06 209.06

(75.57)* (77.96)** (77.96)** (216.53)* (220.43)** (220.43)**

0.1
74.38 69.69 81.33 206.67 205.11 214.09

(76.95) (72.60) (84.32) (217.62) (216.68) (225.56)

0.2
78.45 65.33 88.61 209.90 203.11 220.49

(80.97) (68.18) (91.62) (220.87) (214.28) (232.06)

0.3
84.80 61.89 96.81 215.19 202.15 228.20

(87.25) (64.66) (99.83) (226.18) (213.21) (239.88)

0.4
92.96 59.29 105.85 222.38 202.45 237.18

(95.36) (61.98) (108.87) (233.40) (213.39) (248.97)

0.5
102.50 57.43 115.63 231.30 203.92 247.35

(104.86) (60.02) (118.66) (242.37) (214.76) (259.26)

0.6
113.08 56.23 126.06 241.75 206.50 258.61

(115.42) (58.71) (129.10) (252.91) (217.21) (270.66)

0.7
124.12 55.56 137.04 253.55 210.08 270.87

(126.77) (57.34) (140.10) (264.82) (220.66) (283.08)

0.8
136.35 55.37 148.49 266.52 214.56 284.05

(138.71) (57.63) (151.57) (277.92) (225.01) (296.42)

0.9
148.71 55.57 160.34 280.49 219.86 298.03

(151.11) (57.71) (163.46) (292.07) (230.15) (310.60)

1.0
161.41 56.12 172.52 295.33 225.88 312.74

(163.86) (58.11) (175.68) (307.10) (236.01) (325.53)
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Fig. 5. Natural frequencies of rotating toroidal ring, out-of-plane vibrations, —— FEM,
- - - analytical, (Table 5).

Fig. 6. Natural frequencies of rotating toroidal ring, in-plane vibrations, —— FEM,
- - - analytical, (Table 5).

5.2. Thin ring

In this subsection a thin ring is considered, for which the experimentally de-
termined natural frequencies are available, [15]. The main geometrical
and material parameters of the ring considered are the following: mean radius
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R = 87.6 mm, b = 20 mm, thickness h = 0.88 mm, Young’s modulus E =
2.1 · 1011 N/m2, and mass density ρ = 7850 kg/m3.

The natural frequencies of the rotating ring for the mode number n = 2,
determined rigorously and approximately by Eqs. (A17) and Eq. (3.18), respec-
tively, are listed in Table 6. Discrete normalized rotational speeds are used, which
correspond to the rotational speeds used in the experimental campaign reported
in [15]. The approximated natural frequencies are almost the same as the rigorous
ones in the considered case of a thin ring with h/R = 0.01.

Table 6. Natural frequencies of rotating thin ring, ω̃ (rad/s), R = 87.6 mm,
b = 20 mm, h = 0.88 mm, n = 2, ω0

2 = 64.973 rad/s.

Ω/ω0

2

Rigorous, Eq. (A17) Approximated, Eq. (3.18)

Forward Backward Forward Backward

0 64.973 64.973 64.972 64.972

0.120 59.405 71.881 59.405 71.880

0.240 55.138 80.089 55.139 80.088

0.405 51.187 93.291 51.188 93.291

0.540 49.352 105.490 49.353 105.489

0.608 48.823 112.031 48.825 112.030

0.720 48.438 123.290 48.440 123.289

0.775 48.442 129.012 48.444 129.011

0.840 48.588 135.916 48.592 135.915

0.896 48.826 141.976 48.830 141.975

0.960 49.211 149.015 49.216 149.014

1.020 49.670 155.712 49.675 155.711

1.080 50.215 162.495 50.221 162.494

Table 7. Natural frequencies of rotating thin ring, ω̃ (rad/s), R = 87.6 mm,
b = 20 mm, h = 0.88 mm, n = 3, ω0

3 = 183.771 rad/s.

Ω/ω0

3

Rigorous, Eq. (A17) Approximated, Eq. (3.18)

Forward Backward Forward Backward

0 183.771 183.771 183.771 183.771

0.070 178.628 194.066 178.62 194.061

0.090 178.085 197.934 178.08 197.929

0.160 179.210 214.498 179.20 214.493

0.210 182.633 228.949 182.63 228.944

0.245 186.167 240.202 186.16 240.197

0.284 191.078 253.716 191.08 253.711

0.344 200.369 276.241 200.37 276.237

0.385 207.747 292.664 207.75 292.659

0.426 215.831 309.792 215.84 309.788
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Fig. 7. Comparison of dimensionless natural frequencies of rotating thin ring, n = 2,
—— theoretical, Eq. (A17), ♦ measured, [15].

Fig. 8. Comparison of dimensionless natural frequencies of rotating thin ring, n = 3,
—— theoretical, Eq. (A17), ♦ measured, [15].

The natural frequencies for the mode number n = 3 are shown in Table 7.
Also in this case the approximated natural frequencies agree very well with the
rigorous ones. Hence, one can conclude that the simple approximation formula
(3.18) is quite reliable in the case of thin rings.
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The normalized forward and backward natural frequencies for the mode num-
ber n = 2 and 3 are shown in Figs. 7 and 8, and compared with the measured
values presented in [15]. A very good agreement of the calculated frequency
values with the measured ones is observed in both cases.

6. Conclusions

In this paper investigations of the rotating ring in-plane and out-of-plane
vibrations are carried out, which are based on the toroidal shell theory. The
energy approach is used. The strain and the kinetic energies are formulated
indirectly by deducing from the corresponding energies of a toroidal shell. In
the relevant literature this problem is ordinarily analysed by solving differen-
tial equations of motion derived from balance of strain and kinetic energy via
Hamilton’s principle.

The in-plane vibration modes consist of combined flexural and extensional de-
formations, whereas the out-of-plane modes comprise combined flexural and tor-
sional deformations. The problem is solved in an exact sophisticated way and in
an approximate way that yields relatively simple formulae for practical use. The
formulae for the natural frequencies of the in-plane and the out-of-plane flexural
vibrations are very similar and give almost the same results assuming the same
circumferential wave number. The simplified expression for the in-plane natural
frequencies is identical to the well-known formula in the relevant literature.

The application of the developed ring vibration theory is illustrated by a num-
ber of numerical examples. The obtained results agree very well with those deter-
mined by the FEM analysis and the FSM analysis of a slender toroidal shell. The
structure of the derived formulae for the in-plane vibrations indicates how cen-
trifugal forces, induced by the ring rotation, increase the mean value of natural
frequencies and the Coriolis forces cause their bifurcation.

The presented theory for the in-plane and out-of-plane free vibration of a ro-
tating ring, based on the application of the toroidal shell theory, seems to be
rather complicated. On the other side, it is very educative since it points out
the universality of the toroidal shell theory and sheds more light to this still
challenging problem.

7. Appendix: Rigorous solution of the characteristic equation for the
rotating ring in-plane vibrations

Solving of a quartic equation has been a challenging subject of investigation
from the 16-th century. Among scientists there are some well-known names:
Lodovico Ferrari, Gerolamo Cardano, Descartes, Euler, [26, 27]. The problem is
still relevant nowadays [28, 29].
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The non-linear characteristic equation for the rotating ring in-plane vibra-
tions, Eq. (3.6), is actually a depressed quartic equation, i.e. a quartic equation
without the cubic term

(A1) ω4 − a2ω
2 + a1ω + a0 = 0.

It can be solved by following the mathematical procedure described in [30].
One of the possibilities to solve Eq. (A1) is to assume that it is reducible by
factorization. Hence, the four roots of Eq. (A1) coincide with two pairs of roots
of two quadratic equations

(A2) ω2 +
1

2
Aω +

(

y − a1

A

)

= 0,

where

(A3) A = ±
√

8y + 4a2

and y is a real root of the cubic resolvent of Eq. (A1)

(A4) 8y3 + 4a2y
2 − 8a0y − (4a2a0 + a2

1) = 0.

Equation (A4) can be condensed into a simpler form by shifting y. Substi-
tuting y = x− a2/6 into (A4) yields

(A5) x3 + 3px+ 2q = 0,

where

p = − 1

36
(12a0 + a2

2),(A6)

q =
1

432
(2a3

2 − 72a2a0 − 27a2
1).(A7)

The three real roots of Eq. (A5) are assumed in the form

(A8) x1 = u+ ν, x2 = ε1u+ ε2ν, x3 = ε2u+ ε1ν,

where ε1 and ε2 are the roots of equation ε2 + ε+ 1 = 0, i.e.

(A9) ε1,2 = −1

2
± i

√
3

2
.

The first root x1 in (A8) is determined by Cardano’s Formula

(A10) u = 3
√
z1, ν = 3

√
z2,
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where

(A11) z1,2 = −q ±
√

q2 + p3

are roots of the equation z2 + 2qz − p=0. If the discriminant D = q2 + p3 < 0,
one can write

(A12) z1,2 = −q + iw, w =
√

|q2 + p3|.

The complex quantity z1,2 can be presented in the exponential form (De Moire’s
formula), i.e.

(A13) z1,2 = ρe±iϕ, ρ =
√

q2 + w2, ϕ = arctg

(

w

−q

)

,

where −π ≤ ϕ ≤ π. Substituting (A13) into (A10), yields

(A14) u, ν = 3
√
z1,2 = 3

√
ρ e±iϕ/3 = 3

√
ρ [cos(ϕ/3) ± i sin(ϕ/3)].

Finally, one obtains for the first root of Eq. (A5), according to Eqs. (A8)

(A15) x1 = 2 3
√
ρ cos(ϕ/3).

The values of x1 are real since the imaginary parts of u and v cancel each other.
Furthermore, the solutions of Eq. (A2) read

(A16) ω1,2 = −A
4
±

√

(

A

4

)2

−
(

y − a1

A

)

.

Substituting (A3) and y = x1 − a2/6 into (A16) one obtains

(A17) ω1,2,3,4 =
1

2
√

3

[

−s
√

2a2 + 6x1 ±

√

4a2 − 6x1 +
6
√

3 a1

s
√

2a2 + 6x1

]

,

where s = sign (A), Eq. (A3).
The following example can be used as a benchmark for the application of the

above procedure:

Data: a0 = 1, a1 =
32

3
, a2 =

38

3
.

Eq. (A17):
1

2
√

3
(−s · 6.9282 ±

√
28 + s · 16).

Solution: ω1 = −3.91485, ω2 = −0.085146, ω3 = 1.0, ω4 = 3.0.
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