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In this study, the nurbs-based isogeometric analysis is developed to opti-
mize natural frequencies of bidirectional functionally graded (BFG) beams by tai-
loring their material distribution. One-dimensional Non-Uniform Rational B-Spline
(NURBS) basis functions are utilized to construct the geometry of beam as well as
approximate solutions, whereas the gradation of material property is represented by
two-dimensional basis functions. To optimize the material composition, the spatial
distribution of volume fractions of material constituents is defined using the higher
order interpolation of volume fraction values that are specified at a finite number
of control points. As an optimization algorithm, the differential evolution (DE) algo-
rithm is employed to optimize the volume fraction distribution that maximizes each of
the first three natural frequencies of BFG beams. A numerical analysis is performed
on the examples of BFG beams with various boundary conditions and slenderness
ratios. The obtained results are compared with the previously published results in
order to show the accuracy and effectiveness of the present approach. The effects of
number of elements, boundary conditions and slenderness ratios on the optimized
natural frequencies of BFG beams are investigated.
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1. Introduction

Recently, functionally graded materials (FGMs) in which the vol-
ume fractions of material constituents vary gradually along a certain direction
have received great attention in many engineering fields such as aerospace, air-
craft, automobile, defense industries, nuclear power plants and semiconductor
technologies due to their superior mechanical and thermal properties. The main
advantages of FGMs against the classical composites are that the delamination,
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stress concentrations and residual stresses can be avoided, and thus structural
integrity can be maintained to a desirable level.

Up to the present, considerable research effort has been made for develop-
ment of the free vibration analysis of beams made of FGMs. Pradhan and
Chakraverty [1] performed the free vibration analysis of FG beams subjected
to different sets of boundary conditions by means of the Rayleigh-Ritz method.
To study the effects of shear deformation, gradient index and slenderness ratio
on the natural frequencies of FG beams, the analysis was based on the classical
and first-order shear deformation beam theories. They found that the natural
frequency decreased if the material was towards metal or the span-to-height ra-
tio became smaller. A finite beam element model was developed by Vo et al. [2]
based on a quasi-3D theory to investigate the free vibration and buckling be-
havior of FG sandwich beams in which both shear deformation and thickness
stretching effects are included. Thai and Vo [3] presented various higher-order
shear deformation beam theories for bending and free vibration of FG beams
considering the transverse shear strain which satisfied the stress-free boundary
conditions on top and bottom surfaces. For a FG beam with a circular cross-
section of an arbitrary radial gradient, Huang and Li [4] established a higher-
order theory of beams including shear deformation and rotary inertia where the
traction-free surface condition was identically met. Şimȩk [5] employed different
higher-order beam theories to compute the fundamental frequency. The classi-
cal beam theory and different higher-order shear deformation theories were used
by Aydogdu and Taskin [6] for the free vibration analysis of FG beams with
simply supported edges. They used the Navier type solution method to obtain
natural frequencies. A Carrera Unified Formulation (CUF) was used by Mashat
et al. [7] to perform the free vibration of FG layered beams by various theories
and finite elements. The displacement components were defined by using a vari-
ety of functions such as polynomials, trigonometric, hyperbolic and exponential.
Li et al. [8] analyzed the free vibration of axially non-homogeneous beams. The
characteristic equations were derived in a closed-form for exponentially graded
beams with various end conditions. They sought the minimal natural frequency
for a certain gradient index, and this helps engineering to optimal design vibrat-
ing non-homogeneous beam structures. Jin and Wang [9] established success-
fully a novel N-node quadrature thin FG beam element based on the classical
beam theory with combinations of boundary conditions to obtain the accurate
natural frequency of Euler-Bernoulli FG beams. A new beam theory different
from the traditional first-order shear deformation beam theory was used by Sina
et al. [10] to analyze the free vibration of FG beams. They investigated the ef-
fects of various boundary conditions, gradient index and span-to-height ratio.

From the previously cited references, it is seen that most of previous studies
are related to the free vibration analysis of FG beams whose material properties
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vary in only one direction. As pointed out in the study by Nemat-Alla [11],
the conventional FGMs are not efficient in some engineering applications such
as aerospace shuttles and craft since the temperature or stress distribution in
structural elements of such advanced machines can be in two or three directions.
Due to this fact, there is a need for a new type of FGMs whose material prop-
erties vary in two or three directions to obtain more effective high-temperature
resistant materials. However, there have been a very little number of studies re-
lated on FG beams with two-dimensional dependent material properties so far.
Lü et al. [12] proposed a novel elasticity solution using the state-space-based
differential quadrature method for static bending and thermal deformations of
bidirectional functionally graded (BFG) beams whose properties are varied ex-
ponentially. Zhao et al. [13] presented a symplectic elasticity solution based on
the state-space formalism for static and free vibration analyses of BFG beams
with elasticity modulus varying exponentially in both axial and thickness direc-
tions. The free and forced vibration of a BFG beam under a moving load has
been studied by Şimşek [14] using the Ritz method for the case that the mate-
rial properties of beam vary exponentially in the thickness and length directions.
ŞimŞek [15] also investigated the buckling response of a BFG beam on the ba-
sis of the Timoshenko beam theory using the Ritz method. In order to obtain
buckling load, the trial functions for axial, transverse deflections and rotation
of cross-sections were expressed in polynomial forms. Wang et al. [16] derived
the closed-form characteristic equations to study the free vibration analysis of
Euler–Bernoulli BFG beams with a power law gradation of the elastic modu-
lus, material density along the beam length and an exponential gradation along
the beam thickness. It was shown that there existed an abrupt jump for the
natural frequencies of BFG beams depending on the gradient parameter. Hao
and Wei [17] proposed a new method to directly form an exact dynamic stiff-
ness matrix by using state space differential equations. The natural frequency
of a BFG beam was computed by combining the Wittrick–Williams algorithm
with a non-iterative algorithm.

It is noted that the performance of a FG component is not only a function
of the material properties, but is directly related to the ability of the designer
to utilize the materials in the most optimal fashion. Until now, a few research
efforts have been directed toward the design of FG beams for optimal natural
frequencies. Goupee and Vel [18] presented a new methodology for the sim-
ulation and optimization of the two-dimensional steady-state free and forced
vibration of BFG beams based on the element-free Galerkin method. Qian and
Ching [19] and Qian and Batra [20] have sought to maximize the frequen-
cies of a cantilever FG beam. Roque and Martins [21] used the differential
evolution (DE) optimization to find the volume fraction that maximized the
first natural frequency of a FG beam. A formulation using three parameters was
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employed to describe the volume fraction. Roque et al. [22] also used the DE
algorithm to design the simply supported and cantilever FG nano beams in order
to obtain the lowest free vibration frequency based on a modified couple stress
theory. Recently, Tsiatas and Charalampakis [23] have proposed a method
to optimize the natural frequencies of axially functionally graded beams and
arches by tailoring appropriately their material distribution. The DE algorithm
was employed for optimizing the natural frequencies.

The isogeometric analysis (IGA) which is used in this study has been pro-
posed by Hughes et al. [24] to bridge the gap between computer aided design
(CAD) and finite element analysis (FEA). The main idea of IGA is to adopt the
CAD basis functions (e.g., NURBS) to be the shape functions in FEA to con-
struct the approximation of the field variables and to describe the geometry of
engineering components used for analysis. A distinct advantage over FEM is that
the mesh refinement is not only simply accomplished by the automatic commu-
nication with the CAD geometry tools, but leaves the geometry intact. Another
intriguing trait of these functions is that they are typically smooth beyond the
classical C0-continuity of the standard FEM. Comprehensive knowledge of IGA
could be found in the text book of Cottrell et al. [25]. The IGA-based ap-
proaches have been used to solve many problems in a wide range of research
areas including beams [26–30], plates [31–33] and shells [34–37]. However, to the
authors’ knowledge, there are no reported experiments on the optimization of
natural frequency for FG beams by using IGA in the literature.

The objective of this paper is to present the NURBS-based IGA in order
to find the optimum volume fractions that maximize the natural frequencies of
W/Cu BFG beams. The IGA is utilized for the numerical simulation of the free
vibration of BFG beams. To construct the geometry of a beam as well as approx-
imate solutions, one-dimensional NURBS basis functions are employed, whereas
two-dimensional basis functions are represented for the gradation of material
properties. The differential evolution (DE) algorithm is used to optimize the
volume fraction distributions that maximize each of the first three natural fre-
quencies of BFG beams. Numerical examples are presented for the free vibration
and optimization analysis of BFG beams. The obtained results are compared
with the previously published results in order to show the accuracy and effec-
tiveness of the present approach. In particular, the effects of number of elements,
boundary conditions and slenderness ratios on the optimized natural frequencies
of BFG beams are studied.

The paper is organized as follows: next section describes a FG material fea-
turing. In Section 3, the theory and formulation of BFG beam are presented.
A brief review on the NURBS-based IGA is given in Section 4. Section 5 provides
the principle of optimization algorithm. The numerical results and discussions are
presented in Section 6. Finally, the article is closed with some concluding remarks.
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2. Bidirectional functionally graded material

The BFG beams with length L, width b and thickness h are considered as
shown in Fig. 1. The BFG beams are made of a continuous gradation of at
least two distinct material phases whose properties are assumed to be changed
smoothly along the longitudinal and thickness directions, respectively.

Fig. 1. Schematic view of BFG beam.

To optimize the material composition, in this study, the Mori–Tanaka method
[38] is used for estimating the effective properties of two-phase FGMs. This
method assumes that the matrix phase is reinforced with spherical inclusions
and accounts for the interplay of the elastic fields between neighboring parti-
cles. According to the Mori–Tanaka homogenization method, the effective bulk
modulus K and shear modulus G of the BFG beam are evaluated as [38, 39]:

K −Km

Kc −Km
=

Vc

1 + (1 − Vc)
3(Kc−Km)
3Km+4Gm

,(2.1a)

G−Gm
Gc −Gm

=
Vc

1 + (1 − Vc)
(Gc−Gm)
Gm+f1

,(2.1b)

where

(2.2) f1 =
Gm(9Km + 8Gm)

6(Km + 2Gm)
.

In which Vc is the volume fraction of the ceramic phase. The subscripts c and
m refer to the ceramic and metal phases, respectively. The volume fractions of
the ceramic and metal phases are related by Vc + Vm = 1. The effective Young’s
modulus E and Poisson’s ratio ν can be expressed as

E(x, z) =
9KG

3K +G
,(2.3a)

ν(x, z) =
3K − 2G

2(3K +G)
.(2.3b)
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The effective mass density ρ is given by the rule of mixture as

(2.4) ρ(x, z) = ρcVc + ρmVm.

It is noted that the effective material properties such as K, G, E, ν and ρ vary
in both axial and thickness directions.

3. Theory and formulation

In the Timoshenko beam theory, the plane cross-section remains plane but
not necessarily normal to the neutral axis after deformation. Therefore, the effect
of shear deformation can be taken into account in the analysis. The displacement
field can be expressed as

ux(x, z, t) = u(x, t) + zϕ(x, t),(3.1a)

uz(x, z, t) = w(x, t),(3.1b)

where u and w denote the axial and transverse displacements, respectively, of
any point on the neutral axis; ϕ is the rotation of the cross-section. With the
geometrical and physical linearity assumptions, the strains and stresses of BFG
beam take the following form:

εxx =
∂u(x, t)

∂x
+ z

∂ϕ(x, t)

dx
,(3.2a)

γxz =
∂w(x, t)

∂x
+ ϕ(x, t),(3.2b)

σxx = E(x, z) εxx,(3.2c)

σxz = ksG(x, z)γxz,(3.2d)

where εxx and γxz are the longitudinal strain and the transverse shear strain,
respectively; σxx and σxz are the axial normal stress and the shear stress, respec-
tively; ks is the shear correction factor. The internal strain energy of a beam at
any instant in terms of stresses and strains can be expressed by

(3.3) Ui =
1

2

∫

V

(σxxεxx + σxzγxz) dV,

where V is the volume of beam. Substituting Eq. (3.2) into Eq. (3.3) yields

(3.4) Ui =
1

2

L/2
∫

−L/2

[

Axx

(

∂u

∂x

)2

+ 2Bxx
∂u

∂x

∂ϕ

∂x

+ ksAxz

(

∂w

∂x
+ ϕ

)2

+Dxx

(

∂ϕ

∂x

)2]

dx,
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where

(Axx, Bxx, Dxx) =

h/2
∫

−h/2

E(x, z)(1, z, z2)b dz,(3.4a)

Axz =

h/2
∫

−h/2

G(x, z) bdz.(3.4b)

With a similar procedure, the kinetic energy of the BFG beam can be obtained
as

(3.5) Ke =
1

2

L/2
∫

−L/2

[

Ia

(

∂u

∂t

)2

+ Ia

(

∂w

∂t

)2

+ 2Ib
∂u

∂t

∂ϕ

∂t
+ Id

(

∂ϕ

∂t

)2]

dx,

where t is the time and the internal coefficient appearing in Eq. (3.5) is given as

(3.6) (Ia, Ib, Id) =

h/2
∫

−h/2

ρ(x, z)(1, z, z2)b dz.

To derive the equations of motion, the Hamilton’s principle is adopted herein as

(3.7)

t2
∫

t1

(δUi − δKe) dt = 0,

where the variational forms of strain energy Ui and kinetic energy Ke can be
expressed as follows:

(3.8a) δUi =

L/2
∫

−L/2

[

δ
∂u

∂x

(

Axx
∂u

∂x
+Bxx

∂ϕ

∂x

)

+ δ
∂ϕ

∂x

(

Bxx
∂u

∂x
+Dxx

∂ϕ

∂x

)

+ ksAxz

(

δ
∂w

∂x
+ δϕ

)(

∂w

∂x
+ ϕ

)]

dx,

(3.8b) δKe =

L/2
∫

−L/2

[

δ
∂u

∂t

(

Ia
∂u

∂t
+ Ib

∂ϕ

∂t

)

+ δ
∂w

∂t
Ia
∂w

∂t

+ δ
∂ϕ

∂t

(

Ib
∂u

∂t
+ Id

∂ϕ

∂t

)]

dx.
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Then the following governing equations are achieved by taking the variation of
displacement components and integrating by parts as

Axx
∂2u

∂x2
+Bxx

∂2ϕ

∂x2
− Ia

∂2u

∂t2
− Ia

∂2ϕ

∂t2
= 0,(3.9a)

ksAxx

(

∂2w

∂x2
+
∂ϕ

∂x

)

− Ia
∂2w

∂t2
= 0,(3.9b)

Bxx
∂2u

∂x2
+Dxx

∂2ϕ

∂x2
− ksAxx

(

∂w

∂x
+ ϕ

)

− Ib
∂2u

∂t2
− Id

∂2ϕ

∂t2
= 0.(3.9c)

4. NURBS-based isogeometric analysis

In this study, one-dimensional (1D) NURBS basis functions are used to con-
struct exactly the geometry as well as approximate solution, while a material
property variation is described by the 2D NURBS surface. An overview of the
NURBS basis function construction is briefly discussed as a prelude to the de-
scription of the solution field approximation for the NURBS-based isogeometric
analysis. For more detail, one can refer to the book of Cottrell et al. [25].

4.1. NURBS basis functions

The primary component of the NURBS basis function is a knot vector Ξ =
{ξ1, ξ2, . . . , ξn+p+1} which is a set of non-decreasing sequence of parameter values
of ξi, i = 1, 2, . . . , n + p + 1, where ξi ∈ R is called ith knot in the parameter
space, n is the number of basis functions and p is the order of B-Spline. The first
and last knots are repeated p+ 1 times in the so-called open knot vector. Basis
functions by the open knot vector are interpolatory at the beginning and end of
the parametric space interval. This distinguishes the knots from the nodes in the
finite element analysis as all the nodes are interpolatory. Based on an uniform
open knot vector Ξ, B-Spline basis functions are constructed recursively using
the Cox-DeBoor algorithm as follows (p = 0):

(4.1) Ni,0(ξ) =

{

1 if ξi ≤ ξ ≤ ξi+1,
0 otherwise.

And basis functions for orders p = 1, 2, . . . , are defined as

(4.2) Ni,p(ξ) =
ξ − ξi
ξi+p − ξi

Ni,p−1(ξ) +
ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(ξ).

An important property of B-Spline basis functions is that they constitute
a partition of a unit,

∑n
i=1Ni,p(ξ) = 1, ∀ξ, that makes the B-Spline basis possible

to become the basis for the approximate displacement field.
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The one-dimensional (1D) rational basis function Rpi (ξ) and NURBS curve
C(ξ) are defined by a weighted average of the B-Spline basis functions as follows:

Rpi (ξ) =
Ni,p(ξ)wi

∑n
j=1Nj,p(ξ)wi

,(4.3)

C(ξ) =
n
∑

i=1

Rpi (ξ)Bi,(4.4)

where wi, i = 1, 2, . . . , n are the ith weight, 0 < wi ≤ 1; Bi ∈ R, i = 1, 2, . . . , n
are the control points in the ξ direction.

Similarly, the two-dimensional (2D) NURBS basis functions can be con-
structed by taking the tensor product of two 1D B-Spline basis functions as

(4.5) Rp,qi,j (ξ, η) =
Ni,p(ξ)Mj,q(η)wi,j

∑n
i=1

∑m
j=1Ni,p(ξ)Mj,p(η)wi,j

,

where Rp,qi,j (ξ, η) represents the bivariate NURBS basis functions; Ni,p(ξ) and
Mj,q(η) stand for the B-Spline basis functions of order p in the ξ direction and
order q in the η direction, respectively; wi,j denotes the 2D weight and m is the
number of control points in η direction.

By using the NURBS basis functions, a NURBS surface of order p in the ξ
direction and order q in the η direction can be expressed as

(4.6) S(ξ, η) =
n
∑

i=1

m
∑

j=1

Rp,qi,j (ξ, η)Bi,j ,

where Bi,j is the control mesh of n×m control points in two directions.
The first derivative of Rp,qi,j (ξ, η) with respect to each parametric variable,

e.g., ξ, is derived by applying the quotient rule to Eq. (4.5) as

(4.7)
∂Rp,qi,j (ξ, η)

∂ξ
=

∂Ni,j(ξ)
∂ξ Mj,q(η)wi,jW (ξ, η) − ∂W (ξ,η)

∂ξ Ni,p(ξ)Mj,q(η)wi,j

[W (ξ, η)]2
,

where

W (ξ, η) =
n
∑

i=1

m
∑

j=1

Ni,p(ξ)Mj,q(η)wi,j ,(4.8)

∂W (ξ, η)

∂ξ
=

n
∑

i=1

m
∑

j=1

∂Ni,p(ξ)

∂ξ
Mj,q(η)wi,j .(4.9)
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4.2. NURBS-based BFGM modelling

As stated previously, the material property variations of BFG beam are de-
scribed by 2D NURBS basis functions in Eq. (4.5) as follows:

(4.10) ℜ(ξ, η) =

n
∑

i=1

m
∑

j=1

Rp,qi,j (ξ, η)ℜi,j ,

where ℜi,j are the values of material properties at corresponding control points
as shown in Fig. 2. In the isogeometric concept, the net of control points for
interpolation of material properties throughout the domain of BFG beam is in-
tended to use separately with geometry and analysis. The control mesh based
on 4 × 4 2D NURBS elements which are employed to describe material prop-
erties is shown in Fig. 2 with the knot vectors Ξ = {0, 0, 0, 1/2, 1, 1, 1} and
Ψ = {0, 0, 0, 1/3, 2/3, 1, 1, 1} with orders p = 2 and q = 2, respectively.

Fig. 2. Schematic illustration of NURBS-based isogeometric BFG beam (4 × 4 NURBS
elements, p = 2, q = 2).
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4.3. Isogeometric finite element discretization

The parametric domain in the isogeometric analysis is similar to the isopara-
metric space in the classical finite element method. Thus, the generalized dis-
placement measures are approximated by the NURBS basis functions defined
above as follows:

u(ξ) =
n
∑

i=1

Rpi (ξ)u0,(4.11a)

w(ξ) =
n
∑

i=1

Rpi (ξ)w0,(4.11b)

ϕ(ξ) =
n
∑

i=1

Rpi (ξ)ϕ0.(4.11c)

By substituting Eq. (4.13) into Eq. (3.7), the isogeometric finite element
model of a typical element can be expressed as

(4.11) Mü + Ku = 0,

where K and M are the stiffness and mass matrices, respectively; u is the vector
of the degrees of freedom associated to the displacement field. The explicit forms
of stiffness and mass matrices are given by

(4.12) K =





K
11

K
12

K
13

K
21

K
22

K
23

K
31

K
32

K
33



 ,

where

(4.13)

K11
ij =

Le+1
∫

Le

AxxR
′
iR

′
jdx, K12

ij = K21
ji = 0,

K13
ij = K31

ji =

Le+1
∫

Le

BxxR
′
iR

′
jdx,

K22
ij =

Le+1
∫

Le

AxzR
′
iR

′
jdx, K23

ij = K32
ji = 0,

K33
ij =

Le+1
∫

Le

(AxzRiRj +DxxR
′
iR

′
j) dx,
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and

(4.14) M =





M
11

M
12

M
13

M
21

M
22

M
23

M
31

M
32

M
33



 .

where

(4.15)

M11
ij = M22

ij =

Le+1
∫

Le

IaRiRjdx, M12
ij = M21

ji = 0,

M13
ij = M31

ji =

Le+1
∫

Le

IbRiRjdx,

M23
ij = M32

ji = 0, M33
ij =

Le+1
∫

Le

IdRiRjdx,

where the prime represented differentiation with respect to x. After substitut-
ing the characteristic of the time function ü = −ω2

u, the following algebraic
equation is obtained:

(4.16) (K − ω2
M)u = 0,

where ω is the natural frequency. The natural frequencies are obtained using the
standard generalized eigenvalue algorithm. The assembly of two matrices follows
the standard procedure of FEM.

5. Differential evolution algorithm

The differential evolution (DE) is a unique evolutionary algorithm designed
to deal with continuous optimization problems. Similar to GA, the DE is a po-
pulation-based algorithm that is stochastic in nature to find global solution in
feasible individual space. The main procedure of DE includes four phases such
as initiation, mutation, crossover and selection.

5.1. Initialization

In the DE algorithm, each individual in the population is the d-dimensional
vector that represents a candidate solution to the problem and is randomly
created in the search domain as

(5.1) xij = xLj + r × (xUj − xLj ), i = 1, 2, . . . , NP ; j = 1, 2, . . . , d,
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where xij is the jth component of individual xi; x
U
j and xLj are the upper and

lower bounds of xj , respectively; r is a uniformly distributed random number in
the interval [0, 1]; NP is the size of population and d is the number of design
variables.

5.2. Mutation

In the mutation phase, the basic idea of DE is presented as follows: taking
the difference vector between two individuals and adding a scaled version of the
difference vector to the third individual to create a new candidate solution [40].
The process is described as follows:

(5.2) vi = xr1 + F × (xr2 − xr3),

where vi is a mutation vector and known as a new candidate solution; xr1,
xr2 and xr3 are candidate solutions; r1, r2 and r3 are randomly selected from
(1, 2, . . . , NP ) to satisfy the following constraints as r1 6= r2 6= r3 6= i; the scaling
factor F can be chosen in the range F ∈ [0, 2].

5.3. Crossover

Next, the trial vector ui is defined by combining the mutant vector vi with
a DE individual xi, given as

(5.3) uij =

{

vij if rcj < Cr,
xij otherwise,

in which rcj is a random number taken from the uniform distribution [0, 1]; Cr
is a constant crossover rate chosen in the range [0, 1], which controls how likely
it is that each component of ui comes from the mutant vector vi and is defined
by a user.

5.4. Selection

Finally, the ui and xi vectors are compared so that the most fit vector in
each pair is kept for the next generation and the least fit is discarded. This step
is a greedy selection criterion, which for a minimization problem is expressed as

(5.4) x
new
i =

{

ui iff(ui) ≤ f(xi),
xi otherwise,

where f(ui) and f(xi) are the objective function values.
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5.5. Optimization problem

In an optimization formulation, the optimized material distribution of a two-
phase FGM is equivalent to the determination of the volume fraction distribution
V (x, z) of one of its constituents. The volume fraction at an arbitrary point in
the domain is obtained by interpolation of the volume fraction values defined at
the control points. The range-restricted interpolation ensures that the volume
fractions lie in the range of zero to one at all points within the domain, i.e.,
0 ≤ V (x, z) ≤ 1. A constrained optimization problem is written in the following
form [18]:

Find V (i,j), i = 1, 2, . . . , n, j = 1, 2, . . . ,

Minimize f(V (i,j)),(5.5)

Subjected to 0 ≤ V (i,j) ≤ 1,

where f(V (i,j)) is the objective function. In the above problem, there are n×m
optimization variables.

6. Numerical results and discussions

In this section, in order to verify the accuracy of present study, the NURBS-
based isogeomeric optimization analysis of BFG beams is performed. The nu-
merical results obtained are compared with the reference solutions. The effects of
number of elements, boundary conditions and slenderness ratio on the optimized
natural frequencies of BFG beams are investigated.

6.1. Verification

In the first part of this section, the NURBS-based isogeometric analysis
code is validated by comparing the numerical results with the available so-
lutions for FG and BFG beams. First, two types of FG beams are consid-
ered. One for that the material properties of the beam varing continuously in
an axial direction and the other is devoted to material properties which are
changed continuously in the thickness direction. In case of variation through
the axial direction, the left side is pure alumina (Al2O3) and the right side
is pure iron (Fe). The material properties vary according to a power law as
ℜ(x) = (ℜl − ℜr)(1 − x/L)k1 + ℜr. In case of variation through thickness, the
top surface of a beam is pure alumina, whereas the bottom surface of a beam is
pure iron with ℜ(z) = (ℜt −ℜb)(1/2 + z/h)k3 +ℜb. The geometry and material
properties are presented in Alshorbagy et al. [41]. The NURBS basis func-
tions used are p = 3 and q = 3 in ξ and η directions, respectively, the number of
control points is 121 (11×11) and the number of elements is 64 (ex = 8, ez = 8).
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For the simply supported (SS) FG beam with L/h = 20, the first two dimen-
sionless frequencies are depicted in Figs. 3 and 4 with respect to k1 and k3,
respectively, for different material distribution. The ratio of mass densities of

a)

b)

Fig. 3. The first two dimensionless frequencies of SS FG beam with respect to k1 for
differential material distribution; a) mode 1, b) mode 2.
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alumina to iron is ρra = ρl/ρr = ρt/ρb = 1 and the ratios of Young’s moduli
of alumina to iron are Era = El/Er = Et/Eb = 0.25, 1 and 2. For convenience,

a)

b)

Fig. 4. The first two dimensionless frequencies of SS FG beam with respect to k3 for
differential material distribution; a) mode 1, b) mode 2.
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the following dimensionless frequency is used: λ2
i = ωiL

2
√

ρlA/(ElI). It can be
observed from Figs. 3 and 4 that the results from this study agree well with
those from Alshorbagy et al. [41] using the finite element method based on
the Euler-Bernoulli beam theory for both power exponents. It is seen that the
natural frequencies increase with an increase in power exponent when Era < 1,
and decrease with an increase in power exponent when Era > 1 for both cases.
The remarkable difference between the natural frequencies due to k1 and k3 is
not found. Figure 5 shows the convergence rate of the normalized frequencies
with various orders of NURBS basis functions in ξ direction (q = 2). It can be
realized from Fig. 5 that by using the h-refinement, the accuracy of the present
isogeometric analysis solution increases as the number of elements is increased
from 4 to 64. The more efficient technique, the k-refinement creating higher or-
der, higher continuity of NURBS basis functions gives a faster convergence speed.
With the aid of k-refinement, the normalized frequency converges with 4 quartic
or quintic elements, and 8 cubic elements.

Fig. 5. Convergence of the first normalized frequencies of SS FG beam for various values of
p (q = 2).

Next, the natural frequencies of BGF beams with various boundary con-
ditions are evaluated. The material characteristics vary exponentially in both
directions as ℜ(x, z) = ℜlbe

k1x/L+k3(0.5+z/h), where ℜlb is the reference material
value at the point (0, 0), and the material and geometrical properties are as
follows: Elb = 210 GPa, vlb = 0.3, ρlb = 7.850 kg/m3, b = 0.5 m, h = 1 m and
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a) k1 = 0

b) k1 = 0.4

Fig. 6. The first two dimensionless frequencies of SS FG beam with respect to k3 for
differential material distribution.
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c) k1 = 0.8

d) k1 = 1

Fig. 6. [cont.] The first two dimensionless frequencies of SS FG beam with respect to k3 for
differential material distribution.
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L = 20 m. In the analysis, CF, SS, CS and CC boundary conditions are consid-
ered, where C, F and S denote clamped, free and simple edges, respectively. The
order of basis function, the numbers of control points and elements are the same
as in the previous example. In Fig. 6, the first dimensionless frequencies of BGF
beams with CF, SS, CS and CC end conditions are plotted and compared with
those from Şimşek [14] for various values of gradient indexes. The considered di-
mensionless frequency is defined by ζ = (ωL2/h)

√

ρlb/Elb. It can be found from
Fig. 6 that the present results are in great agreement with those from Şimşek
[14] for all gradient indexes considered. It is seen that fundamental frequency
values slightly decrease as the gradient indexes increase for all boundary condi-
tions. This is due to the fact that the effect of mass density on frequency is a bit
dominant than the effect of Young’s modulus.

6.2. Optimization of BFG beams

In this example, the optimization of volume fraction distributions for BFG
beams is considered to maximize each of the first three natural frequencies. The
geometries of a beam are h = 0.05 m and L = 0.2 m and the BFG beams are
composed of tungsten (W) and copper (Cu) with properties as: Tungsten (W):
EW = 400 GPa, vW = 0.28, ρW = 19,300 kg/m3; Copper (Cu): Ecu = 110 GPa,
vcu = 0.34, ρcu = 8,960 kg/m3. To estimate the effective material properties
throughout the domain, the Mori–Tanaka scheme with copper as the matrix
phase is used. It is noted that the tungsten has higher stiffness and density than
copper. The addition of tungsten to a copper can either increase or decrease its
natural frequencies depending on where it is added. Thus, in order to obtain
desired dynamic responses for a W/Cu beam, the tungsten distribution can be
optimized [18]. The searching process of the present DE algorithm is stopped
when the absolute value of deviation between the objective function value of the
best individual and the mean objective function value of the whole population is
less than or equal to tolerance 1×10−5. In addition, the population size NP , the
mutation scaling factor F and the crossover factor Cr for real decision parameters
are set to be 20, 0.85 and 0.85, respectively.

Table 1. The first three optimized frequencies (Hz) of CF BFG beam for
different number of elements (p = 3, q = 2).

Mode
This study Goupee

and Ve [18]ex = 4 ex = 8 ex = 16

1 1050.5 1158.8 1179.3 1174.3

2 4689.0 4874.9 5032.9 4819.0

3 6054.0 6578.8 6649.7 6681.9
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The first three optimized frequencies obtained from this study are presented
in Table 1 for CF W/Cu beam with different number of elements in x direc-
tion. In this study, the enough elements, i.e., ez = 16, along z direction are
used since the numerical integration is carried out with respect to the control
points in η direction to construct the stiffness and mass matrices. In addition,
the NURBS basis functions considered are p = 3 and q = 2 in ξ and η direc-
tions, respectively. For comparison, the solutions from Goupee and Vel [18]

a) b)

c)

Fig. 7. Convergence of the first three optimized frequencies of CF BFG beam for various
values of ex.
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based on the two-dimensional element-free Galerkin method using a total of 30
design variables and the genetic algorithm are presented. It can be observed
from Table 1 that the present results using 16 elements in x direction are in
good agreement with solutions from [18]. The convergence rates of the first three
optimized frequencies are depicted in Fig. 7 for various numbers of elements
in x direction. It is observed that in all the cases, the faster convergence ex-
hibits as the number of element increases. It can also be found from Table 1
that the fundamental vibration mode of the optimized W/Cu beam is flexural
mode and corresponding frequency is ω1 = 1179.3 Hz, compared to 674.0 Hz
for a monolithic Cu beam and 877.1 Hz for a monolithic W beam, which is
75.0% larger than a monolithic copper beam and 34.5% larger than a monolithic
tungsten beam. Figure 8a shows the tungsten volume fraction distribution of
the optimized W/Cu beam that results in the largest fundamental frequency ω1.
It can be observed from Fig. 8a that the tungsten distribution is symmetric

a) Mode 1 of CF beam

b) Mode 2 of CF beam

c) Mode 1 of CC beam

d) Mode 2 of CC beam

Fig. 8. Optimized tungsten volume fraction distributions of CF and CC BFG beams.
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about the middle axis and the optimized W/Cu beam consists of the stiffer
tungsten near the root and the more compliant copper at the tip. The mate-
rial composition smoothly transitions from tungsten and copper with a narrow
region. The optimized tungsten volume fraction distribution which results in
the largest second frequency ω2 is depicted in Fig. 8b. The optimized mode is
also flexural one and the corresponding frequency is ω2 = 5032.9 Hz, which is
48.1% larger than a monolithic copper beam and 13.3% larger than a monolithic
tungsten beam. The optimized third frequency which corresponds to the axial
mode, ω3 = 6649.7 Hz, is 51.8% and 16.9% larger than a monolithic copper and
tungsten beams, respectively.

Table 2. The first three optimized frequencies (Hz) of FG beam for various
boundary conditions (p = 3, q = 2).

BCs
Mode

1 Diff. (%) 2 Diff. (%) 3 Diff. (%)

CF 1179.3
Cu (75.0)

W (34.5)
5032.9

Cu (48.1)

W (13.2)
6649.7

Cu (51.8)

W (16.9)

SS 2536.2
Cu (40.2)

W (7.8)
7974.1

Cu (33.7)

W (2.6)
12963.6

Cu (48.0)

W (13.9)

CS 3635.9
Cu (43.2)

W (10.0)
9115.4

Cu (37.1)

W (5.1)
13135.7

Cu (47.1)

W (13.2)

CC 4942.8
Cu (50.3)

W (14.5)
10252.3

Cu (42.7)

W (8.3)
13118.6

Cu (49.8)

W (15.3)

To investigate the effect of boundary conditions on the optimized W/Cu
beam, the lowest three optimized frequencies and the increase of frequencies
over monolithic copper and tungsten beams are presented in Table 2 for four
boundary conditions. The orders of basis function are p = 3 and q = 2 and the
number of elements is 256 (ex = 16, ez = 16). From Table 2, some noteworthy
conclusions are as follows:

a) the value of optimized frequency increases as the end boundary condition
is restrained as expected,

b) the increase of frequency is the largest for CF beam, followed by CC, CS
and SS beams for flexural mode, whereas its rate for SS beam is larger than that
for CS beam for an axial mode,

c) the lower flexural mode exhibits larger increase of frequency than the
higher flexural one.

Finally, the effect of slenderness ratio on the fundamental optimized fre-
quency of CF beam is plotted in Fig. 9. It is seen that the slenderness ratio does
not cause a significant influence on the fundamental optimized frequency.
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a)

b)

Fig. 9. Optimized and increase of frequencies for W and Cu with respect to L/h;
a) optimized frequency, b) increase of frequency for W and Cu.

7. Conclusions

In this paper, an improved methodology for the simulation and optimization
of the free vibrational response of W/Cu bidirectional functionally graded beams
is developed. The geometric description and the displacement fields are expressed
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with the aid of the one-dimensional NURBS basis functions. On the other hand,
the gradation of material properties is represented by two-dimensional NURBS
ones. A differential evolution algorithm is used to optimize the volume frac-
tion distribution at the control points that maximize the natural frequency. The
proposed method is validated with results from other researchers and a good cor-
relation is achieved for the bidirectional functionally graded beams tested in this
study. Through numerical examples, the optimized volume fraction distribution
and the effects of number of elements, boundary conditions and slenderness ratios
on the optimized natural frequencies are investigated. Based on the parametric
studies, the following conclusions may be drawn:

1) The computed natural frequencies and optimized natural frequencies for
bidirectional functionally graded beams are found to be in good agreement with
the reference results available in the literature.

2) Increase of the optimized frequency is the largest for the clamped-free
beam, followed by clamped-clamped, clamped-simple and simple-simple beams
for flexural mode, whereas its rate for simple-simple beam is larger than that for
clamped-simple beam for an axial mode.

3) The lower flexural mode exhibits larger increase of frequency than the
higher flexural one due to optimization.

4) The slenderness ratio does not cause a significant influence on the funda-
mental optimized frequency.

5) The present NURBS-based isogeometric analysis can be used with differ-
ential evolution in order to solve the optimization problems involving the free
vibration analysis of bidirectional functionally graded beams.
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