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The dispersion relations are derived for the horizontally polarized shear (SH)
waves in stratified anisotropic plates with arbitrary elastic anisotropy. Analytical
expressions for the vectorial group and ray velocities of SH waves propagating in
anisotropic layers with monoclinic symmetry are obtained. Closed form relations be-
tween velocities and specific kinetic and strain energy for SH waves are derived and
analyzed.
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1. Introduction

Horizontally polarized shear surface waves (SH-waves) propagating in
multilayered plates resemble Love waves [1] in polarization, but differ in ab-
sence of a contacting half-space (substrate), and, hence excluding necessity of
Sommerfeld’s emission condition

(1.1) u(x, t) = O(|x′|−1), |x′| → ∞,

where u is the displacement field in the substrate; x′ ≡ ν · x is the coordinate
along depth of the substrate, and ν is the unit normal to the plane boundary of
the substrate.

As it is shown later, the absence of the condition (1.1) results in differ-
ent behavior of SH-waves comparing to Love waves. Love’s inequality [1, 2] for
a genuine Love wave propagating in an isotropic traction-free layer contacting
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with the isotropic substrate

(1.2) (cTnm)layer > (cTnm)substrate

is necessary and sufficient for existence of the Love wave. In (1.2) cTnm denotes the
speed of the corresponding shear bulk wave propagating in n, and polarized in
m direction. However, SH waves in laminated plates with isotropic homogeneous
layers propagate at the violating inequality (1.2). It should also be noted that if
the inequality (1.2) does not hold, then no Love wave can propagate in a layer
and a halfspace.

Concerning energy of surface acoustic waves (SAW), the first works [3–7] on
derivation of expressions for the kinetic and elastic specific energy revealed that
in contrast to bulk waves, for which the kinetic and elastic specific energies co-
incide, in case of SAW these energies differ. Other theoretical studies of SAW
energy in elastic and piezoelectric media are contained in recent works [8–11].
The analysis presented below shows that the difference between these specific en-
ergies is associated with the transverse non-uniform distribution of displacement
magnitudes in SAW.

The principle method used for constructing analytical solutions for veloci-
ties and specific energy of SH waves, is based on a combination of the three
dimensional complex formalism [12] and the modified transfer matrix (MTM)
method [13, 14]. The latter being rather fast and numerically stable allows us
to construct analytical solutions for inhomogeneous plates containing several
anisotropic layers.

The main results presented below concern along with specific energy analy-
ses, relations between phase, group, and ray velocities for SH waves propagating
in anisotropic layers with monoclinic symmetry. The developed method is also
suitable for analyzing dispersion of these waves propagating in layered compos-
ites having at least one common plane of elastic symmetry. Such a common plane
of elastic symmetry is actually necessary for the existence of Love and SH waves.

2. Basic notations

All the regarded layers of a plate are assumed homogeneous, anisotropic and
linearly hyperelastic. Equations of motion for a homogeneous anisotropic elastic
medium can be written in the form:

(2.1) A(∂x, ∂t)u ≡ divxC · ·∇xu − ρü = 0,

where ρ is the material density, and C is the elasticity tensor assumed to be
positive definite

(2.2) ∀A
A∈sym(R3⊗R3),A 6=0

(A · ·C · ·A) ≡
∑

i,j,m,n

AijC
ijmnAmn > 0.



Horizontally polarized shear waves. . . 307

Remark 2.1. a) The other assumption concerns symmetry of the elasticity
tensor. It is assumed that all the regarded materials possess planes of elastic
symmetry coinciding with the sagittal plane m · x = 0, where the vector m is
the polarization vector of the SH-wave. This is achieved by the elasticity tensor
belonging to the monoclinic system, and the latter is equivalent to vanishing
all of the decomposable components of the tensor C having an odd number of
entries of the vector m in the orthogonal basis in R3 generated by the vector m

and any two orthogonal vectors belonging to the sagittal plane.
b) It is shown later that assuming monoclinic symmetry provides a sufficient

condition for the surface tractions acting on any plane ν·x = const to be collinear
with the vector m.

Following [15, 16], a horizontally polarized harmonic shear wave in a layer
can be represented in a form

(2.3) u(x) = m f(irx′) eir(n·x−ct),

where coordinate x′ = ν·x is as defined in (1.1); f is the unknown scalar complex-
valued function; the exponential multiplier ir(n · ν− ct) in (2.3) corresponds to
propagation of the plane wave front along the direction n with the phase speed c;
r is the wave number,

(2.4) r =
ω

c
.

Remark 2.2. A displacement field defined by (2.3) is generally complex. In
reality, either real or imaginary part of the right-hand side of (2.3) represents
the physical displacement field. However, retaining complex expressions for the
displacement field, allows us to describe situations with the phase shift in a more
convenient manner.

Substituting representation (2.3) into Eq. (2.1) and taking into account Re-
mark 2.1.a, yields the following differential equation:

(2.5)

(

(m ⊗ ν · ·C · ·ν ⊗ m) f ′′x′ + 2(m · sym(ν · C · n) · m) f ′x′

+ (m ⊗ n · ·C · ·n ⊗ m − ρc2)f

)

= 0.

The characteristic equation for the differential Eq. (2.5), known also as the
Christoffel equation, has the form:

(2.6) (m ⊗ ν · ·C · ·ν ⊗ m) γ2 + 2(m · sym(ν · C · n) · m) γ

+ (m ⊗ n · ·C · ·n ⊗ m − ρc2) = 0.

The left-hand side of Eq. (2.6) is a polynomial of degree 2 with respect to the
Christoffel parameter γ. Thus, for a layer with monoclinic symmetry only two
partial waves form SH wave.
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The following lemma flows out from solving the Cauchy problem for Eq. (2.5):

Lemma 2.1. A necessary and sufficient condition for the real-analytic solu-

tion of Eq. (2.5) to be non-trivial, is a simultaneous non-vanishing f and its first

derivative at some x′.

Remark 2.3. For the orthotropic medium and SH wave propagating in the
direction of principle elasticity, Eq. (2.6) can be simplified

(2.7) (m ⊗ ν · ·C · ·ν ⊗ m) γ2 + (m ⊗ n · ·C · ·n ⊗ m − ρc2) = 0.

Its immediate solution becomes

(2.8) γ1,2 = ±

√

ρc2 − m ⊗ n · ·C · ·n ⊗ m

m ⊗ ν · ·C · ·ν ⊗ m
.

For the considered case, the general solution of Eq. (2.5) can be represented in
the form:

(2.9) f(irx′) = C1 sin(rγx′) + C2 cos(rγx′),

where γ is generally the complex root with a positive sign in (2.8).

3. Energy of SH-waves

3.1. Specific kinetic and elastic (potential) energy

Herein, we derive expressions for specific kinetic and elastic (potential) ener-
gies of the SH-waves. Taking into account the representation (2.3) and assuming
|m| = 1, the specific kinetic energy can be defined by

(3.1) Ekin ≡
1

2
ρ u̇ · ¯̇u =

1

2
ρω2|m|2|f |2,

where the following relation between the phase speed and frequency is used

(3.2) ω = rc.

Equations (2.5), (3.1), and (3.2) yield the following representation for the
specific kinetic energy

(3.3) Ekin ≡
1

2
r2f

[

(m ⊗ ν · ·C · ·ν ⊗ m)f ′′ + 2(m · sym(ν · C · n) · m)f ′

+ (m ⊗ n · ·C · ·n ⊗ m)f

]

.

Another useful expression flows out from (3.1) and (3.2):

(3.4) ω2 =
2Ekin

ρ|f |2
.
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Now, the specific elastic energy can be defined by

(3.5) Eelast ≡
1

2
∇u · ·C · ·∇ū =

1

2
r2m ⊗ (f ′ν + fn) · ·C · ·(fn + f ′ν) ⊗ m̄.

Remark 3.1. a) In view of Remark 2.2, expressions (3.1) and (3.5) coin-
cide with the corresponding expressions for kinetic and elastic specific energies,
obtained without using complex displacement fields.

b) Analysis of expressions (3.1)–(3.5) reveals that for the considered SH waves
Ekin 6= Eelast, due to the presence of the generally non-constant function f . At
the same time, for bulk waves f = const, and hence from (2.1) and (2.3) we
arrive at Ekin = Eelast; see also [2, 7] for discussions.

Proposition 3.1. a) At vanishing circular frequency ω both specific kinetic

and elastic energies vanish.

b) The specific kinetic energy vanishes at any ω, on longitudinal planes x′ ≡
ν · x = const, if function f vanishes at the corresponding x′.

c) The specific elastic energy does not vanish at any non-vanishing freq-

uency ω.

Proofs of conditions a) and b) are obvious. Proof of the condition c) fol-
lows from the positive definite condition for the elasticity tensor, Lemma 2.1,
expression (3.5) and orthogonality of vectors ν and n.

3.2. Group velocity

Herein, the vector-valued group velocity vgroup is defined by [2]:

(3.6) vgroup = ∇(rn)ω,

where ∇(rn) denotes the gradient with respect to the independent spatial variable
(rn). For the subsequent analysis the scalar group speed cgroup is also needed:

(3.7) cgroup ≡ |vgroup| =
√

∇(rn)ω · ∇(rn)ω.

Now, combining (3.3), (3.4), and (3.7) yields

(3.8) cgroup =

√

(f ′ν + fn) · (m · C · m)2 · (fn + f ′ν)

cρ|f |
.

where c stands for the phase speed.

Proposition 3.2. a) At any physically admissible properties of a medium

and any SH-wave propagating with the finite phase speed c 6= 0, the corresponding

group speed cgroup is delimited from zero.

b) If f → 0 at x′ → x′0, where x′0 takes some finite value, then cgroup → ∞.
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Proof a) flows out from observation that the radicand in (3.8) is strictly
positive due to (2.2) and Lemma 2.1. Proof b) is obvious.

Remark 3.2. According to the definition (3.7) the group velocity cgroup

cannot be negative, since according to (3.7) cgroup is defined as the length of the
(possibly complex) vector (3.6). However, there are other definitions for the group
velocity, that allows negative values for cgroup; see [17–19], where the following
definition is adopted

(3.9) cgroup =
∂ω

∂r
.

A more detailed analysis [7] of expressions (3.6) and (3.9) reveals that the
latter expression yields projection of the vector valued velocity (3.6) onto the
wave normal n. This provides the explanation of possible appearing negative
values of the group speed.

3.3. Ray speed

The vector-valued ray speed can be defined by (see [7]):

(3.10) vray =
Jelast

Ekin + Eelast
,

where Jelast is the flux of elastic energy:

(3.11) Jelast ≡ u̇ · C · ·∇u.

The corresponding scalar ray speed is:

(3.12) cray ≡ |vray| =

√

Jelast · Jelast

Ekin + Eelast
.

Substituting (2.3) into (3.12) and exploiting (3.3), (3.5), yields:

(3.13) cray =
2c|f |

√

(f ′ν + fn) · (m · C · m)2 · (fn + f ′ν)

ρc2|f |2 + (f ′ν + fn) · (m · C · m) · (fn + f ′ν)
.

Proposition 3.3. a) At any physically admissible properties of a medium

and any SH-wave propagating with the finite phase speed c 6= 0, the corresponding

ray speed cray is delimited from zero.

b) If f → 0 at x′ → x′0, where x′0 is finite, then cray → ∞.

c) A necessary and sufficient condition for cgroup = cray, is as follows:

(3.14) Ekin = Eelast.

Proofs a) and b) are analogous to the proof of Proposition 3.2. Proof c)
follows directly from (3.8), (3.13), with account of (3.1), (3.5).
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4. Single-layered orthotropic plate

Hence it is assumed that vectors ν,m, and n coincide with the axes of elastic
symmetry of an orthotropic medium.

Remark 4.1. It can be shown (see [13, 14], where similar arguments are
applied to analysis of Love waves) that regardless of boundary conditions and at
imaginary roots of Eq. (2.7), no SH-wave can propagate in directions of elastic
symmetry of an orthotropic single-layered plate. Thus, the following inequality

(4.1) c >

√

m ⊗ n · ·C · ·n ⊗ m

ρ
,

naturally arising from (2.8), delivers a necessary condition for existing surface
SH-wave. Thus, for the regarded plate all surface SH-waves are necessary su-
personic, since the radicand in the right-hand side of (4.1) defines speed of the
corresponding shear bulk wave cTnm. In this section we assume that the condition
(4.1) holds.

4.1. Traction-free plate

Herein we consider a single-layered plate with the traction-free boundary
conditions:

(4.2)

{

tν(h/2) = 0,
tν(−h/2) = 0,

where h is the thickness of the plate (we choose origin of coordinates at the
median plane).

For such a plate, finding function f from (2.7), (4.2), yields:

(4.3) f(irx′) =















cos(rγx′) at r =
2nπ

γh
,

sin(rγx′) at r =
(2n− 1)π

γh
,

n = 1, 2, . . . ,

where γ is defined by (2.8).

Proposition 4.1. a) On planes x′ = const, where

(4.4) x′ =











1
2 + k

2n
h at r =

2nπ

γh
, −n ≤ k < n,

k

2n− 1
h at r = (2n−1)π

γh , −n ≤ k < n,

n, k ∈ Z,

the displacement field and specific kinetic energy vanish. That is equivalent to

existence of the internal immovable layers under propagating SH-wave on a

traction-free plate.
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b) At any finite phase speed satisfying the inequality (4.1), there are no waves

propagating at vanishing frequency (both phase speed and frequency are delimited

from zero).

Proof a) follows from considering zeroes of the function, defined by (4.3).
Proof b) follows from analyzing expressions (4.3), (3.2). It reveals that no non-
trivial solutions exist at ω = 0.

4.2. Clamped plate

For a single-layered plate with clamped outer surfaces, boundary conditions
are

(4.5)

{

u(h/2) = 0,
u(−h/2) = 0.

Finding the function f from Eq. (2.5) and satisfying boundary conditions
(4.5), yields:

(4.6) f(irx′) =















sin(rγx′) at r =
2nπ

γh
,

cos(rγx′) at r =
(2n− 1)π

γh
,

n = 1, 2, . . . .

Similarly to Proposition 4.1, we have

Proposition 4.2. a) On planes x′ = const, where

(4.7) x′ =















k

2n
h at r =

2nπ

γh
, −n ≤ k ≤ n,

1
2 + k

2n− 1
h at r =

(2n− 1)π

γh
, −n− 1 ≤ k ≤ n− 1,

n, k ∈ Z,

both the displacement field and specific kinetic energy vanish. That is equivalent

to existence of the internal immovable layers under propagating surface SH-wave

on a clamped plate.

b) At any finite phase speed satisfying the inequality (4.1), there are no waves

propagating at vanishing frequency (both phase speed and frequency are delimited

from zero).

4.3. Plate with mixed boundary conditions

Herein we consider a plate with traction-free upper and clamped bottom
surface:

(4.8)

{

tν(h/2) = 0,
u(−h/2) = 0.
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Direct analysis reveals that the function f satisfying homogeneous boundary
conditions (4.8) takes the form:

(4.9) f(irx′) =



















sin

(

rγx′ −
π

4

)

at r =
2(n− 1

4)π

γh
, n = 1, 2, . . . ,

sin

(

rγx′ + π
4

)

at r =
2(n+ 1

4)π

γh
, n = 0, 1, . . . .

Proposition 4.3. a) On planes x′ = const, where

(4.10) x′ =



















(k + 1
4)

2(n− 1
4)
h at r =

2(n− 1
4)π

γh
, −n ≤ k < n,

(k − 1
4)

2(n+ 1
4)
h at r =

2(n+ 1
4)π

γh
, −n ≤ k ≤ n,

n, k ∈ Z,

both the displacement field and specific kinetic energy vanish. That is equivalent

to existence of immovable layers under propagating surface SH-wave on a clamped

plate.

b) At any finite phase speed satisfying the inequality (4.1), there are no waves

propagating at vanishing frequency (both phase speed and frequency are delimited

from zero).

5. Concluding remarks

Considering specific energy, it was proved that kinetic and elastic energies of
SH waves generally differ; they coincide if only if the displacement distribution
is uniform at the cross section of a plate.

For SH waves the explicit expressions for the group and ray speeds were
derived; it was shown that both group and ray speeds defined by Eqs. (3.7) and
(3.12) are positive and delimited from zero.

For monoclinic and homogeneous plates and all the considered boundary
conditions:

(i) the admissible speed interval is transonic:

(5.1) c ∈ (cTmn;∞);

(ii) at any phase speed satisfying (5.1) there are immovable longitudinal layers,
and (iii) there are no limiting SH-waves corresponding to the vanishing frequency.

It should also be noted that energy considerations associated with propaga-
tion of the surface acoustic waves not restricted to SH and Love waves, were
analyzed in [20–22], and propagation of the nonlinear SH waves was analyzed in
recent papers [23–25].
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In a case of horizontally polarized waves in piezoelectric homogeneous (mon-
oclinic) medium the governing equation of motion does not reduce to a single
scalar equation; actually there will be a system of two coupled equations. Hence,
for stratified piezoelectric monoclinic media, the transfer matrix dispersion so-
lution will involve a composition of transfer matrices, similarly to the matrices
appearing in Lamb wave analyses [26].
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