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1. Introduction

The classical theory of thermoelasticity assumes that when an elastic
solid is subjected to a thermal disturbance, the effect is felt at a location far
from the source, instantaneously. It means that the thermal waves propagate
with infinite speed which is impossible from the physical point of view. In [1],
Lord and Shulman introduced a new theory of thermoelasticity, known as
generalized thermoelasticity, by incorporating a flux-rate term into Fourier’s law
of heat conduction which gives a hyperbolic heat transport equation admitting
finite speed for thermal signals. This theory was further extended by Dhaliwal
and Sherief [2] to include the anisotropic case.

Diffusion can be defined as the transfer of mass of a substance from the
high concentration regions to low concentration regions. There is now a great
deal of interest in the study of this phenomenon due to its widespread appli-
cations in the domains of geophysics, microelectronics, environmental mechan-
ics, biomedical engineering, and so on. Nowacki [3–6] proposed the classical
diffusion-thermoelasticity to describe the coupled mechanical behaviour among
temperature, concentration, and strain fields in elastic solids. Sherief et al. [7],
Aouadi [8] and Kansal and Kumar [9] established the different theories of
generalized diffusion-thermoelasticity to eliminate the shortcomings of classical
diffusion-thermoelasticity.
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The study of the interaction of elastic waves with fluid-loaded solids has been
recognized as a viable means for non-destructive evaluation of solid structures.
The theory of linear elastic materials with voids is one of the most important
generalizations of the classical theory of elasticity. This theory has a practical use
for investigating various types of geological and biological materials for which
the elastic theory is inadequate. This theory is concerned with elastic materials
consisting of a distribution of small pores (voids), in which the voids volume is
included among the kinematics variables and in the limiting case of volume tend-
ing to zero, the theory reduces to the classical theory of elasticity. Goodman
and Cowin [10] established a continuum theory for granular materials, whose
matrix material (or skeletal) is elastic and interstices are voids. They formulated
this theory from the formal arguments of continuum mechanics and introduced
the concept of distributed body, which represents a continuum model for gran-
ular materials (sand, grain, powder, etc.) as well as porous materials (rock, soil,
sponge, pressed powder, cork etc.). The basic concept underlying this theory is
that the bulk density of the material is written as the product of two fields, the
density field of the matrix material and the volume fraction field (the ratio of
the volume occupied by grains to the bulk volume at a point of the material).
This representation was employed by Nunziato and Cowin [11] to develop
a nonlinear theory of elastic material with voids. Cowin and Nunziato [12]
presented a linear theory of elastic material with voids for the mathematical
study of the mechanical behaviour of porous solids. They considered several
applications of the linear theory by investigating the response of the materials
to homogeneous deformations, pure bending of beams and small amplitudes of
acoustic waves. Iesan [13] proved the uniqueness, reciprocity and variational
theorems for the basic governing equations of elastic materials with voids and
also studied the propagation of acceleration waves in such materials. Iesan [14]
extended the linear theory of elastic materials with voids to include the ther-
mal effect. Aouadi [15] developed a theory of thermoelastic diffusion materials
with voids and derived the uniqueness, reciprocity, continuous dependence and
existence theorems.

Biot [16] presented the first model for single porosity deformable solid by
using the classical Darcy’s law. Barenblatt et al. [17] and Warren and Root
[18] extended this law to describe fluid flow through undeformable double poros-
ity materials. The double porosity model represents a double porous structure,
one is macro porosity which is connected to pores and other is micro poros-
ity which is connected to fissures. Wilson and Aifantis [19] developed the
theory for deformable materials with double porosity. This theory unifies the
earlier proposed models of Barenblatt et al. [17] for porous media with dou-
ble porosity and Biot [16] for porous media with single porosity. Bai et al. [20],
Moutsopoulos et al. [21] and Straughan [22] presented various mathemati-
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cal models of elasticity and thermoelasticity with multiple porosity by using the
extended Darcy’s law. In these models, the dependent variables are the displace-
ment vector, the pressures in the pore networks and the variation of temperature.
Iesan and Quintanilla [23] derived a non-linear theory of thermoelastic solids
with double porosity structure based upon Nunziato–Cowin theory of materi-
als with voids. This theory was not based upon Darcy’s law. Various authors
[24–34] discussed different types of problems on elastic solids, viscoelastic solids
and thermoelastic solids with double porosity.

In the present article, the constitutive relations, field equations, variational
principle, uniqueness and reciprocity theorems for anisotropic generalized ther-
moelasticity with mass diffusion and double porosity based upon the Lord–
Shulman model [1] are derived.

2. Basic equations

The law of conservation of energy for an arbitrary material volume V bounded
by a surface A at time t can be written as

(2.1)
∫

V

ρ[u̇iüi + k1ν̇1ν̈1 + k2ν̇2ν̈2 + U̇ ]dV

=

∫

V

ρ[Fiu̇i + gν̇1 + lν̇2]dV +

∫

A

[fiu̇i +Ωiniν̇1 + χiniν̇2 − qini]dA,

where U is the internal energy per unit mass, ρ is the density, qi are the com-
ponents of heat flux vector q, Fi are the components of the external forces per
unit mass, ui are the components of the displacement vector u, fi are the com-
ponents of the surface traction vector f occurring on the surface A, ν1 and ν2

are the volume fraction fields corresponding to pores and fissures respectively, k1

and k2 are coefficients of equilibrated inertia, g and l are, respectively, extrinsic
equilibrated body forces per unit mass associated to macro pores and fissures,
Ωi, χi are the components of equilibrated stress vectors corresponding to ν1, ν2

measured per unit area of the surface A respectively, ni are the components of
outward unit normal vector n to the surface A.

The components fi are connected to the stress vector by the relation

(2.2) fi = σjinj ,

where σji(= σij) are the components of the stress tensor.
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Using Eq. (2.2) in Eq. (2.1) and applying the divergence theorem, we obtain

(2.3)
∫

V

ρ[u̇iüi + k1ν̇1ν̈1 + k2ν̇2ν̈2 + U̇ ]dV

=

∫

V

ρ[Fiu̇i + gν̇1 + lν̇2]dV

+

∫

V

[σji,j u̇i + σjiu̇i,j +Ωi,iν̇1 +Ωiν̇1,i + χi,iν̇2 + χiν̇2,i − qi,i]dV.

Equation (2.3) is valid for every part of the body. Therefore, we obtain the local
form of conservation of energy

(2.4) ρ[u̇iüi + k1ν̇1ν̈1 + k2ν̇2ν̈2 + U̇ ]

= ρ[Fiu̇i + gν̇1 + lν̇2] + σji,j u̇i + σjiu̇i,j +Ωi,iν̇1 +Ωiν̇1,i + χi,iν̇2 + χiν̇2,i − qi,i.

Let us consider a second motion which differs from the given motion only by
a constant superposed rigid body translational velocity. Let us assume that k1,
k2, U , g, l, ρ, Ωi, χi, qi, Fi, σji are not changed by such superposed rigid body
velocity. The above equation is also true when u̇i is replaced by u̇i + si, where
si are arbitrary constants, all other terms being unchanged. Therefore, from
Eq. (2.4), we have

(2.5) ρ[(u̇i + si)üi + k1ν̇1ν̈1 + k2ν̇2ν̈2 + U̇ ]

= ρ[Fi(u̇i + si) + gν̇1 + lν̇2] + σji,j(u̇i + si) + σjiu̇i,j

+Ωi,iν̇1 +Ωiν̇1,i + χi,iν̇2 + χiν̇2,i − qi,i.

Subtracting Eq. (2.4) from Eq. (2.5), we get

(2.6) si[σji,j + ρFi − ρüi] = 0.

Since the quantities in the square brackets are independent of si, therefore from
the above equation, we obtain

(2.7) σji,j + ρFi = ρüi.

Taking into account Eq. (2.7), we get a simplified law of energy balance from
Eq. (2.4), namely

(2.8) ρU̇ = σjiu̇i,j +Ωiν̇1,i + χiν̇2,i − qi,i − ξν̇1 − ζν̇2,
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where ξ and ζ satisfy the relations

(2.9) Ωi,i + ξ + ρg = k1ν̈1, χi,i + ζ + ρl = k2ν̈2.

The balance of entropy [35] can be written as

(2.10)
∫

V

ρṠdV +

∫

A

(

qi
T

)

nidA−
∫

A

(

Pηi

T

)

nidA

= −
∫

V

qi
T 2
T,idV −

∫

V

P,i

T
ηidV +

∫

V

P

T 2
ηiT,idV,

where S, P , are entropy and chemical potential per unit mass respectively, ηi is
the mass diffusion flux vector η, T is the absolute temperature.

Equation (2.10) can be represented in the form

(2.11) ρṠ +

(

qi
T

)

,i

−
(

Pηi

T

)

,i

= − qi
T 2
T,i −

P,i

T
ηi +

P

T 2
ηiT,i.

The right hand side of the above equation is the entropy source

ℜ = − qi
T 2
T,i −

P,i

T
ηi +

P

T 2
ηiT,i ≥ 0.

In view of the above equation, Eq. (2.11) can be written in the form of an
inequality called Clausius–Duhem inequality

(2.12) ρṠ +
qi,i
T

− qi
T 2
T,i −

P

T
ηi,i −

P,i

T
ηi +

P

T 2
ηiT,i ≥ 0.

The equation of conservation of mass is

(2.13) ηj,j = −Ċ,

where C is the concentration of the diffusion material in the elastic body.
Equation (2.12) with the help of Eq. (2.8) and (2.13) becomes

(2.14) ρT Ṡ − ρU̇ + σij ėij +Ωiν̇1,i + χiν̇2,i − ξν̇1 − ζν̇2

− qi
T
T,i + PĊ − P,iηi +

P

T
ηiT,i ≥ 0,

where eij = 1
2(ui,j + uj,i) are components of strain tensor.

Helmholtz free energy function Γ is defined as

(2.15) Γ = U − TS.
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Using Eq. (2.15) in Eq. (2.14), we get

(2.16) − ρ[Γ̇ + Ṫ S] + σij ėij +Ωiν̇1,i + χiν̇2,i − ξν̇1 − ζν̇2

− qi
T
T,i + PĊ − P,iηi +

P

T
ηiT,i ≥ 0.

The function Γ can be expressed in terms of independent variables eij , ν1, ν1,i,ν2,
ν2,i, T, T,i, C and C,i. Therefore, we have

Γ̇ =
∂Γ

∂eij
ėij +

∂Γ

∂ν1
ν̇1 +

∂Γ

∂ν1,i
ν̇1,i +

∂Γ

∂ν2
ν̇2 +

∂Γ

∂ν2,i
ν̇2,i(2.17)

+
∂Γ

∂T
Ṫ +

∂Γ

∂T,i
Ṫ,i +

∂Γ

∂C
Ċ +

∂Γ

∂C,i
Ċ,i.

Introducing Eq. (2.17) into Eq. (2.16), we get

(2.18)

[

σij − ρ
∂Γ

∂eij

]

ėij +

[

Ωi − ρ
∂Γ

∂ν1,i

]

ν̇1,i +

[

χi − ρ
∂Γ

∂ν2,i

]

ν̇2,i

−
[

ξ + ρ
∂Γ

∂ν1

]

ν̇1 −
[

ζ + ρ
∂Γ

∂ν2

]

ν̇2 − ρ

[

S +
∂Γ

∂T

]

Ṫ +

[

P − ρ
∂Γ

∂C

]

Ċ

− ρ
∂Γ

∂T,i
Ṫ,i − ρ

∂Γ

∂C,i
Ċ,i −

qi
T
T,i − P,iηi +

P

T
ηiT,i ≥ 0.

The inequality should be satisfied for all rates ėij , ν̇1, ν̇1,i, ν̇2, ν̇2,i, Ṫ , Ṫ,i, Ċ
and Ċ,i. Hence the coefficients of above variables must vanish, that is

σij = ρ
∂Γ

∂eij
,(2.19)

Ωi = ρ
∂Γ

∂ν1,i
,(2.20)

χi = ρ
∂Γ

∂ν2,i
,(2.21)

ξ = −ρ ∂Γ
∂ν1

,(2.22)

ζ = −ρ ∂Γ
∂ν2

,(2.23)

S = −∂Γ
∂T

,(2.24)

P = ρ
∂Γ

∂C
,(2.25)

∂Γ

∂T,i
=

∂Γ

∂C,i
= 0,(2.26)

− qi
T
T,i − P,iηi +

P

T
ηiT,i ≥ 0.(2.27)
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Let us introduce the notations

(2.28) φ = ν1 − (ν1)0, ψ = ν2 − (ν2)0, θ = T − T0,

where T0 is the reference temperature of the body chosen such that | θ
T0
| ≪ 1,

(ν1)0 and (ν2)0 are the volume fraction fields in the reference configuration.
The independent variables in the linear theory are eij , φ, φ,i, ψ, ψ,i, θ and C.

We assume that the undeformed body is free from stresses and has zero intrinsic
equilibrated body forces and entropy. If the body has a centre of symmetry, then
we have

2ρΓ = cijkleijekl + 2pijeijφ+ 2γijeijψ − 2aijeijθ − 2bijeijC(2.29)

+ qijφ,iφ,j + 2αijφ,iψ,j + fijψ,iψ,j + d∗φ2 + fψ2 + 2α1φψ

− 2γ1φθ − 2vφC − 2γ2ψθ − 2mψC − ρCeθ
2

T0
− 2aθC + bC2.

Using the above equation in Eqs. (2.19)–(2.25), we obtain the following consti-
tutive equations

σij = cijklekl + pijφ+ γijψ − aijθ − bijC,(2.30)

Ωi = qijφ,j + αijψ,j ,(2.31)

χi = αijφ,j + fijψ,j ,(2.32)

ξ = −pijeij − d∗φ− α1ψ + γ1θ + vC,(2.33)

ζ = −γijeij − α1φ− fψ + γ2θ +mC,(2.34)

ρS = aijeij + γ1φ+ γ2ψ +
ρCeθ

T0
+ aC,(2.35)

P = −bijeij − vφ−mψ − aθ + bC.(2.36)

Equations (2.7) and (2.9) with the aid of Eqs. (2.30)–(2.34) become

cijklekl,j + pijφ,j + γijψ,j − aijθ,j − bijC,j + ρFi = ρüi,(2.37)

−pijeij + qijφ,ij − d∗φ+ αijψ,ij − α1ψ + γ1θ + vC + ρg = k1φ̈,(2.38)

−γijeij + αijφ,ij − α1φ+ fijψ,ij − fψ + γ2θ +mC + ρl = k2ψ̈.(2.39)

The linearized form of Eq. (2.11) is

(2.40) ρT0Ṡ = −qi,i.
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Using Eq. (2.35) in Eq. (2.40), we get

(2.41) aijT0ėij + γ1T0φ̇+ γ2T0ψ̇ + ρCeθ̇ + aT0Ċ = −qi,i.
The generalized Fourier’s law of a heat conduction equation is

(2.42) qi + τ0q̇i = −Kijθ,j ,

where Kij are coefficients of thermal conductivity tensor, τ0 is the thermal re-
laxation time which ensures that the heat conduction equation predicts finite
speeds of heat propagation.

The above equation with the help of Eq. (2.41) becomes

(2.43) aijT0(ėij + τ0ëij) + γ1T0(φ̇+ τ0φ̈) + γ2T0(ψ̇ + τ0ψ̈)

+ ρCe(θ̇ + τ0θ̈) + aT0(Ċ + τ0C̈) = Kijθ,ij .

Similar to Eq. (2.42), the generalized Fick’s law of mass diffusion is

(2.44) ηi + τ0η̇i = −dijP,j ,

where dij are coefficients of diffusion tensor, τ0 is the diffusion relaxation time
which ensures that the equation satisfied by the concentration will also predict
finite speeds of propagation of matter from one medium to the other.

Using Eqs. (2.13) and (2.36) in Eq. (2.44), we get

(2.45) −dij [bklekl,ij + vφ,ij +mψ,ij + aθ,ij − bC,ij ] = Ċ + τ0C̈.

In the upcoming sections, the chemical potential is used as a state variable
instead of the concentration.

Using Eq. (2.36) in Eqs. (2.30), (2.33)–(2.35), (2.37)–(2.39), (2.43) and (2.44),
we get

σij = dijklekl + gijφ+ hijψ − sijθ − lijP,(2.46)

ξ = −gijeij − d1φ− β1ψ + κ1θ + wP,(2.47)

ζ = −hijeij − β1φ− f1ψ + κ2θ + νP,(2.48)

ρS = sijeij + κ1φ+ κ2ψ + zθ + sP,(2.49)

dijklekl,j + gijφ,j + hijψ,j − sijθ,j − lijP,j + ρFi = ρüi,(2.50)

−gijeij + qijφ,ij − d1φ+ αijψ,ij − β1ψ + κ1θ + wP + ρg = k1φ̈,(2.51)

−hijeij + αijφ,ij − β1φ+ fijψ,ij − f1ψ + κ2θ + νP + ρl = k2ψ̈.(2.52)
(

∂

∂t
+ τ0

∂2

∂t2

)

T0[sijeij + κ1φ+ κ2ψ + zθ + sP ] = Kijθ,ij ,(2.53)

(

∂

∂t
+ τ0 ∂

2

∂t2

)

[lijeij + wφ+ νψ + sθ + nP ] = dijP,ij ,(2.54)
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where

n =
1

b
, lij = nbij , gij = pij − vlij , sij = aij + alij , hij = γij −mlij ,

dijkl = cijkl − lijbkl, s = an, w = vn, ν = mn, d1 = d∗ − vw, β1 = α1 − vν,

κ1 = γ1 + vs, f1 = f −mν, κ2 = γ2 +ms, z =
ρCe

T0
+ as.(2.55)

3. Variational principle

The principle of virtual work with variation of displacements for the elastic
deformable body with double porosity is written as

(3.1)
∫

V

[ρ(Fi − üi)δui + (ρg + ξ − k1φ̈)δφ+ (ρl + ζ − k2ψ̈)δψ]dV

+

∫

A

[fiδui +Ωδφ+ χδψ]dA =

∫

V

[σjiδui,j +Ωiδφ,i + χiδψ,i]dV.

On the left hand side, we have the virtual work of body forces Fi, inertial forces
ρüi, k1φ̈, k2ψ̈, surface forces fi = σjinj , Ω = Ωini, χ = χini, whereas on the
right hand side, we have the virtual work of internal forces.

Using the symmetry of the stress tensor and the definition of the strain tensor,
the Eq. (3.1) can be rewritten as

(3.2)
∫

V

[ρ(Fi − üi)δui + (ρg + ξ − k1φ̈)δφ+ (ρl + ζ − k2ψ̈)δψ]dV

+

∫

A

[fiδui +Ωδφ+ χδψ]dA =

∫

V

[σijδeij +Ωiδφ,i + χiδψ,i]dV.

Using Eqs. (2.31)–(2.32) and (2.46) in the above equation, we get

(3.3)

∫

V

[ρ(Fi − üi)δui + (ρg + ξ − k1φ̈)δφ+ (ρl + ζ − k2ψ̈)δψ]dV

+

∫

A

[fiδui +Ωδφ+ χδψ]dA

= δ(W +R+X + Y ) +

∫

V

gijφδeijdV +

∫

V

hijψδeijdV

−
∫

V

sijθδeijdV −
∫

V

lijPδeijdV.
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where

W =
1

2

∫

V

dijkleijekldV, R =
1

2

∫

V

qijφ,iφ,jdV,

X =
1

2

∫

V

fijψ,iψ,jdV, Y =

∫

V

αijφ,iψ,jdV.

Since we are taking the coupling of the deformation field with the temperature,
chemical potential, pores and fissures, therefore two additional relations are nec-
essary which characterize the phenomena of the thermal conductivity and mass
diffusion.

We define a vector J [36] connected with the entropy through the relation

(3.4) ρS = −Ji,i.

Combining Eqs. (2.40), (2.42), (2.49) and (3.4), we obtain

T0K
∗
ij

(

d

dt
+ τ0

d2

dt2

)

Ji + θ,j = 0,(3.5)

−Ji,i = sijeij + κ1φ+ κ2ψ + zθ + sP,(3.6)

where K∗
ij , the resistivity matrix, is the inverse of the thermal conductivity Kij .

Multiplying both sides of Eq. (3.5) by δJj and integrating over the region of
the body, we get

(3.7)
∫

V

[

θ,j + T0K
∗
ij

(

dJi

dt
+ τ0

d2Ji

dt2

)]

δJjdV = 0.

Now

(3.8)
∫

V

θ,jδJjdV =

∫

V

(θδJj),jdV −
∫

V

θδJj,jdV.

Applying the divergence theorem defined by,

(3.9)
∫

V

(θδJj),jdV =

∫

A

(θδJj)njdA,

in Eq. (3.8), we obtain

(3.10)
∫

V

θ,jδJjdV =

∫

A

(θδJj)njdA−
∫

V

θδJj,jdV.
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Substituting Eq. (3.10) in Eq. (3.7), we obtain

(3.11)
∫

A

(θδJj)njdA−
∫

V

θδJj,jdV + T0

∫

V

K∗
ij

(

dJi

dt
+ τ0

d2Ji

dt2

)

δJjdV = 0.

Making use of Eq. (3.6) in Eq. (3.11), we obtain the second variational equation

(3.12)
∫

A

(θδJj)njdA+

∫

V

sijθδeijdV + κ1

∫

V

θδφdV

+ κ2

∫

V

θδψdV + s

∫

V

θδPdV + δ(E +H) = 0,

where the function of thermal potential E is defined by

(3.13) E =
z

2

∫

V

θ2dV, δE = z

∫

V

θδθdV,

and the function of thermal dissipation H is defined by

(3.14)

H =
T0

2

∫

V

K∗
ij(
dJi

dt
+ τ0

d2Ji

dt2
)JjdV,

δH = T0

∫

V

K∗
ij(
dJi

dt
+ τ0

d2Ji

dt2
)δJjdV.

In order to obtain the last of the variational equations, we now introduce the
vector function N defined as follows

(3.15) C = −Ni,i.

Combining Eqs. (2.13), (2.36), (2.44) and (3.15), we obtain

d∗ij

(

d

dt
+ τ0 d

2

dt2

)

Ni + P,j = 0,(3.16)

−Ni,i = lijeij + wφ+ νψ + sθ + nP,(3.17)

where d∗ij is the inverse of the diffusion tensor dij .
Multiplying Eq. (3.16) by δNj and integrating over the region of the body,

we obtain

(3.18)
∫

V

[

d∗ij

(

dNi

dt
+ τ0d

2Ni

dt2

)

+ P,j

]

δNjdV = 0,
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Consider

(3.19)
∫

V

P,jδNjdV =

∫

V

(PδNj),jdV −
∫

V

PδNj,jdV.

We know that

(3.20)
∫

V

(PδNj),jdV =

∫

A

(PδNj)njdA.

Thus, Eq. (3.19) becomes

(3.21)
∫

V

P,jδNjdV =

∫

A

(PδNj)njdA−
∫

V

PδNj,jdV.

Making use of Eq. (3.21) in Eq. (3.18) yields

(3.22)
∫

A

(PδNj)njdA−
∫

V

PδNj,jdV +

∫

V

d∗ij

(

dNi

dt
+ τ0d

2Ni

dt2

)

δNjdV = 0.

Substituting the value of Ni,i from Eq. (3.17) in the above equation, we obtain
the third variational equation

(3.23)
∫

A

(PδNj)njdA+

∫

V

lijPδeijdV + w

∫

V

PδφdV

+ ν

∫

V

PδψdV + s

∫

V

PδθdV + δ(G+ F ) = 0,

where, the function of diffusion potential G is defined by

(3.24) G =
n

2

∫

V

P 2dV, δG = n

∫

V

PδPdV,

and the function of diffusion dissipation F is defined by

(3.25)

F =
1

2

∫

V

d∗ij

(

dNi

dt
+ τ0d

2Ni

dt2

)

NjdV,

δF =

∫

V

d∗ij

(

dNi

dt
+ τ0d

2Ni

dt2

)

δNjdV.
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Eliminating integrals
∫

V sijθδeijdV and
∫

V lijPδeijdV from Eqs. (3.3), (3.12),
(3.23) and using Eqs. (2.47) and (2.48), we obtain the variational principle in
the following form

(3.26) δ

[

W +R+X + Y + E +H +G+ F + L+K +M + Z

+s

∫

V

PθdV + β1

∫

V

φψdV

]

=

∫

V

[ρ(Fi − üi)δui + (ρg − k1φ̈)δφ+ (ρl − k2ψ̈)δψ]dV

+

∫

A

[fiδui +Ωδφ+ χδψ]dA−
∫

A

(θδJi)nidA−
∫

A

(PδNi)nidA.

where

L =

∫

V

gijφeijdV, K =

∫

V

hijψeijdV,

M =
d1

2

∫

V

φ2dV, Z =
f1

2

∫

V

ψ2dV.

On the right-hand side of the above equation, we find all the causes, the body
forces, inertial forces, the surface forces, the heating and the chemical potential
on the surface A bounding the body.

4. Uniqueness theorem

We assume that the virtual displacements δui, the virtual increment of the
temperature δθ, etc. correspond to the increments occurring in the body. Then

(4.1) δui =
∂ui

∂t
dt = u̇idt, δθ =

∂θ

∂t
dt = θ̇dt, etc.

and Eq. (3.26) reduces to the following relation

(4.2)
d

dt

[

W +R+X + Y + E +H +G+ F + L+K +M + Z

+s

∫

V

PθdV + β1

∫

V

φψdV

]

=

∫

V

[ρ(Fi − üi)u̇i + (ρg − k1φ̈)φ̇+ (ρl − k2ψ̈)ψ̇]dV

+

∫

A

[fiu̇i +Ωφ̇+ χψ̇]dA−
∫

A

(θJ̇i)nidA−
∫

A

(PṄi)nidA.
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Now

(4.3)
∫

V

ρüiu̇idV =
∂ℵ
∂t
,

where ℵ = 1
2

∫

V

ρu̇iu̇idV , is the kinetic energy of the body enclosed by the vol-

ume V . We also have

(4.4) E +G+ s

∫

V

PθdV =
1

2

∫

V

(zθ2 + nP 2 + 2sPθ)dV.

Using Eqs. (4.3) and (4.4) in Eq. (4.2), we obtain

(4.5)
d

dt

[

W +R+X + Y +H + ℵ + F + L+K +M + Z

+
1

2

∫

V

(zθ2 + nP 2 + 2sPθ)dV + β1

∫

V

φψdV

]

=

∫

V

[ρFiu̇i + (ρg − k1φ̈)φ̇+ (ρl − k2ψ̈)ψ̇]dV

+

∫

A

[fiu̇i +Ωφ̇+ χψ̇]dA−
∫

A

(θJ̇i)nidA−
∫

A

(PṄi)nidA.

Let

(4.6) G∗ =
k1

2

∫

V

φ̇2dV, H∗ =
k2

2

∫

V

ψ̇2dV,

so that
dG∗

dt
= k1

∫

V

φ̇φ̈dV,
dH∗

dt
= k2

∫

V

ψ̇ψ̈dV.

Also, we have

(4.7) M + Z + β1

∫

V

φψdV =
1

2

∫

V

[d1φ
2 + f1ψ

2 + 2β1φψ]dV.

With the help of above two equations, Eq. (4.5) becomes

(4.8)
d

dt

[

W +R+X + Y +H + ℵ + F + L+K +G∗ +H∗

+
1

2

∫

V

(zθ2 + nP 2 + 2sPθ)dV +
1

2

∫

V

(d1φ
2 + f1ψ

2 + 2β1φψ)dV

]
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=

∫

V

ρ[Fiu̇i + gφ̇+ lψ̇]dV +

∫

A

[fiu̇i +Ωφ̇+ χψ̇]dA

−
∫

A

(θJ̇i)nidA−
∫

A

(PṄi)nidA.

To prove the uniqueness theorem, following results need to be proved:

Theorem 1. If K∗
ij and d∗ij satisfy the symmetry relations

(4.9) K∗
ij = K∗

ji, d
∗
ij = d∗ji,

then

(4.10)
dH

dt
= T0

∫

V

K∗
ij J̇iJ̇jdV +

d

dt

[

T0τ0
2

∫

V

K∗
ij J̇iJ̇jdV

]

,

and

(4.11)
dF

dt
=

∫

V

d∗ijṄiṄjdV +
d

dt

[

τ0

2

∫

V

d∗ijṄiṄjdV

]

.

Proof. From Eqs. (3.14) and (4.1), we get

(4.12)
dH

dt
= T0

∫

V

K∗
ij

(

dJi

dt
+ τ0

d2Ji

dt2

)

dJj

dt
dV.

Now using Eq. (4.9)1,

(4.13)
d

dt
(K∗

ij J̇iJ̇j) = 2K∗
ij J̈iJ̇j .

Substituting last equation in Eq. (4.12), we arrive at Eq. (4.10). Similarly using
Eq. (4.9)2, Eq. (4.11) can be proved.

Theorem 2. If z, s, n and d1, f1, β1 are constants satisfying the inequalities

0 < s2 < zn,(4.14)

0 < β2
1 < d1f1(4.15)

respectively, then

(4.16) zθ2 + nP 2 + 2sPθ > 0,

and

(4.17) d1φ
2 + f1ψ

2 + 2β1φψ > 0.
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Proof. Proofs of this theorem are obvious because proofs of positive definite-
ness of second degree polynomials in θ and φ are obvious.

Using theorems 1 and 2, now we prove the uniqueness theorem

Theorem. There is only one solution of the problem of generalized thermoe-

lastic diffusion with double porosity, subject to the boundary conditions on the

surface A

fi = σijnj = fi1, φ = φ1, ψ = ψ1, θ = θ1, P = P1,

and the initial conditions at t = 0

ui = u0
i , u̇i = u̇0

i , φ = φ0, φ̇ = φ̇0, ψ̇ = ψ̇0, θ = θ0, θ̇ = θ̇0, P = P 0 and Ṗ = Ṗ 0,

where fi1, θ1, P1, u
0
i , u̇

0
i , φ

0, φ̇0, ψ0, ψ̇0, θ0, θ̇0, P 0 and Ṗ 0 are known functions.

We assume that the material parameters satisfy the inequalities

(4.18) T0 > 0, τ0 > 0, Ce > 0, ρ > 0, τ0 > 0, k1 > 0, k2 > 0,

the constitutive coefficients satisfy the symmetry relations

dijkl = dklij , sij = sji, lij = lji, gij = gji,

hij = hji, qij = qji, fij = fji, αij = αji, K∗
ij = K∗

ji, d∗ij = d∗ji,(4.19)

dijkl, K
∗
ij, d

∗
ij, qij, fij, gij, hij and αij are positive definite and 0 < s2 < zn,

0 < β2
1 < d1f1.

Proof. Let u(1)
i , φ1, ψ1, θ(1), P (1), . . . and u

(2)
i , φ2, ψ2, θ(2), P (2), . . . be two

solutions sets of Eqs. (2.7),(2.46) and (2.51)–(2.54). Let us take

(4.20)
ui = u

(1)
i − u

(2)
i , φ = φ(1) − φ(2), ψ = ψ(1) − ψ(2),

θ = θ(1) − θ(2), and P = P (1) − P (2).

The functions ui, φ, ψ, θ, and P satisfy the governing equations with zero
body forces, homogeneous initial and boundary conditions. Thus, these func-
tions satisfy an equation similar to the equation (4.8) with zero right hand side,
that is,

(4.21)
d

dt

[

W +R+X + Y +H + ℵ + F + L+K +G∗ +H∗

+
1

2

∫

V

(zθ2 + nP 2 + 2sPθ)dV +
1

2

∫

V

(d1φ
2 + f1ψ

2 + 2β1φψ)dV

]

= 0.
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Substituting Eqs. (4.10) and (4.11) in Eq. (4.21), we obtain

(4.22)
d

dt

[

W +R+X + Y + ℵ + L+K +G∗ +H∗ +
T0τ0

2

∫

V

K∗
ij J̇iJ̇jdV

+
τ0

2

∫

V

d∗ijṄiṄjdV +
1

2

∫

V

(zθ2 + nP 2 + 2sPθ)dV

+
1

2

∫

V

(d1φ
2 + f1ψ

2 + 2β1φψ)dV

]

+ T0

∫

V

K∗
ij J̇iJ̇jdV +

∫

V

d∗ijṄiṄjdV = 0.

Using the inequalities (4.18) and (4.19) in Eq. (4.22), we obtain

(4.23)
d

dt

[

W +R+X + Y + ℵ + L+K +G∗ +H∗ +
T0τ0

2

∫

V

K∗
ij J̇iJ̇jdV

+
τ0

2

∫

V

d∗ijṄiṄjdV +
1

2

∫

V

(zθ2+nP 2+2sPθ)dV +
1

2

∫

V

(d1φ
2+f1ψ

2+2β1φψ)dV

]

≤ 0.

Thus

(4.24) W +R+X + Y + ℵ + L+K +G∗ +H∗ +
T0τ0

2

∫

V

K∗
ij J̇iJ̇jdV

+
τ0

2

∫

V

d∗ijṄiṄjdV +
1

2

∫

V

(zθ2 +nP 2 +2sPθ)dV +
1

2

∫

V

(d1φ
2 +f1ψ

2 +2β1φψ)dV

is a decreasing function of time.
Since

0 < s2 < zn, 0 < β2
1 < d1f1,

therefore
∫

V

[zθ2 + nP 2 + 2sPθ]dV > 0,

∫

V

[d1φ
2 + f1ψ

2 + 2β1φψ]dV > 0.

Thus, the expression (4.24) vanishes for t = 0, due to the homogeneous initial
conditions, and it must be always non-positive for t > 0.

Using Eq. (4.19), it follows immediately that the expression (4.24) must be
identically zero for t > 0. We thus have

ui = φ = ψ = θ = P = eij = σij = 0.

This proves the uniqueness of the solution to the complete system of field
equations subjected to the displacement-temperature-chemical potential-pores-
fissures initial and boundary conditions.
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5. Reciprocity theorem

Let us consider a homogeneous anisotropic generalized thermoelastic diffusion
body with double porosity occupying the region V and bounded by the surface A.
We assume that the stresses σij and the strains eij are continuous together with
their first derivatives whereas the displacements ui, temperature θ, concentration
C, chemical potential P and volume fraction fields φ, ψ are continuous and have
continuous derivatives up to the second order, for x ǫ V +A, t > 0. We denote

q = Kijθ,jni, p = dijP,jni, ℘ = qijφ,jni,

~ = fijψ,jni, y = αijψ,jni, x = αijφ,jni.(5.1)

To the system of field equations, we must adjoin boundary conditions and initial
conditions. We consider the following boundary conditions:

ui(x, t) = Ui(x, t), φ(x, t) = Φ(x, t), ψ(x, t) = Ψ(x, t),

θ(x, t) = ̟(x, t), P (x, t) = ς(x, t),(5.2)

for all x ǫ A, t > 0; and the homogeneous initial conditions

ui(x, 0) = u̇i(x, 0) = 0, φ(x, 0) = φ̇(x, 0) = ψ(x, 0) = ψ̇(x, 0) = 0,

θ(x, 0) = θ̇(x, 0) = 0, P (x, 0) = Ṗ (x, 0) = 0,(5.3)

for all x ǫ V , t = 0.
We derive the dynamic reciprocity relationship for a generalized thermoelastic

diffusion bounded body V with double porosity, which satisfies Eqs. (2.7),(2.46)
and (2.51)-(2.54), the boundary conditions (5.2) and the homogeneous initial
conditions (5.3).

We define the Laplace transform as

(5.4) f̄(x, r) = £(f(x, t)) =

∞
∫

0

f(x, t)e−rtdt.

Applying the Laplace transform defined by Eq. (5.4) on Eqs. (2.7),(2.46) and
(2.51)–(2.54) and omitting the bars for simplicity, we obtain

σij,j + ρFi = ρr2ui,(5.5)

σij = dijklekl + gijφ+ hijψ − sijθ − lijP,(5.6)

−gijeij + qijφ,ij − d1φ+ αijψ,ij − β1ψ + κ1θ + wP + ρg = k1r
2φ,(5.7)

−hijeij + αijφ,ij − β1φ+ fijψ,ij − f1ψ + κ2θ + νP + ρl = k2r
2ψ,(5.8)

(r + τ0r
2)T0[sijeij + κ1φ+ κ2ψ + zθ + sP ] = Kijθ,ij ,(5.9)

(r + τ0r2)[lijeij + wφ+ νψ + sθ + nP ] = dijP,ij .(5.10)
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We now consider two problems where applied body forces, chemical potential,
the surface temperature and volume fraction fields are specified differently. Let
the variables involved in these two problems be distinguished by superscripts
in parentheses. Thus, we have u(1)

i , e(1)ij , σ(1)
ij , φ(1), ψ(1), θ(1), P (1), . . . for the

first problem and u(2)
i , e(2)ij , σ(2)

ij , φ(2),ψ(2), θ(2), P (2), . . . for the second problem.
Each set of variables satisfies Eqs. (2.7), (2.46) and (2.51)–(2.54).

Using the assumption σij = σji, we obtain

(5.11)
∫

V

σ
(1)
ij e

(2)
ij dV =

∫

V

σ
(1)
ij u

(2)
i,j dV =

∫

V

(σ
(1)
ij u

(2)
i ),jdV −

∫

V

σ
(1)
ij,ju

(2)
i dV.

Using the divergence theorem in the first term of the right hand side of
eq. (5.11) yields

(5.12)
∫

V

σ
(1)
ij e

(2)
ij dV =

∫

A

(σ
(1)
ij u

(2)
i )njdA−

∫

V

σ
(1)
ij,ju

(2)
i dV.

Equation (5.12) with the use of Eqs. (2.2) and (5.5) gives

(5.13)
∫

V

σ
(1)
ij e

(2)
ij dV =

∫

A

f
(1)
i u

(2)
i dA− ρ

∫

V

r2u
(1)
i u

(2)
i dV + ρ

∫

V

F
(1)
i u

(2)
i dV.

A similar expression is obtained for the integral
∫

V

σ
(2)
ij e

(1)
ij dV , from which together

with Eq. (5.13), it follows that

(5.14)
∫

V

[σ
(1)
ij e

(2)
ij − σ

(2)
ij e

(1)
ij ]dV

=

∫

A

[f
(1)
i u

(2)
i − f

(2)
i u

(1)
i ]dA+ ρ

∫

V

[F
(1)
i u

(2)
i − F

(2)
i u

(1)
i ]dV.

Now multiplying Eq. (5.6) by e
(2)
ij and e

(1)
ij for the first and second problems

respectively, subtracting and integrating over the region V , we obtain
∫

V

[σ
(1)
ij e

(2)
ij − σ

(2)
ij e

(1)
ij ]dV

=

∫

V

dijkl(e
(1)
kl e

(2)
ij − e

(2)
kl e

(1)
ij )dV +

∫

V

gij(φ
(1)e

(2)
ij − φ(2)e

(1)
ij )dV +

∫

V

hij(ψ
(1)e

(2)
ij

− ψ(2)e
(1)
ij )dV −

∫

V

sij(θ
(1)e

(2)
ij − θ(2)e

(1)
ij )dV −

∫

V

lij(P
(1)e

(2)
ij − P (2)e

(1)
ij )dV.
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Using the symmetry properties of dijkl, we obtain

(5.15)
∫

V

[σ
(1)
ij e

(2)
ij − σ

(2)
ij e

(1)
ij ]dV

=

∫

V

gij(φ
(1)e

(2)
ij − φ(2)e

(1)
ij )dV +

∫

V

hij(ψ
(1)e

(2)
ij − ψ(2)e

(1)
ij )dV

−
∫

V

sij(θ
(1)e

(2)
ij − θ(2)e

(1)
ij )dV −

∫

V

lij(P
(1)e

(2)
ij − P (2)e

(1)
ij )dV.

Equating Eqs. (5.14) and (5.15), we get the first part of the reciprocity theorem

(5.16)
∫

A

[f
(1)
i u

(2)
i − f

(2)
i u

(1)
i ]dA+ ρ

∫

V

[F
(1)
i u

(2)
i − F

(2)
i u

(1)
i ]dV

=

∫

V

gij(φ
(1)e

(2)
ij − φ(2)e

(1)
ij )dV +

∫

V

hij(ψ
(1)e

(2)
ij

− ψ(2)e
(1)
ij )dV −

∫

V

sij(θ
(1)e

(2)
ij − θ(2)e

(1)
ij )dV −

∫

V

lij(P
(1)e

(2)
ij − P (2)e

(1)
ij )dV.

To derive the second part, multiply Eq. (5.7) by φ(2) and φ(1) for the first and
second problems respectively, subtracting and integrating over V , we get

(5.17)
∫

V

qij [φ
(1)
,ij φ

(2) − φ
(2)
,ij φ

(1)]dV +

∫

V

αij [ψ
(1)
,ij φ

(2) − ψ
(2)
,ij φ

(1)]dV

−
∫

V

gij [e
(1)
ij φ

(2) − e
(2)
ij φ

(1)]dV − β1

∫

V

[ψ(1)φ(2) − ψ(2)φ(1)]dV

+κ1

∫

V

[θ(1)φ(2)−θ(2)φ(1)]dV +w

∫

V

[P (1)φ(2)−P (2)φ(1)]dV +ρg

∫

V

[φ(2)−φ(1)]dV = 0.

Now

(5.18) φ
(1)
,ij φ

(2) = (φ
(1)
,j φ

(2)),i − φ
(1)
,j φ

(2)
,i , φ

(2)
,ij φ

(1) = (φ
(2)
,j φ

(1)),i − φ
(2)
,j φ

(1)
,i ,

and

(5.19) ψ
(1)
,ij φ

(2) = (ψ
(1)
,j φ

(2)),i − ψ
(1)
,j φ

(2)
,i , ψ

(2)
,ij φ

(1) = (ψ
(2)
,j φ

(1)),i − ψ
(2)
,j φ

(1)
,i .
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Equation (5.17) with the help of equations (5.1), (5.2), (5.18), (5.19) and diver-
gence theorem gives

(5.20)
∫

A

[℘(1)Φ(2) − ℘(2)Φ(1)]dA+

∫

A

[y(1)Φ(2) − y(2)Φ(1)]dA

−
∫

V

gij [e
(1)
ij φ

(2) − e
(2)
ij φ

(1)]dV − β1

∫

V

[ψ(1)φ(2) − ψ(2)φ(1)]dV

+κ1

∫

V

[θ(1)φ(2)−θ(2)φ(1)]dV +w

∫

V

[P (1)φ(2)−P (2)φ(1)]dV +ρg

∫

V

[φ(2)−φ(1)]dV = 0.

For the derivation of the third part, multiply Eq. (5.8) by ψ(2) and ψ(1) for the
first and second problems respectively, subtracting and integrating over V , we
get

(5.21)
∫

V

αij [φ
(1)
,ij ψ

(2) − φ
(2)
,ij ψ

(1)]dV +

∫

V

fij [ψ
(1)
,ij ψ

(2) − ψ
(2)
,ij ψ

(1)]dV

−
∫

V

hij [e
(1)
ij ψ

(2) − e
(2)
ij ψ

(1)]dV − β1

∫

V

[φ(1)ψ(2) − φ(2)ψ(1)]dV

+κ2

∫

V

[θ(1)ψ(2)−θ(2)ψ(1)]dV +ν

∫

V

[P (1)ψ(2)−P (2)ψ(1)]dV +ρl

∫

V

[ψ(2)−ψ(1)]dV = 0.

Now

(5.22) ψ
(1)
,ij ψ

(2) = (ψ
(1)
,j ψ

(2)),i − ψ
(1)
,j ψ

(2)
,i , ψ

(2)
,ij ψ

(1) = (ψ
(2)
,j ψ

(1)),i − ψ
(2)
,j ψ

(1)
,i ,

and

(5.23) φ
(1)
,ij ψ

(2) = (φ
(1)
,j ψ

(2)),i − φ
(1)
,j ψ

(2)
,i , φ

(2)
,ij ψ

(1) = (φ
(2)
,j ψ

(1)),i − φ
(2)
,j ψ

(1)
,i .

Equation (5.21) with the aid of Eqs. (5.1), (5.2), (5.22), (5.23) and divergence
theorem gives

(5.24)
∫

A

[~(1)Ψ (2) − ~
(2)Ψ (1)]dA+

∫

A

[x(1)Ψ (2) − x(2)Ψ (1)]dA

−
∫

V

hij [e
(1)
ij ψ

(2) − e
(2)
ij ψ

(1)]dV − β1

∫

V

[φ(1)ψ(2) − φ(2)ψ(1)]dV

+κ2

∫

V

[θ(1)ψ(2)−θ(2)ψ(1)]dV +ν

∫

V

[P (1)ψ(2)−P (2)ψ(1)]dV +ρl

∫

V

[ψ(2)−ψ(1)]dV = 0,
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To derive the fourth part, multiplying Eq. (5.9) by θ(2) and θ(1) for the first and
second problems respectively, subtracting and integrating over V , we get

(5.25)
∫

V

Kij [θ
(1)
,ij θ

(2) − θ
(2)
,ij θ

(1)]dV

= (r + τ0r
2)T0[κ1

∫

V

[φ(1)θ(2) − φ(2)θ(1)]dV + κ2

∫

V

[ψ(1)θ(2) − ψ(2)θ(1)]

+

∫

V

sij [e
(1)
ij θ

(2) − e
(2)
ij θ

(1)]dV + s

∫

V

[P (1)θ(2) − P (2)θ(1)]dV ],

Now

θ
(1)
,ij θ

(2) = (θ
(1)
,j θ

(2)),i − θ
(1)
,j θ

(2)
,i , and

θ
(2)
,ij θ

(1) = (θ
(2)
,j θ

(1)),i − θ
(2)
,j θ

(1)
,i .(5.26)

Equation (5.25) with the help of Eqs. (5.1), (5.2), (5.26) and the divergence
theorem can be written as

(5.27)
∫

A

[q(1)̟(2) − q(2)̟(1)]dA

= (r + τ0r
2)T0[κ1

∫

V

[φ(1)θ(2) − φ(2)θ(1)]dV + κ2

∫

V

[ψ(1)θ(2) − ψ(2)θ(1)]

+

∫

V

sij [e
(1)
ij θ

(2) − e
(2)
ij θ

(1)]dV + s

∫

V

[P (1)θ(2) − P (2)θ(1)]dV ].

To derive the last part, multiplying Eq. (5.10) by P (2) and P (1) for the first and
second problems respectively, subtracting and integrating over V , we obtain

(5.28)
∫

V

dij [P
(1)
,ij P

(2) − P
(2)
,ij P

(1)]dV

= (r + τ0r2)[

∫

V

lij [e
(1)
ij P

(2) − e
(2)
ij P

(1)]dV + w

∫

V

[φ(1)P (2) − φ(2)P (1)]dV

+ ν

∫

V

[ψ(1)P (2) − ψ(2)P (1)]dV + s

∫

V

[θ(1)P (2) − θ(2)P (1)]dV ].

Consider

P
(1)
,ij P

(2) = (P
(1)
,j P (2)),i − P

(1)
,j P

(2)
,i , and

P
(2)
,ij P

(1) = (P
(2)
,j P (1)),i − P

(2)
,j P

(1)
,i .(5.29)
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Equation (5.28) with the aid of Eqs. (5.1), (5.2), (5.29) and the divergence the-
orem yields

(5.30)
∫

A

(p(1)ς(2) − p(2)ς(1))dA

= (r + τ0r2)[

∫

V

lij [e
(1)
ij P

(2) − e
(2)
ij P

(1)]dV + w

∫

V

[φ(1)P (2) − φ(2)P (1)]dV

+ ν

∫

V

[ψ(1)P (2) − ψ(2)P (1)]dV + s

∫

V

[θ(1)P (2) − θ(2)P (1)]dV ].

Eliminating the integrals
∫

V gij [e
(2)
ij φ

(1)−e(1)ij φ
(2)]dV ,

∫

V hij [e
(2)
ij ψ

(1)−e(1)ij ψ
(2)]dV ,

∫

V sij [e
(2)
ij θ

(1)−e(1)ij θ
(2)]dV ,

∫

V lij [e
(2)
ij P

(1)−e(1)ij P
(2)]dV , s

∫

V [P (2)θ(1)−P (1)θ(2)]dV ,

κ1

∫

V [φ(2)θ(1) − φ(1)θ(2)]dV and κ2

∫

V [ψ(2)θ(1) − ψ(1)θ(2)]dV from Eqs. (5.16),
(5.20), (5.24), (5.27) and (5.30), we obtain

(5.31) r(1 + τ0r)(1 + τ0r)T0

[
∫

A

[f
(1)
i u

(2)
i − f

(2)
i u

(1)
i ]dA

+ ρ

∫

V

[F
(1)
i u

(2)
i − F

(2)
i u

(1)
i ]dV + ρ

∫

V

[g(φ(2) − φ(1)) + l(ψ(2) − ψ(1))]dV

]

− (1 + τ0r)

∫

A

(q(1)̟(2) − q(2)̟(1))dA− (1 + τ0r)T0

∫

A

[p(1)ς(2) − p(2)ς(1)]dA

+ r(1 + τ0r)(1 + τ0r)T0[

∫

A

[(℘(1) + y(1))φ(2) − (℘(2) + y(2))φ(1)

+ (~(1) + x(1))ψ(2) − (~2) + x(2))ψ(1)]dA] = 0.

This is the general reciprocity theorem in the Laplace transform domain.
For applying the inverse Laplace transform on Eqs. (5.16), (5.20), (5.24),

(5.27), (5.30) and (5.31), we shall use the convolution theorem

(5.32) £
−1{F (r)G(r)} =

t
∫

0

f̃(t− υ)g̃(υ)dυ =

t
∫

0

g̃(t− υ)f̃(υ)dυ,

and the symbolic notations

F̂1(f̃) = 1 + τ0
∂f̃(x, υ)

∂υ
, F̂2 = 1 + τ0∂f̃(x, υ)

∂υ
,(5.33)

F̂3 = 1 + (τ0 + τ0)
∂f̃(x, υ)

∂υ
+ τ0τ

0∂
2f̃(x, υ)

∂υ2
.(5.34)
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Equations (5.16), (5.20), (5.24), (5.27) and (5.30) with the aid of Eq. (5.32) yield
the first, second, third, fourth and fifth parts of the reciprocity theorem in the
final form

(5.35)
∫

A

t
∫

0

f
(1)
i (x, t−υ)u(2)

i (x, υ)dυdA+ρ

∫

V

t
∫

0

F
(1)
i (x, t−υ)u(2)

i (x, υ)dυdV

−
∫

V

t
∫

0

gijφ
(1)(x, t−υ)e(2)ij (x, υ)dυdV −

∫

V

t
∫

0

hijψ
(1)(x, t−υ)e(2)ij (x, υ)dυdV

+

∫

V

t
∫

0

sijθ
(1)(x, t−υ)e(2)ij (x, υ)dυdV +

∫

V

t
∫

0

lijP
(1)(x, t−υ)e(2)ij (x, υ)dυdV = S12

21 ,

(5.36)
∫

A

t
∫

0

[℘(1)(x, t−υ)+y(1)(x, t−υ)]Φ(2)(x, υ)dυdA

+

∫

V

t
∫

0

gijφ
(1)(x, t−υ)e(2)ij (x, υ)dυdV +β1

∫

V

t
∫

0

φ(1)(x, t−υ)ψ(2)(x, υ)dυdV

−κ1

∫

V

t
∫

0

φ(1)(x, t−υ)θ(2)(x, υ)dυdV −w
∫

V

t
∫

0

φ(1)(x, t−υ)P (2)(x, υ)dυdV

−ρg
∫

V

φ(1)(x, t)dV = S12
21 ,

(5.37)
∫

A

t
∫

0

[~(1)(x, t−υ)+x(1)(x, t−υ)]Ψ (2)(x, υ)dυdA

+

∫

V

t
∫

0

hijψ
(1)(x, t−υ)e(2)ij (x, υ)dυdV +β1

∫

V

t
∫

0

ψ(1)(x, t−υ)φ(2)(x, υ)dυdV

−κ2

∫

V

t
∫

0

ψ(1)(x, t−υ)θ(2)(x, υ)dυdV −ν
∫

V

t
∫

0

ψ(1)(x, t−υ)P (2)(x, υ)dυdV

−ρl
∫

V

ψ(1)(x, t)dV = S12
21 ,
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(5.38)
∫

A

t
∫

0

q(1)(x, t−υ)̟(2)(x, υ)dυdA

+κ1T0

∫

V

t
∫

0

θ(1)(x, t−υ)∂F̂1(φ
(2))

∂υ
(x, υ)dυdV

+κ2T0

∫

V

t
∫

0

θ(1)(x, t−υ)∂F̂1(ψ
(2))

∂υ
(x, υ)dυdV

+T0

∫

V

t
∫

0

sijθ
(1)(x, t−υ)

∂F̂1(e
(2)
ij )

∂υ
(x, υ)dυdV

+sT0

∫

V

t
∫

0

θ(1)(x, t−υ)∂F̂1(P
(2))

∂υ
(x, υ)dυdV = S12

21 ,

(5.39)
∫

A

t
∫

0

p(1)(x, t−υ)ς(2)(x, υ)dυdA

+w

∫

V

t
∫

0

P (1)(x, t−υ)∂F̂2(φ
(2))

∂υ
(x, υ)dυdV

+ν

∫

V

t
∫

0

P (1)(x, t−υ)∂F̂2(ψ
(2))

∂υ
(x, υ)dυdV

+

∫

V

t
∫

0

lijP
(1)(x, t−υ)

∂F̂2(e
(2)
ij )

∂υ
(x, υ)dυdV

+s

∫

V

t
∫

0

P (1)(x, t−υ)∂F̂2(θ
(2))

∂υ
(x, υ)dυdV = S12

21 ,

Here S12
21 indicates the same expression as on the left-hand side except that the

superscripts (1) and (2) are interchanged.
Finally, Eq. (5.31) with the aid of Eq. (5.32) gives the general reciprocity

theorem in the final form

(5.40)
∫

A

t
∫

0

f
(1)
i (x, t− υ)

∂F̂3(u
(2)
i )

∂υ
(x, υ)dυdA

+ ρ

∫

V

t
∫

0

F
(1)
i (x, t− υ)

∂F̂3(u
(2)
i )

∂υ
(x, υ)dυdV
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− 1

T0

∫

A

t
∫

0

q(1)(x, t− υ)F̂2(̟
(2))(x, υ)dυdA

−
∫

A

t
∫

0

p(1)(x, t− υ)F̂1(ς
(2))(x, υ)dυdA

+

∫

A

t
∫

0

[℘(1)(x, t− υ) + y(1)(x, t− υ)]
∂F̂3(Φ

(2))

∂υ
(x, υ)dυdA

+

∫

A

t
∫

0

[~(1)(x, t− υ) + x(1)(x, t− υ)]
∂F̂3(Ψ

(2))

∂υ
(x, υ)dυdA

− ρg

∫

V

(

1 + τ0 ∂

∂t

)(

∂

∂t
+ τ0

∂2

∂t2

)

φ(1)(x, t)dV

− ρl

∫

V

(

1 + τ0 ∂

∂t

)(

∂

∂t
+ τ0

∂2

∂t2

)

ψ(1)(x, t)dV = S12
21 .

6. Conclusions

The following results are obtained in the current paper:
1) The linear theory of thermoelastic diffusion with double porosity has de-

rived without using Darcy’s law. This theory can be useful for finding funda-
mental solutions, studying the wave phenomenon etc.

2) The variational principle and uniqueness theorems have been proved on
the basis of Biot’s principle [36].

3) The reciprocity theorem has been derived with the help of Laplace and
inverse Laplace transforms.
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