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The closed-form representations of surface Green’s functions corresponding to
the action of a concentrated force applied at the boundary of a region occupied by
a particular class of compressible hyperelastic materials of harmonic type, has been
derived. In our analysis, we consider both a bounded region in the form of a circular
disk and an unbounded region with either an elliptical hole or a parabolic boundary.
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1. Introduction

Surface Green’s functions which arise from problems concerning the action
of a concentrated force on the boundary of a (bounded or unbounded) region
occupied by (isotropic or anisotropic) linearly elastic materials have been the sub-
ject of intense research in the literature (see, for example, [1–4]). In contrast, the
corresponding Green’s functions arising from analogous problems in hyperelastic
materials, appear rarely in the literature. We note, in particular, the contribu-
tions of [5–8] in which several Green’s functions have been obtained for small
deformations superimposed on finitely-strained nonlinear elastic materials. The
model describing the plane strain deformations of a particular class of compress-
ible hyperelastic materials (known as Harmonic Materials as first proposed by
John [9]) affords a particular advantage in that its complex variable formulation
(originally presented by Varley and Cumberbatch [10] and later developed
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by Ru [11]) is relatively straightforward allowing for the analysis of a range of
problems in this class of hyperelastic materials (see, for example, [12–19]).

In this paper, we apply Ru’s complex variable formulation [11] to derive
the surface Green’s functions corresponding to the plane strain deformations
of a region occupied by compressible hyperelastic materials of harmonic type
in which a concentrated force is applied to the boundary of the region. More
precisely, we derive surface Green’s functions in the case of: (i) a circular disk;
(ii) an unbounded region with parabolic boundary; (iii) an unbounded region
weakened by an elliptical hole. The corresponding Green’s functions are found
in a closed-form with the aid of analytic continuation and conformal mapping
techniques.

2. Complex variable formulation

The model of compressible hyperelastic materials of harmonic type was first
proposed by John [9]. In this section, we present the basic equations describing
the complex variable formulation developed by Ru [11].

Let the complex variable z = x1 + ix2 represent the initial coordinates of
a material particle in the undeformed configuration and w(z) = y1(z) + iy2(z)
the corresponding spatial coordinates in the deformed configuration. Define the
deformation gradient tensor by the Cartesian components

(2.1) Fij =
∂yi

∂xj
.

We consider a particular class of harmonic materials, whose strain energy
density W is given by

(2.2) W = 2µ[F (I) − J ], F ′(I) =
1

4α

[

I +
√

I2 − 16αβ
]

.

where µ is the shear modulus and 1/2 ≤ α < 1, β > 0 are two material constants,
and I and J are the scalar invariants of the tensor FF

T given by

(2.3) I = λ1 + λ2 =
√

FijFij + 2J, J = λ1λ2 = det[Fij ].

According to the formulation developed by Ru [11], the deformation w can
be written in terms of two analytic functions ϕ(z) and ψ(z) as

(2.4) iw(z) = αϕ(z) + iψ(z) +
βz

ϕ′(z)
,

and the complex Piola stress function χ is given by

(2.5) χ(z) = 2iµ

[

(α− 1)ϕ(z) + iψ(z) +
βz

ϕ′(z)

]

.
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In addition, the Piola stress components can be written in terms of the Piola
stress function χ as

(2.6) −σ21 + iσ11 = χ,2, σ22 − iσ12 = χ,1.

3. Surface Green’s functions

In this section, the complex variable formulation mentioned above is applied
to the derivation of surface Green’s functions in each of the cases of: (i) a circular
disk; (ii) an unbounded domain with parabolic boundary; (iii) an unbounded
domain with elliptical hole.

3.1. A circular disk

We first consider a circular disk of radius R with its center at the ori-
gin (Fig. 1). Two equal and opposite vertical forces P are applied at z = z0
(0 ≤ Im{z0} ≤ R) and z = z̄0 on the surface of the disk.

P

P

x
1

x
2

z
0

z
0

R

Fig. 1. A circular disk of radius R with two equal and opposite vertical forces P being
applied at z = z0 and z = z̄0 on its surface.

Using analytic continuation, the otherwise traction-free boundary condition
on |z| = R can be expressed as

(3.1) (α− 1)ϕ+(z) + iψ̄−(R2/z) +
βz

ϕ̄′
−

(R2/z)
= 0, |z| = R.
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The solution to the above is found using the generalized Liouville’s theorem
as

(3.2)

ϕ(z) =
P

4πµ(α−1)
ln
z−z0
z−z̄0

− βz

ϕ′(0)(α−1)
,

ψ(z) = − iP

4πµ
ln
z−z0
z−z̄0

+
βR2P Im{z0}[z−2 Re{z0}]

ϕ′(0){−iPz Im{z0}[z−2 Re{z0}]+2πµR2(α−1)ϕ′(0)(z−z0)(z−z̄0)}
,

for |z| ≤ R.
The consistency condition for ϕ′(0) will yield the following non-linear equa-

tion for ϕ′(0)

(3.3) (α− 1)ϕ′(0) +
β

ϕ′(0)
=

iP Im{z0}
2πµR2

,

the solution of which is given by

(3.4) ϕ′(0) =
iP Im{z0}

4πµR2(α− 1)
± i

√

(

P Im{z0}
4πµR2(1 − α)

)2

+
β

1 − α
.

In order to ensure that ϕ′(z) 6= 0 for |z| ≤ R [8], the following inequality
should be satisfied

(3.5)

∣

∣

∣

∣

Re{z0} ±

√

(Re{z0})2 −R2 +
iPϕ′(0) Im{z0}

2πµβ

∣

∣

∣

∣

> R.

3.2. A parabolic boundary

Next, as shown in Fig. 2, we consider a harmonic material that occupies the
region

(3.6) x2 ≤ bx2
1, b > 0,

the boundary of which is a parabola described by

(3.7) x2 = bx2
1.

A concentrated force is applied at z = x0
1 + ix0

2 on the parabola. Let X
and Y be the force components in the x1 and x2 directions, respectively. The
parabola reduces to a plane boundary when b = 0 and to a semi-infinite crack
when b→ ∞. We introduce the following conformal mapping function

(3.8) z = ω(ξ) = ξ + ibξ2, ξ = ω−1(z) =

√
1 + 4ibz − 1

2ib
, Im{ξ} ≤ 0.
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Fig. 2. A region with parabolic boundary.

Using this mapping function, the region occupied by the harmonic material in
the z-plane is mapped onto the region Im{ξ} ≤ 0 in the ξ-plane and the parabola
in the z-plane is mapped onto Im{ξ} = 0 in the ξ-plane. Applying analytic
continuation, the otherwise traction-free boundary condition on Im{ξ} = 0 can
be expressed as

(3.9) (α− 1)ϕ−(ξ) + iψ̄+(ξ) +
βω̄′(ξ)ω(ξ)

ϕ̄′
+
(ξ)

= 0, Im{ξ} = 0,

where ϕ(ξ) = ϕ(ω(ξ)) and ψ(ξ) = ψ(ω(ξ)).
The generalized Liouville’s theorem now leads to the solution:

(3.10)

ϕ(ξ) =
Y − iX

4πµ(1 − α)
ln(ξ − x0

1) +A(ξ + ibξ2),

ψ(ξ) =
−X + iY

4πµ
ln(ξ − x0

1)

+
Ā(1 − α)(X + iY )(ξ − ibξ2)

Y − iX + 4πµA(1 − α)(2ibξ + 1)(ξ − x0
1)
, Im{ξ} ≤ 0,

where |A| =
√

β/(1 − α) and the phase angle of A is arbitrary.
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In order to ensure that ϕ′(ξ) 6= 0 for Im {ξ} ≤ 0, the following inequality
should be satisfied

(3.11) 1 ± Re

{

√

(2ibx0
1 + 1)2 − 2b(X + iY )

πµA(1 − α)

}

> 0.

When b = 0, the solution in Eq. (3.10) reduces to that found in Wang et al.
[14] for a concentrated force acting on the surface of a half-plane (the present
authors note a sign error in Eq. (25) in [14]).

3.3. An elliptical hole

Finally, as shown in Fig. 3, we consider a harmonic material that occupies a
region

(3.12)
x2

1

a2
+
x2

2

b2
≥ 1, a ≥ b ≥ 0,

the boundary of which is an ellipse described by

(3.13)
x2

1

a2
+
x2

2

b2
= 1.

A concentrated force is applied at z = z0 on the ellipse. Let X and Y be
the force components in the x1 and x2 directions, respectively. In this case, we

x
1

x
2

z
0

(X, Y)

Fig. 3. An unbounded region weakened by an elliptical hole.
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introduce the following conformal mapping function

(3.14)

z = ω(ξ) = R(ξ +mξ−1),

ξ = ω−1(z) =
z

2R

[

1 +

√

1 − 4mR2

z2

]

, |ξ| ≥ 1,

where

(3.15) R =
a+ b

2
, m =

a− b

a+ b
.

Using this mapping function, the region occupied by the harmonic material
in the z-plane is mapped onto |ξ| ≥ 1 in the ξ-plane; the elliptical boundary
in the z-plane is mapped onto |ξ| = 1, in the ξ-plane and the point z = z0
is mapped to the point ξ = ξ0 = ω−1(z0). Using analytic continuation, the
otherwise traction-free boundary condition on |ξ| = 1 can be expressed as

(3.16) (α− 1)ϕ−(ξ) + iψ̄+(1/ξ) +
βω̄′(1/ξ)ω(ξ)

ϕ̄′
+
(1/ξ)

= 0, |ξ| = 1,

where ϕ(ξ) = ϕ(ω(ξ)) and ψ(ξ) = ψ(ω(ξ)) as in Sec. 3.2.
Once again, the generalized Liouville’s theorem is applied leading eventually

to the solution

(3.17)

ϕ(ξ) =
Y −iX

4πµ(1−α)
ln(ξ−ξ0)−

α(Y −iX)

4πµ(1−α)
ln ξ+ARξ+

βmR

Ā(1−α)
ξ−1,

ψ(ξ) =
−X+iY

4πµ
ln(ξ−ξ0)+

(α−1)(−X+iY )

4πµ
ln ξ−iĀR(α−1)ξ−1

+

βmR(X+iY )
4πµA(1−α)

ξ0
ξ−ξ0

+ βmR(X+iY )
4πµA +iβR2(mξ−3−ξ−1)

Y −iX
4πµ(1−α)

1
ξ−ξ0

− α(Y −iX)
4πµ(1−α)ξ

−1− βmR
Ā(1−α)

ξ−2+AR
, |ξ| ≥ 1,

where |A| =
√

β/(1 − α) and the phase angle of A can be arbitrary.
From Eq. (3.17) we see that

(3.18)

ϕ(ξ) ∼= Y − iX

4πµ
ln ξ +ARξ +O(1),

ψ(ξ) ∼= α(−X + iY )

4πµ
ln ξ +O(1), as |ξ| → ∞,

as expected. It is relatively straightforward to check that the displacement w−z
is single-valued for a contour C surrounding the elliptical hole and that

(3.19)

∫

C

(dχ1 + idχ2) = Y − iX,

with C taken in the counterclockwise direction.
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In order to ensure that ϕ′(ξ) 6= 0 for |ξ| ≥ 1, all three roots of the following
cubic equation in ξ should lie within the unit circle

(3.20) ξ3 +

(

Y − iX

4πµAR
− ξ0

)

ξ2 −
[

m+
ξ0α(Y − iX)

4πµAR(α− 1)

]

ξ + ξ0m = 0.

4. Conclusions

Using complex variable techniques, we derive closed-form representations of
the surface Green’s functions for the following regions occupied by a particular
class of hyperelastic materials of harmonic type: (i) a circular disk; (ii) an un-
bounded region with a parabolic boundary; (iii) an unbounded region weakened
by an elliptical hole. It is expected that our method can be applied successfully
with changes only in detail, to the derivation of surface Green’s functions in the
case of an arbitrary-shaped hole in a region occupied by harmonic materials.
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