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The major novelty of the article is an application of a two-variable refined
hyperbolic shear deformation theory based on studying the bending behavior of func-
tionally graded material (FGM) plates with simply-supported edges. The influence of
variating material characteristics and volume fraction of the constituent on bending
behavior of the FG plate is examined. The advantage of this theory over other con-
tributions is that a number of functional variables is reduced. All presented problems
that have been solved previously, but have not studied the effect on changing plate
characteristics, material composition are reinvented.
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1. Introduction

Advanced materials have been extensively applied in high performance
industrial applications since many years. Among composite materials, function-
ally graded materials (FGMs) obtained considerable attention for their superior
features such as resistance to high temperature environments (better thermal
resistance), high wear resistance, among others.

Classical laminated plates suffer from discontinuity of material properties
at layer interfaces and constituents of the composite. So, the stresses originate
interface issues especially at higher temperature in thermal environments. Such
issues can be reduced by the gradually varying volume fraction of the constituent
and tailor material for desired applications. At this stage, the graduation of
ceramic-metal materials can be varied from one material to the other and so
thermal resistance of a constituent is increased due to low thermal conductivity
of ceramic. It is interesting to eliminate the low toughness problem of a ceramic
material by including a metal material in the constituent.

A vast range of outputs on the linear analysis of FG plates with various theo-
ries has been reported by many investigators [1–8]. In such investigations, various
plate theories such as classical plate theory (CPT) or higher-order shear defor-
mation plate theory (HPT) are adopted. However, the number of investigators
that deal with the nonlinear behaviors of FG plates under transverse mechanical
loadings is limited. As an example, Poincare’s method is applied by Chi and
Chung [9, 10] to present the thermally induced large transverse displacement of
an FGM thin plate with variable Young’s moduli and simply-supported edges.
Also, Mizuguchi and Ohnabe [11] have used a collection of micromechani-
cal and structural processes to discuss the buckling response of FG plates under
transverse compressive loadings. Bouazza et al. [12] have presented the buckling
response of FG plates under uniform and linear temperature variations through
the thickness with simply-supported edges via the first-order plate theory (FPT).
They have discussed stability and compatibility equations according to the von
Karman type through their investigation and have observed that transverse shear
strains have major effects on critical thermal buckling of the FGM plate. This ef-
fect may be obvious for thicker plates or those of larger aspect ratios. Bouazza

et al. [13] have presented the thermal buckling response of simply-supported
FG plates via CPT. They supposed inhomogeneous mechanical properties of
plates, graded through thickness, according to two types of graduation, namely,
power-law and sigmoid FGMs. This plate is considered to have an unchanged
temperature rise. A comprehensive study based on the finite element method
as well as FPT has been presented by Praveen and Reddy [14] to investi-
gate nonlinear behaviors of FG plates subjected to simultaneous thermal and
mechanical loads. Pitakthapanaphong and Busso [15] have investigated the
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self-consistent elastoplastic stress solutions for FGM structures under thermal
transients.

A three-dimensional (3D) analysis for FG plates, under transverse mechanical
loadings has been presented by Kashtalyan [16]. Also, Kashtalyan and Men-

shykova [17] have used an extension of this solution to deal with the sandwich
panel with a FG core. Zenkour [18] has discussed the static behavior of a FG
rectangular plate under a transverse mechanical loading with simply-supported
edges. He has used a generalized higher-order theory that omits the transverse
normal strain. Zenkour [19] has compared the benchmark trigonometric and
3-D elasticity solutions for an exponentially graded thick rectangular plate. He
[20] also has presented a simplified theory for hygrothermal response of angle-ply
composite plates. Batra and Jin [21] have discussed the FGM plates by chang-
ing fiber orientation across the plate thickness. The vibration analysis is discussed
based on FEM. The FPT, along with various boundary conditions, has been
adopted. Qian et al. [22] have studied static deformations and different types of
vibration behavior of a thicker FGM plate using HPT that included a normal
effect. They have used the meshless local Petrov–Galerkin method to compute
effective material moduli by using Mori–Tanaka homogenization technique [23].
Ramirez et al. [24] have discussed static behavior of FGM plates. A solution
has been derived according to Ritz’s method by applying a discrete layer theory.

The present RPT has only two undetermined variables and it has been pro-
posed by Shimpi [25] for isotropic plates. After that, it has been extended by
Shimpi and Patel [26, 27] to deal with the orthotropic plates. The advantages
of RPT is that it gives governing equations and constitutive relations in a simi-
lar way as in the CPT. It gives results with high accuracy comparing with FPT
without including a shear correction factor. Moreover, it compared well with
most HPTs and gives accurate and efficient solutions. In this work, the bend-
ing response of an FGM plate with simply-supported edges under a transverse
sinusoidal load is presented via Navier’s method. Young’s modulus of the FGM
plate is supposed to vary continuously across the plate thickness according to
various power-law functions. The problem has been solved by using the RPT.
The obtained results are validated through a comparison with the corresponding
ones in the literature.

2. Analysis of FG plate

2.1. Material graduation

Let us consider an FGM rectangular (a×b) plate with uniform thickness h (see
Fig. 1). The proposed FG plate is fabricated of a mixture of metal and ceramic
materials. The material composition is varying smoothly along the thickness
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Fig. 1. Typical FGM rectangular plate.

direction only. So, the modulus of elasticity E can be represented by

(2.1) E(z) = EcVc + EmVm, z ∈
[

−h
2
,
h

2

]

,

where Ec and Em are Young’s moduli of ceramic and metal, Vc and Vm are their
volume fractions defined as

(2.2) Vc + Vm = 1.

The above equations give dimensionless effective Young’s modulus in a suitable
form

(2.3) Ē(z) =

(

Ec

Em
− 1

)

Vc(z) + 1,

where Ē(z) = E(z/Em. Here, we suppose that Vc follows the following various
simple-power laws [15, 28]:
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2.2. Basic assumptions

The theory used here is adopted according to the following assumptions:
(i) The displacement components are small comparing with the plate thick-

ness and, therefore, strains involved are infinitesimal.
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(ii) The transverse normal stress σz is small comparing with in-plane longi-
tudinal and normal stresses σx and σy and maybe neglected.

(iii) The transverse displacement u3 may be divided into two components.
The first one represents the bending wb and the other represents the shear ws.
Both wα, (α = b, s) are functions of the coordinates x and y

(2.5) u3(x, y, z) = wb(x, y) + ws(x, y).

(iv) Both in-plane displacement components u1 and u2are divided into three
parts: extension, bending, and shear. That is

(2.6) u1 = u+ ub + us, u2 = v + vb + vs.

The bending parts ub and vb are supposed to be similar, respectively, to the
corresponding parts given in CPT. So, the two expressions are written as

(2.7a) ub = −z ∂wb

∂x
, vb = −z ∂wb

∂y
.

Also, the shear displacements us and vs give rise, in conjunction with ws,
to the hyperbolic variations of the transverse shear strains γxz, γyz and so to
the shear stresses τxz, τyz through the plate thickness in such a way that τxz,
τyz are vanished at the lateral faces of the plate. So, these expressions can be
represented as

(2.7b) us = −f(z)
∂ws

∂x
, vs = −f(z)

∂ws

∂y
,

where

(2.7c) f(z) =
2z sinh

(

z2

h2

)

2 sinh
(

1
4

)

+ cosh
(

1
4

) .

Based on the above assumptions, the displacements of the present RPT can be
written according to Eqs. (2.5)–(2.7) as

(2.8)

u1(x, y, z) = u(x, y) − z
∂wb

∂x
− f(z)

∂ws

∂x
,

u2(x, y, z) = v(x, y) − z
∂wb

∂y
− f(z)

∂ws

∂y
,

u3(x, y, z) = wb(x, y) + ws(x, y).

It is interesting to see that unlike FPT, the present RPT does not involve
any shear correction factors. The strain-displacement formulae can be defined
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by

(2.9)
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where

(2.10)
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The generalized Hooke’s law of an FGM plate gives the following relations

(2.11)
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where

(2.12) Q11 = Q22 =
E(z)

1 − ν2
, Q12 = νQ11, Q44 = Q55 = Q66 =

E(z)

2(1 + ν)
.

2.3. Equilibrium equations

The differential equilibrium equations is derived due to the principle of virtual
displacements. It yields

(2.13)

∫∫

Ω

{

h/2
∫

−h/2

[σxδεx+σyδεy+τyzδγyz+τxzδγxz+τxyδγxy] dz−qδu3

}

dΩ = 0.

The substitution of Eqs. (2.8), (2.9) and (2.11) into Eq. (2.13) and making inte-
gration across plate thickness gives

(2.14)

∫∫

Ω
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0
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in which (NxNyNxy) represent in-plane force resultants, (Mα
x ,M

α
y ,M

α
xy), (α =

a, b) represent the moment resultants and (Qs
x, Q

s
y) denote the transverse shear

stress resultants. All of these resultants are expressed as

(2.15)
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Also, the substitution of Eq. (2.11) into Eq. (2.15) and making integration across
plate thickness gives stress resultants in the form
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in which the plate stiffnessAij , Bij , . . . etc. are given by

(2.17)

{Aij , Bij , Dij , B
s
ij , D

s
ij , H

s
ij} =

h/2
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Qll[g(z)]
2 dz, l = 4, 5.

So, the equilibrium equations may be obtained from Eq. (2.14) after integrating
displacement gradients by parts and setting coefficients of δu, δv, δwb and δws

to zero individually. So, one obtains

(2.18)
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Equations (2.18) may be presented in terms of the variables u, v, wb and ws

after using different forms of stress resultants from Eq. (2.16). For the present
FGM plate, Eqs. (2.18) take the form
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2.4. Boundary conditions

For this problem of a simply-supported FG plate we have the following con-
ditions at the plate boundaries:

(2.20)
v = wb = ws =

∂wb

∂y
=
∂ws

∂y
= Nx = M b

x = M s
x = 0 at x = 0, a,

u = wb = ws =
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=
∂ws

∂x
= Ny = M b

y = M s
y = 0 at y = 0, b.

2.5. Closed-form solution

The present FG rectangular plate has simply-supported edges and its bound-
ary conditions that appeared in Eq. (2.20) can be satisfied by the following
expansions:
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where λ = mπ/a and µ = nπ/b and Umn, Vmn, Wbmn and Wsmn are arbitrary
parameters. The applied transverse load q is also expanded in the double-Fourier
series as

(2.22) q =
∞

∑

m=1

∞
∑

n=1

Qmn sin(λx) sin(µy).

The substitution of Eqs. (2.21) and (2.22) into Eqs. (2.19) shows that Navier’s
solution of FG plates can be determined from equations
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,
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where

(2.24)

s11 = A11λ
2 +A66µ

2, s12 = λµ(A12 +A66),

s13 = −λ[B11λ
2 + (B12 + 2B66)µ

2],

s14 = −λ[Bs
11λ

2 + (Bs
12 + 2Bs

66)µ
2],

s22 = A66λ
2 +A22µ

2,

s23 = −µ[(B12 + 2B66)λ
2 +B22µ

2],

s24 = −µ[(Bs
12 + 2Bs

66)λ
2 +Bs

22µ
2],

s33 = D11λ
4 + 2(D12 + 2D66)λ

2µ2 +D22µ
4,

s34 = Ds
11λ

4 + 2(Ds
12 + 2Ds

66)λ
2µ2 +Ds

22µ
4,

s34 = Hs
11λ

4 + 2(Hs
12 + 2Hs

66)λ
2µ2 +Hs

22µ
4 +As

55λ
2 +As

44µ
2.

3. Numerical results

The proposed mathematical model and solution methodology are used to
help a generalized computer program to deal with the bending response of FG
plates. Some numerical examples are solved to perform the bending response
of the FG plates under transverse sinusoidal load with intensity q0 at the plate
center using the two-variable refined hyperbolic plate theory (RPT).

The dimensionless deflection and stresses are expressed as

(3.1)

w̄ =
10h3Ec

a3q0
u3

(

a

2
,
b

2

)

, w̄b =
10h3Ec

a3q0
wb

(

a

2
,
b

2

)

,

w̄s =
10h3Ec

a3q0
ws

(

a

2
,
b

2

)

,

σ̄x =
h

aq0
σx

(

a

2
,
b

2

)

, σ̄y =
h

aq0
σy

(

a

2
,
b

2

)

,

τ̄yz =
h

aq0
τyz

(

a

2
, 0

)

, τ̄xz =
h

aq0
τxz

(

0,
b

2

)

, τ̄xy =
h

aq0
τxy(0, 0).

3.1. Validation example

The values obtained for the center deflections using the present two-variable
RPT are normalized by dividing the center deflection by that of the classical val-
ues. These deflections are reported in Table 1 along with the result of Mindlin’s,
Reddy’s, and Leung’s theories [29]. The present results are compared with those
of Mindlin’s FPT, Reddy’s HPT, and Leung’s unconstrained HPT for various h/a
and b/a ratios. The shear correction factor for Mindlin’s FPT is only adopted
as k = 1, 0.82, 0.83 and 0.84. Table 1 shows that the present solution gives
deflections that agree very well with other solutions.
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Table 1. Ratios of mid-span deflections with respect to classical theory (ν = 0.2).

b/a h/a
Mindlin’s theory [29] Reddy’s

theory [29]

Leung’s

theory [29]

Present

theoryk = 1 k = 5/6

1 0.05
0.10
0.15
0.20
0.25

1.01225
1.04899
1.11022
1.19594
1.30616

1.01475
1.05902
1.13279
1.23607
1.36887

1.01468
1.05860
1.13142
1.23273
1.36203

1.01468
1.05864
1.13167
1.23352
1.36389

1.0154
1.0621
1.1418
1.2574
1.4135

4 0.05
0.10
0.15
0.20
0.25

1.00682
1.02727
1.06135
1.10907
1.17042

1.00821
1.03285
1.07392
1.13141
1.20533

1.00818
1.03267
1.07339
1.13020
1.20293

1.00818
1.03268
1.07344
1.13037
1.20337

1.0082
1.0328
1.0744
1.1337
1.2120

Table 2. Displacement and stresses at particular positions of FG plates under

bi-sinusoidal load.

n Theories w̄(0) σ̄y(h/3) τ̄xy(−h/3) τ̄yz(h/6)

1 Generalized TSDT [18]
RMVT-based TSDT [30]
RMVT-based collocation [31]
RMVT-based Galerkin [31]
HSDT [32]
Present

0.5889
0.5890
0.5876
0.5876
0.5880
0.5890

1.4894
1.4898
1.5062
1.5061
1.4888
1.4899

0.6110
0.6111
0.6112
0.6112
0.6109
0.6111

0.2622
0.2506
0.2509
0.2511
0.2566
0.2603

2 Generalized TSDT [18]
RMVT-based TSDT [30]
RMVT-based collocation [31]
RMVT-based Galerkin [31]
HSDT [32]
Present

0.7573
0.7573
0.7572
0.7571
0.7564
0.7573

1.3954
1.3960
1.4129
1.4133
1.3940
1.3962

0.5441
0.5442
0.5437
0.5436
0.5438
0.5442

0.2763
0.2491
0.2495
0.2495
0.2741
0.2730

4 Generalized TSDT [18]
RMVT-based TSDT [30]
RMVT-based collocation [31]
RMVT-based Galerkin [31]
HSDT [32]
Present

0.8819
0.8815
0.8826
0.8823
0.8814
0.8814

1.1783
1.1794
1.1935
1.1941
1.1755
1.1796

0.5667
0.5669
0.5674
0.5671
0.5662
0.5670

0.2580
0.2360
0.2360
0.2362
0.2623
0.2528

8 Generalized TSDT [18]
RMVT-based TSDT [30]
RMVT-based collocation [31]
RMVT-based Galerkin [31]
HSDT [32]
Present

0.9750
0.9747
0.9727
0.9739
0.9737
0.9745

0.9466
0.9477
0.9568
0.9622
0.9431
0.9479

0.5856
0.5858
0.5886
0.5883
0.5850
0.5859

0.2121
0.2263
0.2251
0.2261
0.2140
0.2081

Also, Table 2 shows the present refined hyperbolic shear deformation theory
results of the displacement and stresses components at the specified positions of
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the FG plates with the volume fraction function expressed as Vc(z) = (z/h +
1/2)n in which n = 1, 2, 4 and 8 and a/h = 10. The results are compared
with the work of aforementioned authors [3–32], and it can be concluded that,
in general, the results are in good agreement with all the theories compared in
this section, particularly with the results provided by Zenkour [18] using the
generalized shear deformation theory.

Fig. 2. Variation of non-dimensional central deflection w̌ with power-law index n for a
square plate under sinusoidal load.

The non-dimensional central deflection w̌ = 102Ech3

qa4 w
(

a
2 ,

b
2 , 0

)

as a function

of the power-law index n and for sidetothickness ratio a/h = 10 under sinu-
soidal and distributed loads is given in Fig. 2. The static analysis is conducted
using Aluminum (bottom, Al) and Zirconia (top, ZrO2). The following mate-
rial properties are used for computing the numerical results: Ec = 151 GPa,
Em = 70 GPa, ν = 0.3. The obtained results are compared with those predicted
by CPT, FSDT and TSDT provided by Reddy [33]. It can be seen that the
results of the present theory as well as FST and TSDT are almost identical, and
the CPT underestimates the deflection of a plate.

3.2. Bending analysis of FG plates

In this example, the FG rectangular plate is considered to illustrate the pro-
posed method. The combination of materials consists of aluminum and alumina.
Young’s moduli for both alumina (Al2O3) and aluminum (Al) are given, respec-
tively, by Ec = 380 GPa and Em = 70 GPa. For both materials, Poisson’s ratio
is chosen to be fixed as ν = 0.3.
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Fig. 3. Variation of the dimensionless Young’s modulus (E(z)/Ec) in the thickness direction
of the FGM plate.

Firstly, variations of dimensionless Young’s modulus Ē(z) across the FG plate
thickness with linear, quadratic, cubic, and inverse quadratic volume fraction
functions are illustrated in Fig. 3 Also, the variations of center deflection w̄ of
aluminum-alumina FGM plates under sinusoidal loading for various geometric
parameters and the volume fraction Vc following simple power laws are illustrated
in Figs. 4 and 5. The two cases of isotropic alumina and aluminum correspond to
the fully ceramic plate and fully metallic plate, respectively. However, the other
cases of FGM plates are summarized as linear, quadratic, cubic, and inverse
quadratic. In Figs. 4 and 5, it is obvious that the variation of center deflection w̄
of FG plates is greater than that of the fully ceramic plate (Al2O3) but smaller
than that of the fully metal plate (Al). The variation of the center deflection
w̄ obtained from the compositional profile is quadratic, greater than linear, cu-
bical and inverse quadratic cases. However, it is clear that the deflections of
the inverse quadratic case are smaller than those of the linear and cubic cases,
whereas, the deflections of the linear case are smaller than the deflections of the
cubic case. Furthermore, a corresponding to the fully ceramic coincides with the
compositional profile of FGM plates for the largest value of a/b. In all material
cases, the variation of w̄ decreases when the geometric parameters a/b and a/h
increase.

An analysis of the square homogeneous and the FG plates various functions
of the volume fraction, with span-to-thickness ratio a/h = 10 on stress distribu-
tions through-the-thickness is investigated in Figs. 6–9. As exhibited in Fig. 6, it
is found that the longitudinal stress σ̄x corresponding to the quadratic compo-
sitional profile gains the maximum compressive value at a ceramic (top) surface
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Fig. 4. Non-dimensional center deflection change (w̄) for the metal, ceramic and FGM plates
versus the aspect ratio (a/b) with all compositional profiles.

Fig. 5. Non-dimensional the center deflection change (w̄) for the metal, ceramic and FGM
plates versus side-to-thickness ratio (a/h) with all compositional profiles.

while the maximum tensile stress is derived for a metallic plate at the bottom
surface. However, Fig. 7 shows variation of the in-plane tangential stress τ̄xy

through-the-plate thickness. The stress distribution in aluminum and alumina
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Fig. 6. Variation of in-plane longitudinal stress (σ̄x) through the thickness of an FGM plate
with all compositional profiles.

Fig. 7. Variation of transverse shear stress (τ̄xy) through the thickness of an FGM plate
with all compositional profiles.

plates is linear; whereas, for FGM, the response is nonlinear and it is governed
by variation of properties in the thickness direction. Figure 8 shows variation of
the transverse shear stress τ̄xz across the thickness of the square homogeneous
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Fig. 8. Variation of transverse shear stress (τ̄xz) through the thickness of an FGM plate
with all compositional profiles.

Fig. 9. Variation of transverse shear stress (τ̄yz) through the thickness of an FGM plate
with all compositional profiles.

and FG plates, with linear, quadratic, cubic, and inverse quadratic profiles re-
spectively. Figure 9 shows variation of the transverse shear stress τ̄yz across the
thickness of the square homogeneous and FGM plates, with the various volume
fraction of constituent materials Fig. 8 and 9 allow themselves to underline their
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great influence on transverse shear stresses across the plate thickness. Looking
at stresses in Figs. 6–9, we see that the curves for aluminum and alumina co-
incide. It is also seen that these figures agree well with the results reported in
Nguyen–Xuan et al. [34].

Fig. 10. The effect of material anisotropy on the dimensionless maximum deflection (w̄) of
an FGM plate with all compositional profiles

A comparison of center deflections w̄ of the FG square plate is made in Fig. 10
for various moduli ratios Em/Ec (a/h = 10). It is clear that with the increasing
of the modulus ratio Em/Ec from 0.05 to 0.5, the deflections w̄ decrease steadily.
However, it is observed that deflections of the quadratic case are greater than
those of cubic, linear, and inverse quadratic cases; whereas, deflections of the
inverse quadratic case are lower than those of cubic and linear cases.

Finally, the non-dimensional bending and shear components of vertical dis-
placement versus the aspect ratio a/b and the ratio of moduli Em/Ec of the
plate are plotted in Figs. 11–14. All the displacements decrease with increas-
ing the ratios a/b and Em/Ec. It is found that the non-dimensional bending w̄b

and shear w̄s components of vertical displacement of FG plates is higher than
that of the fully metal plates but lower than that of the fully ceramic plates.
Furthermore, the line corresponding to the cubical compositional profile case
coincides with lines for linear compositional profiles for the shear component
of the vertical displacement. Comparing Fig. 11 with Fig. 12 and also Fig. 13
with Fig. 14 show that the responses are very similar; however, the bending
component of vertical displacement is higher than that of the shear component



124 M. Bouazza, A. M. Zenkour, N. Benseddiq

Fig. 11. Non-dimensional bending component (w̄b) of vertical displacement for the metal,
ceramic and FGM plates versus the aspect ratio (a/b) with all compositional profiles.

Fig. 12. Non-dimensional shear component (w̄s) of vertical displacement for the metal,
ceramic and FGM plates versus the aspect ratio (a/b) with all compositional profiles.

of vertical displacement. In addition, the in-plane and transverse displacements
consist of bending and shear components in which the bending components do
not contribute toward shear forces and, likewise, the shear components do not
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Fig. 13. The effect of material anisotropy on the dimensionless bending component (w̄b) of
vertical displacement of an FGM plate with all compositional profiles.

Fig. 14. The effect of material anisotropy on the dimensionless shear component (w̄s) of
vertical displacement of an FGM plate with all compositional profiles.

contribute toward bending moments. By dividing the transverse displacement
into the bending shear parts, the number of unknowns of the theory is reduced,
thus saving computational time.
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4. Conclusions

Bending behaviors of functionally graded material plates have been presented
with the help of a two-variable refined hyperbolic theory. Once again, this theory
takes under consideration the effect of transverse shears in parabolic distribu-
tions across the plate thickness, hence it is needless to use a shear correction
factor. The equilibrium equations have strong similarity to those of the classical
plate theory. The bending response of FG plates have been analyzed under trans-
verse sinusoidal loading. The gradation of properties across thickness is supposed
to be of various power-law functions type (linear, quadratic, cubic, and inverse
quadratic) and comparisons are made with homogeneous metal and ceramic
isotropic plates. The dimensionless deflection and stresses have been computed
for functionally graded plates with ceramic-metal mixture. It is observed that
the basic behavior of functionally graded plates that correspond to properties
intermediate to that of metal and ceramic, is necessarily lain in between that
of ceramic and metal. In conclusion, it can be seen that gradients in material
properties play an important role in determining response of functionally graded
material plates, and the proposed two-variable refined hyperbolic shear defor-
mation plate theory is accurate and simple in resolving bending responses of
functionally graded material plates.

Our objective was so clear from the beginning, examined the influence of the
changing plate characteristics material composition and volume fraction of con-
stituent materials on the bending behavior of FGM plates. In addition, utilizing
the transverse shear stress hyperbolic function f (z), which gives the bending
behavior of functionally graded plates and representation of the transverse shear
stress in the thickness of the FGM plate; knowing that different higher order
polynomial and trigonometric Sine and exponential functions have already been
tried. Moreover, also the use of the hyperbolic function that has already existed,
proposed by Soldatos [35], and recently, a new theory has been developed by
Sayyad and Ghual [36] considering a new hyperbolic function but the function
in this work is different than the proposed function by Soldatos [35], Sayyad

and Ghual [6].
The results obtained indicate that these proposed refined hyperbolic shear

deformation theories are valuable for the investigation of the bending behavior
of FGM plates and for this reason in future works. It will be very interesting
to assess their capabilities by analyzing new problems (for instance the effect of
porosities on the thermo-mechanical bending and the effect of porosities on the
thermal buckling behavior of piezoelectric functionally graded plates).
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