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Nanofluid flow and heat transfer in boundary layers

at small nanoparticle volume fraction:

Zero nanoparticle flux at solid wall
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The continuum formulation is applied to the developing boundary layer prob-
lem, which approximates the entrance region of nanofluid flow in micro channels or
tubes. The thermophysical properties are expressed as “equations of state” as func-
tions of the local nanofluid volume fraction. Based on experimental utilization of
nanofluid prevalently at small volume fraction of nanoparticles, a simple perturbation
procedure is used to expand dependent variables in ascending powers of the volume
fraction. The zeroth order problems are the Blasius velocity boundary layer and the
Pohlhausen thermal boundary layer. These are accompanied by the volume fraction
diffusion equation. In detailed applications, the boundary condition of zero-volume
flux at a solid wall is specified and yields an “insulated wall” solution of constant
volume fraction. Two property cases are calculated as comparisons: one is the use
of mixture properties for the nanofluid density and heat capacity and the transport
properties prevalently used in the literature attributed to Einstein and to Maxwell.
Results for alumina are compared to experiments. The theory underestimates the
experimental results. This leads to the second comparison, between “conventional”
properties and those obtained from molecular dynamics computations available for
gold-water nanofluids. The latter properties considerably increased the heat transfer
enhancement relative to “conventional” properties and heat transfer enhancement is
comparable to the enhanced skin friction rise. To fully appreciate the potential of
nanofluids and heat transfer enhancement, further molecular dynamics computations
of properties of nanofluids, including transport properties, accompanied by careful
laboratory experiments on velocity and temperature profiles are suggested.
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1. Introduction

Following an earlier work on the Rayleigh–Stokes solution for nanofluid flow
and heat transfer [1], which corresponds to the suddenly accelerated flat plate
in its own plane, the present contribution considers the corresponding lami-
nar boundary layer retaining the initial nonlinearity owing to fluid advection.
The motivation is for flows with a leading edge where experiments of Wen and
Ding [2] and Jung et al. [3] show significant heat transfer rate intensification
compared to the fully developed regions of nanofluid flow in channels and tubes.
The nanofluid is here taken as a base liquid, such as water, seeded with dispersed
nano sized particles (of order) 10−9 m for purposes of enhancing thermal conduc-
tivity and used in micro-sized channels or tubes (of the order 10−6 m in width
or diameter) for enhancing the surface heat transfer rate in a manner depicted
by experiments [2, 3].

The nanofluid is modeled as a liquid containing nanoparticles, small enough
so that the nanoparticles are in thermodynamic and momentum equilibrium as
if a single fluid. As such, its behavior as a flowing fluid is modeled after a sin-
gle component “Navier–Stokes fluid”, but that the thermophysical properties are
obtained by separate calculations, empirical relations or via measurements per-
taining to dilute concentration of nano-sized particles embedded in a base liquid.
However, in nanofluids, because of Brownian diffusion due to the bombardment
of nanoparticles by the basic liquid molecules, the nanofluid description is sup-
plemented by a diffusion equation for nanoparticle concentration (which is conve-
niently represented by its volume fraction). This is derivable from the continuity
equation for the nanoparticle phase in terms of its mass fraction in the nanofluid.
Fick’s Law for the diffusion currents relative to a mass-averaged flow supple-
ments this. The binary diffusion coefficient is then identified with the Brownian
diffusion coefficient. Fick’s law is expressed in terms of the nanoparticle mass
fraction and is easily converted to that for the volume fraction for small volume
fraction. This thought exercise would obtain the diffusion equation presented by
Buongiorno [4], following the formalism presented by Bird et al. [5] (see also
Probstein [6]). Nanofluid description, however, is inescapable from taking on
some aspects of mixture of gases [7].

The general description of nanofluid flow has been applied to boundary layer
type flows by Pfatsch [8] who numerically integrated the boundary layer equa-
tions. On the basis of prevalent experiments that use small volume concentra-
tions of the nanoparticles, on the order of a few percent or less, a perturbation
procedure is devised for the Rayleigh–Stokes problem [1]. While this allows the
analytical derivation of perturbation results which aided the interpretation of
mechanisms involved in the nanofluid flow and heat transfer, the present work
will yield mechanisms of advection versus thermal conduction relevant to the
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more involved boundary layer problem.The present contribution considers the
laminar boundary layer on a flat plate, which would correspond to the Blasius
flow [9] in the absence of nanoparticles, with the perturbation for small volume
concentration applied. The accompanying heat transfer problem corresponds to
that of Pohlhausen [9, 10]. It is not possible to obtain analytical solutions in
the manner of the Rayleigh–Stokes problem [1] since the basic Blasius problem
requires numerical solution.

2. The general formulation

2.1. The surface heat transfer rate

The surface heat transfer rate, in the boundary layer approximation, is first
discussed, as this is the important goal we are after,

(2.1) q0 = −
(

k
∂T

∂y

)

0

+ (jphp)0,

where q0 is the surface heat transfer rate, k is the nanofluid thermal conductivity,
y is normal to the wall coordinate, jp is the diffusion current of the nanoparticle
phase relative to the mass averaged velocity, hp is the enthalpy of the nanoparticle
phase. Subscript 0 denotes evaluated at the wall surface. Equation (2.1) follows
from the more general relation of additional heat transfer mechanism owing to
diffusional transport of energy, as is in the case of reacting gases [11].

Fick’s Law for the diffusion current with respect to the mass averaged velocity
in terms of the nanoparticle phase mass fraction is preferred, as this follows the
mass conservation relation of the nanoparticle phase which leads to the diffusion
equation. The mass fraction is then related to the volume fraction φ and the
diffusion current in terms of the volume fraction φ becomes

(2.2) jp = −
(

ρpD
∂φ

∂y

)

0

+ ϑ(φ2),

where ϑ(φ2) denotes to the order of φ2, the binary diffusion coefficient D is
identified with that of Brownian diffusion [4], ρp is the nanoparticle density.
The surface heat transfer rate relation [4] expressed in the present simplified
boundary layer form is thus

(2.3) q0 = −
(

k
∂T

∂y

)

0

−
(

ρpD
∂φ

∂y
hp

)

0

.

It is observed that while enhanced thermal conductivity directly enhances the
surface heat transfer rate, it indirectly stretches out the temperature profile so
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that the temperature gradient is lessened. On the other hand, fluid advection
of thermal energy helps steepen the temperature gradient. These mechanisms
are pointed out even in the much-simplified Rayleigh–Stokes heat transfer prob-
lem [1].

2.2. Continuity and momentum equations

The two-dimensional boundary layer equations for steady flow are written
in dimensionless form in terms of asterisked quantities. The global continuity
equation is

(2.4)
∂σ∗u∗

∂x∗
+
∂ρ∗v∗

∂y∗
= 0,

where the respective dimensionless streamwise and wall-normal coordinates,
x∗, y∗ are normalized by a streamwise length scale L; u∗, v∗ are the respective
dimensionless velocity components normalized by the free stream velocity U .
The dimensionless nanofluid density ρ is normalized by the base fluid density
with subscript f , ρ∗ = ρ/ρf . The zero-pressure gradient streamwise momentum
equation is

(2.5) ρ∗
(

u∗
∂u∗

∂x∗
+ v∗

∂u∗

∂y∗

)

=
1

Re

∂

∂y∗

(

µ∗
∂u∗

∂y∗

)

.

Re = UL/νf is the Reynolds number based on fluid kinematic viscosity, νf =
µf/ρf , µf is the fluid viscosity coefficient. The nanofluid viscosity coefficient
µ is made dimensionless as µ∗ = µ/µf . The wall-normal momentum equation
reduces to zero-pressure gradient across the boundary layer.

2.3. Thermal energy equation

The energy equation is similar to that for a reacting gas in that the heat flux
vector would include heat transport of thermal energy by diffusion currents. The
generic convective heat transfer equation follows from the first law of thermo-
dynamics in differential form. For the steady two-dimensional boundary layer,
written first in dimensional form

(2.6) ρu
∂h

∂x
+ ρv

∂h

∂y
= −

∂q

∂y
,

where h =
∫

c dT is the static enthalpy of the nanofluid, T is the temperature,
c is the nanofluid heat capacity c = dh/dT . The energy equation is in the incom-
pressible form for low Mach numbers (i.e., where the Mach number M → 0) and
small temperature loading. For low Mach numbers, the work owing to pressure
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gradients and the rate of viscous dissipation are negligible as these effects are
proportional the square of the Mach number (see Lagerstrom [12]). The small
temperature loading allows taking the thermophysical properties to be temper-
ature independent. However, properties such as ρ, c, and transport coefficients
are nanofluid volume concentration dependent.

The boundary layer form of q in the interior of the nanofluid is

(2.7) q = −
(

k
∂T

∂y

)

−
(

ρpD
∂φ

∂y
hp

)

.

Inserting (2.6) into (2.5), the dimensionless energy equation then takes the form

(2.8) ρ∗c∗u∗
∂θ

∂x∗
+ ρ∗c∗v∗

∂θ

∂y∗

=
1

Re Prf

∂

∂y∗

(

k∗
∂θ

∂y∗

)

+
φ∞

Re Scf

∂

∂y∗

(

ρ∗pD
∗
∂Φ

∂y∗
c∗pθ

)

,

where the dimensionless volume fraction is defined as Φ = φ/φ∞, φ∞ is the vol-
ume fraction in the free stream, D∗ = D/Dref , where for Brownian diffusion [4]
D = kBT/6πµfrd, kB is the Boltzmann constant, rd is the nanoparticle radius
(or averaged radius), Dref = kBTave/6πµfrd, Tave is an averaged temperature.
The dimensionless temperature is θ = (T−T∞)/(T0−T∞). The base fluid Prandtl
and Schmidt numbers are, respectively, Prf = νf/αf and Scf = νf/Dref , the
base fluid thermal diffusivity is αf = kf/ρfcf , cf is the base fluid heat capac-
ity, kf is the base fluid thermal conductivity. Other dimensionless quantities are
defined ρ∗ = ρp/ρf , c∗p = cp/cf , and c∗ = c/cf . The subscript p denotes that of
the nanoparticle material.

The “incompressible” approximation of low Mach numbers and small rela-
tive temperature differences rendered the transport coefficients to become tem-
perature independent if the double expansion procedure suggested in Lager-

strom [12] is carried out. Similar to the viscosity coefficient and thermal con-
ductivity in this case, the Brownian diffusion coefficient, though it is explicitly
expressed as a linear function of the temperature, is taken as constant so that as
long as the nanoparticles are indeed dilute, the dimensionless Brownian diffusion
coefficient D∗ is unity.

2.4. Mass diffusion equation

The volume fraction diffusion equation, which follows from the nanofluid
mass conservation equation, supplemented by Fick’s Law already discussed, is

(2.9) u∗
∂Φ

∂x∗
+ v∗

∂Φ

∂y∗
=

1

Re Scf

∂

∂y∗

(

D∗
∂Φ

∂y∗

)

.
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The effects of thermal diffusion, which has been estimated to be small relative
to mass (volume fraction) diffusion [4], is neglected at the outset, as well as its
effect on energy transport in the energy equation.

2.5. The boundary conditions

The physical boundary conditions, in terms of the dimensionless variables,
are

(2.10)
y∗ = 0 : u∗ = 0, θ = (T − T∞)/(T0 − T∞) = 1, (∂Φ/∂y∗) = 0 or Φ = Φ0,

y∗ = ∞ : u∗ = 0, θ = 0, Φ = 1.

There are two general boundary conditions in (2.10) for the volume fraction
(Buongiorno, private communication 2010): In the present work the solid wall is
assumed impermeable to nanoparticles. The zero-flux boundary condition would
yield, from the diffusion equation, a constant volume fraction throughout the
boundary, Φ(x∗, y∗) = 1, as solution in absence of thermal diffusion and nanopar-
ticle sources (or sinks). In this case, the surface heat transfer rate (2.3) is ac-
complished by thermal conduction alone. The wall boundary condition for the
temperature is the familiar one for the heat transfer problem by imposing a con-
stant temperature for which the surface heat transfer rate is sought.

3. Thermophysical properties

Thermal conductivity and viscosity of nanofluids has been the subject of dis-
cussion and measurements by large groups of authors and laboratories (Buon-

giorno et al. [13], Venerus et al. [14]). The density and heat capacity of
nanofluids, of essential interest in continuum description of nanofluid flows, on
the other hand, are prevalently obtained as if the nanoparticles and base fluid
were a mixture of gases. Only gold nanofluid density and heat capacity are
obtained systematically from molecular dynamics computations (Puliti [15],
Puliti et al. [16]). For recent review of nanofluid properties, one is referred to
Paolucci and Puliti [17].

The intention here is to obtain specific forms of the properties for the two
situations in which the present theory will be applied:

(1) water-based alumina nanofluid for which there are entrance region exper-
iments [2, 3] to compare with the present boundary layer theory and,

(2) water-based gold nanofluid for which thermophysical property results are
available from molecular dynamics [15–17] and this can be compared to boundary
layer results using mixture theory for the nanofluid density and heat capacity
and classical theory for the nanofluid intrinsic viscosity (Einstein) and thermal
conductivity (Maxwell).
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3.1. Density and heat capacity

In general, nanofluid properties are expressed as a function of the volume
fraction φ. Most, if not all, relevant heat transfer enhancement experiments using
nanofluids are performed for φ≪ 1. In this case, we are interested in expressing
nanofluid properties in the form

(3.1)
ρ∗ = ρ/ρf = 1 + φ∞(ρ∗)′φ=0Φ1 + ϑ(φ2

∞
),

ρ∗c∗ = ρc/ρfcf = 1 + φ∞(ρ∗c∗)′φ=0Φ1 + ϑ(φ2
∞

),

where Φ1 = φ1/φ∞ is the first order dimensionless volume fraction, the slope of
the respective properties (ρ∗)′φ=0

, (ρ∗c∗)′φ=0
are obtained from mixture expres-

sions but preferably from rarely available molecular dynamics computations or
measurements. In the case of mixture mimicking,

(3.2)
(ρ∗)′φ=0,mix = ρ∗p − 1,

(ρ∗c∗)′φ=0,mix = ρ∗pc
∗

p − 1,

where ρ∗p = ρp/ρf , ρ∗pc
∗

p = ρpcp/ρfcf , are the nanoparticle material density and
density-heat capacity product made dimensionless by that of the base fluid. In
the mixture calculation, ρ∗ and ρ∗c∗ are identical linear functions of the volume
fraction.

3.2. Transport properties

The dimensionless nanofluid viscosity coefficient and heat conductivity are
also written as ascending powers of the volume fraction,

(3.3)
µ∗ = µ/µf = 1 + φ∞(µ∗)′φ=0Φ1 + ϑ(φ2

∞
),

k∗ = k/kf = 1 + φ∞(k∗)′φ=0Φ1 + ϑ(φ2
∞

).

One is referred to recent reviews of transport properties of nanofluids [13, 14,
17, 18]. The diffusion of nanoparticle concentration is here taken to be from
Brownian motion [4].

4. Perturbation analysis for small nanofluid volume concentration,

φ∞ ≪ 1

The thermophysical properties, expressed as function to first order in φ are
already in a form suitable for perturbation expansion: The zeroth order is the
base fluid devoid of nanoparticles. The nanofluid flow quantities are expanded
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ascending powers of φ∞ ≪ 1, with asterisks omitted for simplicity,

(4.1)

u = u0 + φ∞u1 + ϑ(φ2
∞

),

θ = θ0 + φ∞θ1 + ϑ(φ2
∞

),

φ = φ0 + φ∞Φ1 + ϑ(φ2
∞

),

where φ0 = 0.
The zeroth-order conservation equations for momentum and energy (heat

transfer problem) in terms of u0, θ0, respectively, are those of the Blasius and
Pohlhausen problems for the base fluid [9, 10]. The first-order conservation equa-
tions for u1, θ1 are, respectively

(4.2)

(

u1

∂u0

∂x
+ v0

∂u0

∂y

)

+

(

u0

∂u1

∂x
+ v1

∂u0

∂y

)

+ (ρ∗)′0Φ1

(

u0

∂u0

∂x
+ v0

∂u0

∂y

)

nanofluid inertia

=
1

Re

(

∂2u1

∂y2
+ (µ∗)′φ=0

∂

∂y

∂

∂y

(

Φ1

∂u0

∂y

))

,

nanofluid viscosity

(4.3)

(

u0

∂θ1
∂x

+ v0
∂θ1
∂y

)

+

(

u1

∂θ0
∂x

+ v1
∂θ0
∂y

)

+ (ρ∗c∗)′0Φ1

(

u0

∂θ0
∂x

+ v0
∂θ0
∂y

)

nanofluid inertia

=
1

Re Prf

(

∂2θ1
∂y2

+ (k∗)′φ=0

∂

∂y

(

Φ1

∂θ0
∂y

))

+
1

Re Scf

∂

∂y∗

(

ρ∗pD
∗
∂Φ1

∂y∗
c∗pθ0

)

.

nanofluid conduction nanofluid diffusion energy transport

The nanofluid concentration equation is first-order in the nanofluid volume
fraction only

(4.4)

(

u0

∂Φ1

∂x
+ v0

∂Φ1

∂y

)

=
1

Re Scf

∂

∂y

(

D∗
∂Φ1

∂y

)

.

Recalling that the dimensionless diffusion coefficient is, for small temperature
loading, D∗ ≡ 1.

It is noticed that nanofluid inertia effects in the first-order momentum and
energy equations can be recast, using the respective zeroth-order Blasius and
Pohlhausen momentum and energy equations, into more compact form

(ρ∗)′0Φ1

(

1

Re

∂2u0

∂y2

)

, (ρ∗c∗)′0Φ1

(

1

Re Prf

∂2θ0
∂y2

)

,

and moved to the respective right sides,

(4.5)

(

u0

∂u1

∂x
+ v0

∂u1

∂y

)

+

(

u1

∂u0

∂x
+ v1

∂u0

∂y

)

=
1

Re

∂2u1

∂y2
+

1

Re

[

Φ1

∂2u0

∂y2
((µ∗)′φ=0 − (ρ∗)′φ=0) + (µ∗)′φ=0

∂Φ1

∂y

∂u0

∂y

]

,
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(4.6)

(

u0

∂θ1
∂x

+ v0
∂θ1
∂y

)

+

(

u1

∂θ0
∂x

+ v1
∂θ0
∂y

)

=
1

Re Prf

∂2θ1
∂y2

+
1

RePrf

[

Φ1

∂2θ0
∂y2

((k∗)′φ=0 − (ρ∗c∗)′φ=0) + (k∗)′φ=0

∂Φ1

∂y

∂θ0
∂y

]

+
1

Re Scf

∂

∂y∗

(

ρ∗pD
∗
∂Φ1

∂y∗
c∗θ0

)

.

It is now possible to render observations concerning the role of nanofluid in the
advective-diffusive situation. In (4.6) and (4.7), inertia effects are moved to the
right side so as to exhibit its competition with enhanced transport property
of the nanofluid. In general, enhanced viscosity diffuses the velocity profile to
render it less steep whereas, if (ρ∗)′φ=0

> 0, inertia effects have the tendency
of steepening the velocity profile. Similarly, enhanced thermal conductivity dif-
fuses the temperature further and renders it less steep. Thermal inertia effects,
characterized by the density-heat capacity product, because of the decrease of
heat capacity in a nanofluid, tend also to stretch out the temperature as in the
examples encountered (ρ∗c∗)′φ=0

< 0, and this reinforces (k∗)′φ=0
.

The concentration diffusion equation (4.4) stands alone, with the zeroth-order
velocities given by the Blasius solution, subject to either of its wall boundary
conditions in (2.10). It would be solved first so that Φ1 now becomes a known
function in solving (4.6) and (4.7).

5. Similar solutions

The first-order solutions are expressible in similarity variables, as boundary
conditions permit, in the same form as the zeroth-order Blasius and Pohlhausen
solutions. The correspondence between the present dimensionless variables, in-
troduced for convenient perturbation analysis, is related to the dimensional vari-
ables found in the literature

η =
y

√

vfx/U
=

y∗
√

x∗/Re
.

The dimensionless stream function and velocity components are related as

ψ∗ =
ψ

UL
=

√

x∗

Re
f(η), u∗ = f ′(η), v∗ =

1

2
√
x∗Re

(ηf ′ − f).

These are carried over to the perturbation expansions so that these relations for
the zeroth- and first-order velocities are similarly related to the respective stream
function of the same order. The resulting ordinary equations for f0 = fBlasius, f1
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are, respectively

f ′′′0 +
1

2
f0f

′′

0 = 0, f0(0) = f ′0(0) = 0, f ′0(∞) = 1,(5.1)

f ′′′1 +
1

2
(f0f

′′

1 + f1f
′′

0 ) = ((µ∗)′φ=0 − (ρ∗)′φ=0)Φ1

1

2
f0f

′′

0 + (µ∗)′φ=0Φ
′

1f
′′

0 .(5.2)

The boundary condition for the streamwise velocity is already satisfied by the
Blasius solution, so that the first-order problem satisfies homogeneous boundary
condition, it is being driven by the inhomogeneous right side of (5.2), compris-
ing inertia effects characterized by (ρ∗)′φ=0

and the velocity-profile stretching
or smoothing effects of enhanced viscosity characterized by (µ∗)′φ=0

. These two
mechanisms are competing since they are of opposite sign.

The zeroth- and first-order energy equations become, after the similarity
variable transformation,

θ′′0 +
Prf

2
f0θ

′

0 = 0, θ0 = 1, θ0(∞) = 0,(5.3)

θ′′1 +
Prf

2
(f0θ

′

1 + f1θ
′

0) =(5.4)

−
[

((k∗)′φ=0 − (ρ∗c∗)′φ=0)Φ1θ
′′

0 + (k∗)′φ=0Φ
′

1θ
′

0

]

−
ρ∗pc

∗

p

Scf
D∗(Φ′

1θ0)
′.

The inhomogeneous equation for θ1 satisfies homogeneous boundary conditions
as the temperature boundary conditions of the problem are satisfied by θ0.

The nanofluid properties are dependent on the nanoparticle volume con-
centration, thus it is necessary to consider the volume concentration diffusion
equation.

5.1. The case of a solid wall with zero nanoparticle flux

The volume diffusion problem in this case is

(5.5) Φ′′

1 +
Scf

2
f0Φ

′

1 = 0, Φ′

1(0) = 0, Φ1(∞) = 1.

In the absence of sources (or sinks) in the interior of the nanofluid and on the
boundaries, (5.5) yields an exact solution

(5.6) Φ1(η; Scf ) = 1

(much like the Crocco Integral for the fluid energy equation in the case of an
insulated wall and Pr = 1, [9]). In this special case, the problem is reduced
to constant thermophsyical properties dependent only on the constant volume
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fraction φ∞. As such, it loses the ability of regulating heat transfer at the wall
via thermal energy transport through concentration diffusion according to (2.7).
Thus the surface heat transfer can be ascertained from boundary layer theory
using nanofluid thermophysical properties at the prevailing φ∞. This has been
found to be the case in certain measurements according to Prabhat et al.

[19, 20], although no information on the nanoparticle volume fraction distribu-
tion is available.

5.2. The momentum and thermal problems for zero nanoparticle volume flux at
solid wall

The boundary condition of zero flux at the wall produces Φ1(η) = 1 through-
out the entire boundary layer so that Φ′

1(η) = 0, thus (5.2) and (5.4) simplify to,
respectively,

(5.9)
f ′′′1 +

1

2
(f0f

′′

1 + f1f
′′

0 ) = ((µ∗)′φ=0 − (ρ∗)′φ=0

1

2
f0f

′′

0 ,

f1(0) = f ′1(0) = 0, f ′1(∞) = 0,

and

(5.10)
θ′′1 +

Prf

2
(f0θ

′

1 + f1θ
′

0) = ((k∗)′φ=0 − (ρ∗c∗)′φ=0)
Prf

2
f0θ

′

0,

θ1(0) = θ1(∞) = 0,

where use is made of the zeroth-order momentum (5.1) and energy (5.3) equa-
tions to arrive at the “advective” form on the right sides on (5.9) and (5.10),
respectively.

It is noticed that if we define

(5.11) F1 = f1/(µ
∗)′φ=0 − (ρ∗)′φ=0)

and substitute into (5.9) to obtain

(5.12)
F ′′′

1 +
1

2
(f0F

′′

1 + F1f
′′

0 ) =
1

2
f0f

′′

0 ,

F1(0) = F ′

1(0) = 0, F ′

1(∞) = 0,

then (5.12) can be solved for F1 as a “universal function” independent of ther-
mophysical properties. Less fortunate in this respect is (5.10) which requires
specification of thermophysical properties prior to its solution.
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5.3. Shear stress at the wall

Denoting the wall condition by the subscript 0, the Newtonian shear stress
at the wall is

τ0 =

(

µ
∂u

∂y

)

0

= µfµ
∗

0u∞

√

u∞/vfx f
′′(0),

the representation of the nanofluid viscosity coefficient is discussed in Section
3. Inserting the perturbation representations, to first order in φ∞, the ratio of
nanofluid shear stress to that of base fluid is

τ0/τ0,f = 1 + φ∞[(µ∗)′φ=0 + f ′′1 (0)/f ′′0 (0)],

where base fluid shear stress is τ0,f = µfu∞
√

u∞/vfx f
′′

0 (0). In the similar solu-

tion for both water and for nanofluid flow, the shear stress decays as x−1/2. The
shear stress ratio or enhancement is independent of x although experimentally
this may not be the case. The local skin friction coefficient is defined as the local
shear stress normalized by the free stream dynamic pressure. The respective base
fluid and nanofluid skin friction coefficients are

Cff
= τ0,f/(1/2)ρ∞,fu

2
∞
, Cf = τ0/(1/2)ρ∞,f [1 + φ∞(ρ∗)′φ=0]u

2
∞
.

With the appropriate definition of the skin friction coefficient, which necessar-
ily involves the free stream density of the nanofluid, it is thus more physically
straightforward to discuss the skin friction enhancement directly in terms of their
ratios rather than the ratio of skin friction coefficients.

5.4. Surface heat transfer rate

The surface heat transfer rate at the wall from (2.2) includes the heat transfer
owing to diffusion currents. In the present case of zero flux of nanoparticles
across a solid wall for which the volume concentration is uniform, heat transfer
at the wall is accomplished by heat conduction alone. Using the representation of
nanofluid thermal conductivity of Section 3 and the perturbation representations,
we obtain the heat transfer rate enhancement ratio, to first order in φ∞

q0/q0,f = 1 + φ∞[(k∗)′0 + θ′1/θ
′

0(0)],

where the base fluid heat transfer rate is

q0,f = kf (T0 − T∞)θ′0(0)
√

u∞/νfx.

From the definition of the local heat transfer coefficient

hx = q0/(T0 − T∞)
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the ratio of the surface heat transfer rates is the same as that of heat transfer
coefficients

hx/hx,f = q0/q0,f

provided that the wall temperatures of the nanofluid and of the base fluid are
the same.

5.5. Brief description of numerical procedure

Although the Blasius and Pohlhausen problems are well known, they are nev-
ertheless solved to provide numerical consistency for the first-order problems.
Both (5.10) and (5.11) are inhomogeneous differential equations with homoge-
neous boundary conditions. They are numerically solved using Octave, similar to
Matlab, by writing a single function to describe the entire system f0, F1, θ0, θ1.
The boundary value problem is then solved as an initial value problem by the
shooting method. As there are four unknown conditions at η = 0, which are
required to solve the entire system (f ′′0 , F

′′

1 , θ
′

0, θ
′

1), each of the four conditions
is solved individually, one at a time. Initially, the Blasius problem is considered
and forward integration is carried out in a loop as the guess for f ′′0 is updated.
Once the stand-alone f0 solved, then θ0 or F1 may be solved in the same man-
ner, θ1 is solved last as the three functions are needed as variable coefficients
and inhomogeneous input. The relevant code is documented but not reproduced
here.

5.6. Application to specific nanofluids

For alumina (ρ∗)′φ=0,mix
= 2.89, (ρ∗c∗)′φ=0,mix

= −0.18. For gold-water nano-
fluid (ρ∗)′φ=0,mix

= 18.3, (ρ∗c∗)′φ=0,mix
= −0.42. Interpolating results of Puliti

et al. [16] for heat capacity in J/mol,K to kJ/g,K via effective nanofluid molecular
weight versus effective nanoparticle volume fraction, it is obtained (ρ∗)′φ=0,MD

=
18.7, (ρ∗c∗)′φ=0,MD

= −2.37. In the case of dilute, spherical nanoparticles, the
nanofluid behaves like a Newtonian fluid, Einstein’s result (µ∗)′φ=0,Einstein

= 2.5
is satisfactory. The classical result of Maxwell gives (k∗)′φ=0,Maxwell

= 3, but Wen

and Ding’s [2] measurements give (k∗)′φ=0,W&D
∼= 6 for water-based alumina.

Molecular dynamics simulation for viscosity and thermal conductivity of gold
nanoparticles appear only in the thesis of Puliti [15] and are subject to in-
terpretation to bring the results into practical form. The results suggest that
0 ≤ (µ∗)′φ=0,MD ≤ 10 based on points for φ = 0 and φ = 0.10, including the
full expanse of error bars [15, Fig. 3.30 and Table 3.3). There are, however some
doubts engendered by the incorrect value produced by the simulation for pure
water at φ = 0 and the negative slope of the computed value of (µ∗)′φ=0,MD at
φ = 0.01. The molecular dynamics result for gold nanoparticle thermal conduc-
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tivity [15] suggests that (k∗)′φ=0,MD = 4.3 between φ = 0 and φ = 0.10; but for
small concentrations to φ = 0.01, (k∗)′φ=0,MD ≤ 20. The summary of properties
values in applications are given in the following table

Case I. Alumina, mix Case II. Gold-Water, mix Case III. Gold-Water, MD

(ρ∗)′φ=0,mix = 2.89 (ρ∗)′φ=0,mix = 18.3 (ρ∗)′φ=0,MD = 18.7
(ρ∗c∗)′φ=0,mix = −0.18 (ρ∗c∗)′φ=0,mix = −0.42 (ρ∗c∗)′φ=0,MD = −2.37
(µ∗)′φ=0,Einstein = 2.5 (µ∗)′φ=0,Einstein = 2.5 (µ∗)′φ=0,MD = 10
(k∗)′φ=0,W&D

∼= 6 (k∗)′φ=0,Maxwell = 3 (k∗)′φ=0,MD = 20

The thermophysical properties representing the competition between conduc-
tive, diffusive effects and advective effects of inertia are reproduced below

Case I Case II Case III
Alumina, mix Gold-Water, mix Gold-Water, MD

(µ∗)′φ=0 − (ρ∗)′φ=0: −0.39 −15.80 −8.70
(k∗)′φ=0 − (ρ∗c∗)′φ=0: +6.18 +3.42 +22.37

6. The normalized universal velocity function

The universal function F ′

1(η) from (5.12) is the first-order velocity function,
normalized by material properties as indicated, is shown in Fig. 1 together with
the zeroth-order Blasius velocity function f ′0 of (5.1).

The first-order velocity profile decreases the steepness of the Blasius velocity
profile as increasing function of the volume fraction as the stretching factors are

Fig. 1. The first-order universal velocity function F ′

1 - - - -, the zeroth-order Blasius velocity
function f ′

0 vs. the Blasius similarity variable η, where F1 = f1/((µ∗)′φ=0 − (ρ∗)′φ=0).
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negative for all three cases considered. The enhanced viscosity effect is to stretch
the velocity profile rendering it less steep, whereas the inertia effect is to steepen
the velocity profile. The imbalance of these two effects, according to the material
properties obtained, is to decrease the steepness of the overall velocity profile.

7. Specific cases of application: velocity and temperature profiles

7.1. Case I: alumina-water nanofluid

The nanofluid effects on the velocity profiles is best brought out by the dif-
ference between the nanofluid velocity and that of the base fluid Blasius profile,
in terms of the universal velocity function,

[f ′(η) − f ′0(η)]/φ∞ = f ′1(η) = ((µ∗)′φ=0 − (ρ∗)′φ=0)F
′

1(η),

((µ∗)′φ=0 − (ρ∗)′φ=0) = −0.39

The modification of nanofluid velocity profile over that of the base fluid con-
ceivably could be measured in laboratory experiments. In Fig. 2 is shown the
velocity profile difference for Case I for small volume fraction.

Fig. 2. The first-order velocity profile f ′

1(η) for alumina-water nanofluid as function of the
similarity variable η, Case I.

The maximum value of f ′1(η) = ϑ(0.1) so that for small volume fraction the
over all profile would be graphically difficult to visualize, although the profile
f ′1(η) itself is numerically discernable.
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The temperature profiles from (5.10) need the input of property values in
their solution as well as the velocity profiles. The case for alumina is shown in
Fig. 3 (Case I). In this case the overall temperature profile

θ(η) = θ0(η) + φ∞θ1(η)

is rendered less steep with increasing volume fraction. In the much simpler case
of Rayleigh–Stokes approximation [1], it was pointed out, as with the velocity
profile, there is the competition between the profile stretching effect of enhanced
transport property (thermal conductivity in this case) and the temperature pro-
file steepening effect of inertia through the density-heat capacity product. It is
more intricate in the boundary layer problem here than in the thermal Rayleigh–
Stokes problem [1] as the velocity profiles are also involved, as (5.10) clearly
shows. Again, the nanofluid temperature profile effect is best shown as the differ-
ence between nanofluid temperature and that of the base fluid which correspond
to the Pohlhausen profile [10]

[θ(η) − θ0(η)]/φ∞ = θ1(η),

and this, again, could be measured in the laboratory. The maximum value of the
first-order temperature profile is about 1.1 (Fig. 3).

Fig. 3. The zeroth-order Pohlhausen profile θ0 , first-order temperature profile θ1 - - - -
as function of the similarity variable, η alumina-water (Case I), Prf = 7.
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7.2. Case II: Gold-water nanofluid (mix)

The first-order perturbation velocity profile for Case II is

[f ′(η) − f ′0(η)]/φ∞ = f ′1(η) = ((µ∗)′φ=0 − (ρ∗)′φ=0)F
′

1(η),

7
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4

3

2

1

0
0 1 2 3 4 5

h

f� ¢1

Fig. 4. First-order velocity profile f ′

1(η) = ((µ∗)′φ=0 − (ρ∗)′φ=0)F
′

1(η), as function of the
similarity variable η, Case II.

Fig. 5. Gold-water nanofluid temperature profiles vs. similarity variable η, Case II.
First-order profile θ1(η) - - - - is negative and is shown on the left, the zeroth-order

Pohlhausen profile is on the right θ0 , Prf = 7.
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where (µ∗)′φ=0
− (ρ∗)′φ=0

= −15.80, is shown in Fig. 4. It has a maximum value
greater than 4.0 and is significantly greater than that for Case I. It gives rise to
a steepening of the overall velocity profile.

The first-order temperature profile θ1(η) for Case II is shown in Fig. 5, along
with the zeroth-order Pohlhausen profile. In this case, the nanofluid effect is
to steepen the dimensionless temperature gradient at the wall. The maximum
magnitude of θ1(η) is about −0.8 and again, [θ(η) − θ0(η)]/φ∞ = θ1(η) appears
to be a measurable quantity.

7.3. Gold-water nanofluid (MD) Case III

The velocity difference profile for Case III,

[f ′(η) − f ′0(η)]/φ∞ = f ′1(η) = ((µ∗)′φ=0 − (ρ∗)′φ=0)F
′

1(η),

((µ∗)′φ=0 − (ρ∗)′φ=0) = −8.70,

is shown in Fig. 6, with a maximum value of about 2.4. It again contributes to
the steepening of the overall velocity profile.
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Fig. 6. The first-order velocity profile f ′

1(η) = ((µ∗)′φ=0 − (ρ∗)′φ=0)F
′

1(η) for Gold-water
nanofluid. Case III.

The first-order temperature profile for Case III,

[θ(η) − θ0(η)]/φ∞ = θ1(η)

is shown in Fig. 7, with a maximum value about 3.4. The nanofluid effect of the
temperature profile is to decrease the gradient at the wall. Although not obvious
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in the boundary layer problem, the Rayleigh–Stokes problem [1] tells us that
it is attributable to the large thermal conductivity effect of smoothing out the
temperature profile.

Fig. 7. Gold-water (MD) nanofluid temperature profiles vs. similarity variable η, Case III.
First-order profile θ1(η) - - - - is positive, the zeroth-order Pohlhausen profile θ0 ,

Prf = 7.

8. Surface heat transfer rate and skin friction

In the previous section the nanofluid effects on the velocity and temperature
profiles are illustrated, owing to the next effect of steepening due to inertia
and profile stretching effects of enhanced transport properties. The impact of
transport effects on the resulting velocity and temperature profiles are discussed
in this section and has an explicit effect on the enhancement of nanofluid skin
friction rise and heat transfer relative to the base fluid, overcoming the profile-
stretching effects of enhanced nanofluid transport properties in the respective
conservation equations of momentum and static enthalpy.

The general relations for skin friction and surface heat transfer rate are rewrit-
ten in terms of relations normalized by the corresponding values of the base fluid.
The relative skin friction enhancement is, to first order in φ∞

τ∗ − 1 = φ∞[(µ∗)′φ=0 + f ′′1 (0)/f ′′0 (0)] = φ∞(τ∗)′φ=0,

where τ∗ = τ0/τ0,f and the base fluid shear stress is τ0,f = µfu∞
√

u∞/vfx f
′′

0 (0).
The slope (τ∗)′φ=0

requires the input of transport property and the solution of
the boundary layer similarity solutions up to the first order.
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The heat transfer rate at the wall for zero flux of nanoparticles across the wall
is accomplished by heat conduction alone. Using the representation of nanofluid
thermal conductivity and the perturbation representations, we obtain the en-
hanced heat transfer rate relative to the base fluid, to first order in φ∞

q∗ − 1 = φ∞[(k∗)′0 + θ′1(0)/θ′0(0)] = φ∞(q∗)′φ=0,

where the surface heat transfer rate is normalized by that of the base fluid

q∗ = q0/q0,f , q0,f = kf (T0 − T∞)θ′0(0)
√
u∞vfx.

The results in the rise in shear stress and heat transfer enhancement are presented
in the following table, for the three cases discussed.

Case I Case II Case III
alumina (mix) gold/water (mix) gold/water (MD)

(q∗)′φ=0 3.98 4.44 13.90
(τ∗)′φ=0 2.70 10.40 14.35

8.1. Case I

The comparisons with experiments in alumina-water nanofluids (Case I) are
made for the highest Reynolds numbers. This ensures that the measurements
are in the entrance region of channels [3] and tubes [4], which corresponds to
the present boundary layer region rather than in the developed region. The
comparisons are shown here in terms q∗ of in Fig. 8 and 9, respectively. The
theory from use of mixture properties under estimates measurements.

The underestimation by the theory of experimental enhancement in the en-
trance region can be attributed to several factors. One is believed to be the
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Fig. 8. Comparison of theory (mix) for alumina-water nanofluids, measurements are those of
Jung et al. [3] at Reynolds number of 287 (characteristic length based on channel height).
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Fig. 9. Comparison of theory (mix) for alumina-water nanofluids, measurements are those of
Wen and Ding [2] at Reynolds number of 1600 (characteristic length based on tube

diameter).

use of mixture and “conventional” thermophysical properties which consistently
underestimate the heat transfer enhancement from that of experiments. (MD
calculation of thermophysical properties for alumina-water is not available). The
other reasons are that the upstream detailed initial conditions of nanofluid ve-
locity and temperature in the experiments are not known. The entrance of chan-
nels and tubes are fed by tubes which most certainly has developed velocity and
temperature profiles which advects flow and temperature in the experimental
channels or tubes. The measurements all indicate a high degree of non-similarity
in the streamwise development from the entrance leading edge. Experimental re-
sults contrast with theory, which assumes uniform entrance region velocity and
temperature which allowed the simplicity of similar solutions. In this case, the
theory gives a minimum level of enhancement and forms the basis for further
extensions into realistic thermophysical properties, when available, and more
realistic upstream conditions based upon experimentation.

The relative heat transfer enhancement and skin friction rise for Case I is
shown in Fig. 10.

The Case I result, according to the boundary layer solution and the use
of thermophysical properties stated, actually give rise to a relative larger heat
transfer enhancement than the rise in skin friction, a scenario more optimistic
than that described in [14]. This is because of the leading edge effects in the
present theory, which accounts for the inertia effects, the nanofluid density in
momentum convection and the nanofluid density-heat capacity in the convection
of static enthalpy. If one were to consider fully developed flow, where no such
convection effects are present, would give a pessimistic account of nanofluids
in heat transfer enhancement. In fact, Ding et al. [21] proposed heat exchanger
using an assembly of entrance region heat transfer tubes or channels. The present
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Fig. 10. Heat transfer enhancement and skin friction rise vs. volume fraction. Case I,
alumina-water(mix) nanofluid; q∗ - - - - , τ∗ .

analysis and of Liu [1], which brought out the completion between inertia effects
and enhanced transport effect in the stretching or squashing of the temperature
profile and velocity profiles, which in turn, augment the explicit transport effect
in the surface heat transfer rate and skin friction. This emphasize that transport
properties play a dual, opposing role when convection effects are present.

8.2. Gold nanofluid (mix), Case II

Although there are no experiments performed with gold nanoparticles, there
exist (MD) calculations [15–17] of properties. The results of their use in boundary
layer analysis can be compared to that from mixture calculation (mix) of prop-
erties and conventional transport properties. The profile results, Figs. 4 and 5,
which reflects the competition between nanofluid convection and diffusive effects
on the profiles, together the surface hear transfer rate and skin friction rise, re-
flecting the enhance nanofluid transport properties, as in Fig. 10 for Case I, are
given in Fig. 11 for Case II.

8.3. Gold nanofluid, Case III

The corresponding surface heat transfer rate and skin friction rise for Case III
is shown in Fig. 12.

The results from Figs. 11 and 12, Cases II and III, respectively, indicate that
mixture approach and conventional use of Einstein and Maxwell viscosity and
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Fig. 11. Heat transfer enhancement and skin friction rise vs. volume fraction. Case II,
gold-water (mix) nanofluid; q∗ - - - - , τ∗ .

0.000 0.005 0.010 0.015 0.020
f¥

1.05

1.10

1.15

1.20

1.25

1.30

1.00

t
*
, 
q
*

Fig. 12. Heat transfer enhancement and skin friction rise vs. volume fraction. Case III,
gold-water (MD) nanofluid; q∗ - - - - , τ∗ .

thermal conductivity relations considerably underestimates both the skin fric-
tion rise and enhanced heat transfer compared to molecular dynamics results for
thermophysical properties. Use of molecular dynamics obtained [15–17] thermo-
physical properties in the present boundary layer theory appreciably enhanced
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both the surface heat transfer rates and skin friction. The relative enhancements
are very nearly one-to-one (Fig. 12) and thus removes the pessimism expressed
in [14] concerning nanofluids, at least for gold-water nanofluids. Also, their [14]
conclusion is based largely on fully developed flow which does not have the ben-
efit of the developing leading effect of bring into play convective inertia effects
[1–3, 21] which is brought out by the present work.

8.4. Remarks on gold nanofluid experiments

An experimental study of convective heat transfer of gold-water nanofluid in
a tube of diameter 2.27 mm and 580 mm length is reported by Sabir et al. [22].
As in experiments [2,3] designed for heat transfer studies, the entrance velocity
and temperature profiles are not well defined. The reported [22] enhanced surface
heat transfer rate q∗, in terms of the present notation, attained values of 1.08,
1.15 and 1.23 for nanofluid volume fraction of 0.00015, 0.00045 and 0.000667,
respectively. In this case, data points would almost appear along the vertical axis
in Fig. 12 for these unusually minute volume fractions. The thermal conductivity
is not explicitly presented in these specific experiments [22]. Thus it is difficult to
uncover whether the thermal conductivity enhancement mechanism falls within
and aligned with the extensive measurements discussed in [13].

9. Concluding remarks

It is found that the use of molecular dynamics properties for gold-water
nanofluids considerably increased the heat transfer enhancement relative to re-
sults using “conventional” properties. Furthermore, heat transfer enhancement
is comparable to the enhanced skin friction rise, whereas using conventionally
obtained properties the enhanced skin friction rise is ominously larger than the
heat transfer enhanced for gold nanoparticles. To fully appreciate the potential in
the use of nanofluids in heat transfer enhancement, further molecular dynamics
computations of properties of nanofluids, including transport properties, accom-
panied by careful laboratory experiments on velocity and temperature profiles
are thus suggested. Possible theoretical extensions would be to include upstream
shear flows prior to the leading edge problem, as would be found in experimen-
tal heat transfer measurements where the microchannels and tubes are fed by
upstream nanofluid in tubes.
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