
Arch. Mech., 69, 6, pp. 471–483, Warszawa 2017

Ritz solution of the Helmholtz equation in a stadium-shaped

domain with zero normal derivatives – applications to fluid

sloshing and thermo-convective stability

C. Y. WANG

Departments of Mathematics and Mechanical Engineering

Michigan State University

East Lansing, MI 48824, U.S.A.

e-mail: cywang@mth.msu.edu

The eigenvalues and eigenfunctions of the Helmholtz equation with Neu-
mann conditions are obtained for the stadium-shaped domain. The variational Ritz
method is found to be accurate and efficient in determining these eigenvalues and
eigenfunctions. The eigenfunctions show the evolution and switching of mode shapes
from a long rectangular strip to a circle. These new results are applied to the sloshing
of a liquid in a tank, and to the onset of thermo-convective stability in a confined
porous layer.

Key words: Helmholtz equation, stadium-shape, fluid sloshing, porous stability.

Copyright c© 2017 by IPPT PAN

1. Introduction

The Helmholtz equation is truly interdisciplinary in use. The Helm-
holtz equation with Dirichlet boundary conditions is important in the study of
vibration of membranes (Rayleigh [1], Wang and Wang [2]). It also describes
the transverse-magnetic (TM) electromagnetic wave propagation in waveguides
(Harrington [3]). The Helmholtz equation with Neumann boundary conditions
(normal derivatives vanish) is less studied, but is important for the transverse
(TE) electromagnetic waves and two types of fluid stability problems, namely
the fluid sloshing problem and the thermo-convective stability problem. We shall
discuss these significant fluid dynamic applications that are not well known.

The Helmholtz equation is useful only when its solution for the domain, a set
of eigenvalues and eigenfunctions, is available. The method of separation of vari-
ables suffices if the domain can be described in terms of separable coordinates.
Thus, the Helmholtz equation has been solved analytically for domains in the
shapes of rectangle, circle, ellipse, and circular sector. For other shapes, numeri-
cal or semi-numerical methods are needed. In this paper, we are interested in the
stadium-shaped domain, or the rectangular domain with rounded ends, whose
boundary cannot be described by a separable coordinate system (Fig. 1). Such
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a) b)

Fig. 1. a) The stadium-shaped domain and dimensions normalized with respect to the half
minimum width, b) the domain dimensions normalized by the thickness of the porous layer.

domain shape resembles the shape of compressed circular tubes, water storage
tanks, settling tanks and porous geological basins.

Previous works on the Helmholtz equation for the stadium-shaped domain
are mostly found in the microwave literature. Lagasse and van Bladel [4]
used finite elements to obtain some mode shapes, but no numerical values were
presented. Shen and Lu [5] used domain decomposition and point matching
method, and found several eigenvalues. Additionally, Don et al. [6] used bound-
ary integral to obtain several eigenvalues. Ruiz-Cruz and Rebollar [7] used
a more general domain decomposition method for some specific eigenvalues. In
conclusion, the previous works are not comprehensive enough to show the prop-
erties of the eigenvalues and eigenfunctions. In this study, we shall employ an
accurate and efficient Ritz variational method for this problem. The Ritz method
has been used more often in elasticity (Rektorys [8]), but much less so in fluid
mechanics.

The structure of this work is as follows. First, the eigenvalues and eigenfunc-
tions for the stadium-shaped domain are determined with high accuracy. Then,
the results are applied to the two aforementioned fluid dynamic problems.

2. Eigenvalues and eigenfunctions of the stadium-shaped domain

The normalized Helmholtz equation is

(2.1) φxx + φyy + λφ = 0,

where φ is the eigenfunction and λ is the corresponding eigenvalue. The Neumann
boundary condition is

(2.2)
∂φ

∂n̂
= 0,

where n̂ is the outward coordinate normal to the boundary. It can be shown
that the eigenfunctions span the space, and those corresponding to different
eigenvalues are orthogonal (Morse and Feshbach [9]).
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Briefly, using variational calculus, it is shown that the minimization of the
integral

(2.3) J =

∫∫

(φ2
x + φ2

y − λφ2) dx dy

leads to Eq. (1). Next, φ expressed in a linear combination of Ritz functions
ri(x, y) is

(2.4) φ =
∞

∑

i=0

airi(x, y).

The Ritz functions are simple polynomials that span the approximate space
of functions defined in a given domain. The Neumann condition Eq. (2.2) is
automatically satisfied if the Ritz functions are arbitrary both inside and on the
boundary (Weinstock [10]). The extremum condition

(2.5)
∂J

∂ai
= 0

then yields

(2.6)
∑

Aijaj − λ
∑

Bijaj = 0,

where

(2.7) Aij =

∫∫

(rixrjx + riyrjy)dxdy, Bij =

∫∫

rirjdxdy.

The integrations are over the area of the domain. For non-trivial solutions of
Eq. (2.6), the determinant is

(2.8) |Aij − λBij | = 0

from which the eigenvalues λn, n = 1, 2, . . . are obtained. For each eigenvalue in
Eq. (2.6) one can find the coefficients ai, and from Eq. (2.4) the corresponding
eigenfunction φn(x, y) can be obtained.

Figure 1a shows a stadium-shaped domain composed of a rectangular region
with rounded, semi-circular ends. In this figure, all lengths are normalized by
the radius or half width L and Cartesian axes are at the centroid. The aspect
ratio is α. Due to the symmetry of the domain, the eigenfunctions (modes)
can be classified into four types: SS (symmetry with respect to both x and y
directions), AS (anti-symmetry with respect to x but symmetry with respect
to y), SA (symmetry with respect to x but anti-symmetry with respect to y),
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and AA (anti-symmetry with respect to both directions). For the SS mode, the
Ritz functions are monomials of even powers:

(2.9)
{ri} = {1, x2, y2, x4, x2y2, y4, x6, x4y2, x2y4, y6, x8, x6y2, x4y4, x2y6, y8, . . .}.

For the AS, SA, AA modes, the Ritz functions are x, y, xy multiplied by
Eq. (2.9), respectively. The number of terms retained is truncated to N terms,
containing the highest homogeneous powers, i.e., N = 1, 3, 6, 10, 15, 21, 28, 36,
etc. The accuracy increases as N is increased. Table 1 shows typical convergence
for the eigenvalue. We see that 28 terms already ensure five-digit accuracy.

Table 1. Convergence of eigenvalue λ for α = 2. AS1 is the first AS mode and

SA2 stands for the second SA mode.

N 6 10 15 21 28 36

AS1 0.76109 0.76095 0.76094 0.76093 0.76092 0.76092

SA2 6.9117 6.8020 6.7994 6.7993 6.7991 6.7991

Table 2 shows a comparison of our results with the few published eigenvalues.
Our results agree with those of Ruiz-Cruz and Rebollar [7], which were also
checked using accurate finite elements.

Table 2. Comparison of eigenvalues for α = 2.

Mode Present study
Ruiz-Cruz

& Rebollar [7]
Don et al. [6] Shen and Lu [5]

AS1 0.76092 0.76092 0.760 0.753

SA1 2.7586 2.7586 2.759 2.786

SS1 2.8971 2.8972 2.897 2.904

AA1 4.0588 4.0588 4.060 4.056

Having firmly established the accuracy of our method, we proceed to find the
eigenvalues and eigenfunctions for the stadium-shaped domain. Table 3 shows
the results.

For α = 1 the domain is a circle that has an exact solution:

(2.10) φ = cos(nθ)Jn(
√
λr),

where n is the number of nodal diameters and Jn is the Bessel function of the
first kind. The repeated eigenvalues for α = 1 in Table 3 represent a switch of
mode designations when the circle is turned.

Table 3 also shows that the first (fundamental) mode is always the AS mode.
This is true for all Neumann eigenmodes regardless of boundary shape. The
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Table 3. The first ten eigenvalues for various aspect ratios. Subscripts indicate

mode shape and sequence.

α = 3 α = 2.5 α = 2 α = 1.75 α = 1.5 α = 1.25 α = 1

0.31659AS1 0.46855AS1 0.76092AS1 1.0191AS1 1.4281AS1 2.1206AS1 3.3899AS1

1.2492SS1 1.8291SS1 2.7586SA1 2.8276SA1 2.9294SA1 3.0923SA1 3.3899SA1

2.6202SA1 2.6717SA1 2.8971SS1 3.7839SS1 5.0775SS1 6.7646AA1 9.3284SS1

2.7484AS2 3.4890AA1 4.0588AA1 4.5625AA1 5.3702AA1 6.9513SS1 9.3284AA1

3.1882AA1 3.9578AS2 6.0541AS2 7.6692AS2 9.8547AS2 11.923SS2 14.682SS2

4.3338SA2 5.1849SA2 6.7991SA2 8.1790SA2 10.233SA2 12.898AS2 17.650AS2

4.7399SS2 6.6860SS2 9.6014SS2 10.434SS2 10.959SS2 13.283SA2 17.650SA2

6.0992AA2 7.7551AA2 10.717AA2 12.863SS3 12.634SA3 19.804AS3 28.276SS3

7.1357AS3 8.6855SS3 10.927SS3 13.048AA2 15.608AS3 20.876AA2 28.276AA2

8.4340SA3 9.7386AS3 12.165AS3 13.449AS3 16.237AA2 21.220SS3 28.424AS3

second mode switches from the SS mode to the SA mode between α = 2.5 and
α = 2. More mode switchings occur for the higher modes. Figure 2 depicts more
clearly the mode switches for the lower modes. Since 1 ≤ α <∞, the abscissa is
1/α in order to cover the whole range. It is seen the fundamental mode is AS,
while the second mode is either SS or SA. The eigenvalue increases with decreased

Fig. 2. The eigenvalues versus the inverse aspect ratio 1/α. The long strip is when α → ∞

and the circle is when α = 1.
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α, and converges into the circular modes when α = 1. For large aspect ratios,
or 1/α → 0, the domain tends to a very long rectangle. Since the rounded ends
have limited effect, the domain can be approximated by a rectangle of 2 by 2α.
As a result, the eigenvalues for the AS and SS modes are

(2.11) λ =

[

(n− 1/2)π

α

]2

, λ =

(

nπ

α

)2

.

As it can be observed in Fig. 2, both eigenvalues tend to zero as α→ ∞. The
eigenfunctions for the SA and AA modes have the component sin[(n − 1/2)πy]
therefore giving the first non-zero eigenvalue of (π/2)2 = 2.4674, which is also
shown in Fig. 2.

Fig. 3. First six modes for various domain dimensions. From left: α = 3, 2, 1.5, 1.25, 1.
Curves inside the domain are nodal curves. See Table 3 for mode shape designations.

Figure 3 shows the first six mode shapes for various aspect ratios. In this
figure, the extensive mode switching is clearly observed. The gradual evolution
of modes from the long strip to the circle is most interesting.

Having obtained a set of accurate eigenvalues and eigenfunctions, we proceed
to apply these results to the following two fluid dynamic problems.
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3. Fluid sloshing in a stadium-shaped container

We begin with the fluid sloshing problem. The classical theory of fluid slosh-
ing (or free tide) was first considered by Euler. Since then many authors have
studied the problem, see Lamb [11]. Rayleigh [12] was probably the first to
solve the sloshing in a circular basin using Bessel functions. The elliptic lake
was analyzed by Jeffreys [13] and the semi-circular sea by Proudman [14].
Here we investigate the stadium-shaped container, which is common for storage
or transport of liquids. This shape also resembles the shape of rounded shallow
lakes, pools and settling tanks.

The relationship between the sloshing problem and Helmholtz eigenfunctions
is briefly described as follows. Normalize all lengths by the half width L, and the
time by

√

L/g where g is the gravitational acceleration. Let ϕ(x, y, z, t) be the
velocity potential, normalized by g1/2L3/2. This potential satisfies the following
Laplace’s equation:

(3.1) ϕxx + ϕyy + ϕzz = 0.

Let the fluid be of mean fluid level between z = 0 and z = −h. The linearized
Bernoulli equation on the perturbed surface z = η is

(3.2) ϕt + η = 0.

Since the vertical velocity is ηt = ϕz, Eq. (3.2) becomes

(3.3) ϕtt + ϕz = 0.

The boundary conditions suggest the separation of variables:

(3.4) ϕ = cosh[k(z + h)]eiωtφ(x, y),

where k is a constant and ω is a normalized frequency. Equation (3.1) then
becomes the Helmholtz equation

(3.5) φxx + φyy + k2φ = 0,

where we determine using Eq. (2.1) that k =
√
λ, and the boundary conditions

are the same as in Eq. (2.2). Equation (3.2) shows that, disregarding a multi-
plicative constant, φ represents the displacement amplitude of the fluid surface.
Next, we substitute Eq. (3.4) into Eq. (3.3) and evaluate on the yield surface the
dimensional frequency ω′ of surface oscillation:

(3.6)
ω′

√

g/L
= ω =

√

k tanh(kh).
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These are the natural frequencies of the sloshing fluid. For each frequency, the
corresponding modes for the surface elevation are shown in Fig. 3.

In practice, ships and trucks often are equipped with holding tanks for trans-
portation of liquids. It is imperative that the natural sloshing vibration does not
resonate with the unavoidable external vibrations originating from the engine,
ship waves or road roughness. Equation (3.6) is thus important in holding tank
design. In our stadium-shaped tank, the aspect ratio α determines the many
possible eigenvalues λ as it is seen in Fig. 2. Since k =

√
λ the aspect ratio α,

the size L and the relative height of fluid h become essential design parameters.

4. Thermo-convective stability in porous media

The second illustration is the thermo-convective stability problem. Let us
consider a horizontal layer of fluid-saturated porous medium. When the bottom
surface is heated, fluid motion due to buoyancy ensues when a critical Rayleigh
number is reached. For more details on this subject, see the comprehensive trea-
tise by Nield and Bejan [15] in which this problem is discussed. We shall restrict
our attention to the basic problem to which the following apply: the perturbation
from quiescent state is small, the Boussinesq assumption about fluid expansion
holds, the top and bottom boundaries are held at constant temperature, and the
side boundaries of the container are adiabatic and impermeable.

Beck [16] was the first who showed that a confined rectangular container
increases the critical Rayleigh number, albeit not monotonically, as the lat-
eral dimensions are decreased. The circular cylindrical container was studied
by Zebib [17], the annular container by Bau and Torrance [18], and the sec-
tor container by Wang [19] and Kazhan [20]. In this paper, we shall study
the stadium-shaped container. Since this shape cannot be described in separa-
ble coordinates as in the aforementioned sources, we shall apply the Helmholtz
eigenfunctions and eigenvalues presented in Section 2.

Wooding [21] was the first to apply the Helmholtz equation to thermo-
convective stability in an infinite vertical tube with insulated walls. This theory
was generalized by Barletta and Storesletten [22]. If the walls are conduct-
ing, the Helmholtz equation will have Dirichlet boundary conditions (Haugen
and Tyvand [23]). The theory for stability in a finite container is briefly as fol-
lows. Let the container be of height H. The top is kept at constant temperature
T0 and the bottom is heated by constant temperature T1 > T0. In the absence
of convection, the temperature is linear vertically.

Let all lengths including the coordinate axes (x, y, z) be normalized by H,
w be the vertical velocity normalized by κ/H, where κ is the thermal diffusivity,
and T be the temperature deviation normalized by (T1 − T0). Let K be the
permeability, ρ0 be the density of the fluid at T0, µ be its viscosity, g be the
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gravitational acceleration, and β be the thermal expansion coefficient. Then the
Rayleigh number R is (T1 − T0)Kρ0gβH/µκ.

The perturbed Darcy–Boussinesq equation and the energy equation yield [15]

−w = ∇2T +
∂2T

∂z2
, ∇2 =

∂2

∂x2
+

∂2

∂y2
,(4.1)

(

∇2 +
∂2

∂z2

)2

T +R∇2T = 0.(4.2)

The boundary conditions on the vertical sides are

∂T

∂n̂
= 0,(4.3)

∂w

∂n̂
= 0.(4.4)

The boundary conditions on the top (z = 1) and bottom (z = 0) are

(4.5) T = 0, w = 0.

The critical Rayleigh number is the lowest eigenvalue R that satisfies
Eqs. (4.1)–(4.5). It is evident the critical Rayleigh number corresponds to the
lowest harmonic in z and we can separate the z dependence by

(4.6) T = τ(x, y) sin(πz), w = u(x, y) sin(πz).

Then Eq. (4.2) gives

(4.7) (∇2 − π2)2τ +R∇2τ = 0.

The following is a short proof that the second-order Helmholtz equation solves
the fourth-order Rayleigh Eq. (4.7). From Eq. (4.3) we have

(4.8)
∂τ

∂n̂
= 0.

By differentiating Eq. (4.1) with respect to n̂ and using Eqs. (4.4) and (4.8) for
the boundary condition on the sides we have

(4.9)
∂

∂n̂
∇2τ = 0.

Since the eigenfunctions of the Helmholtz equation: Eqs. (2.1) and (2.2) are
complete, we express τ as a linear combination of the Helmholtz eigenfunc-
tions φn

(4.10) τ =
∑

bnφn,
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where bn are constant coefficients. Let us note that Eq. (4.10) satisfies the bound-
ary conditions – Eqs. (4.8) and (4.9). Equation (4.7) then reduces to

(4.11)
∑

bnφn(λ̃2
n + 2π2λ̃n + π4 −Rλ̃n) = 0,

where the scaling is

(4.12) λ̃n = (H/L)2λn

due to different length normalization of Eq. (2.1). Since φn are independent,
Eq. (4.11) yields the well-known Horton and Rogers [24] and Lapwood [25]
equation

(4.13) R =
(λ̃n + π2)2

λ̃n

.

If the length of major axis is a and the length of minor axis is b, and they
are both normalized by the height H (Fig. 1b), then from Eq. (4.12) we have
λ̃n = λn/(b/2)2 and a = αb. Thus, given the sequence of eigenvalues {λn} (of
the Helmholtz equation), the critical Rayleigh number Rc is the smallest value
of Eq. (4.13). The corresponding eigenfunction (of the Helmholtz equation) is
the incipient mode shape of the temperature difference and the vertical velocity.

Figure 4 shows the stability mosaic determined from Eq. (4.13). For given
dimensions (a, b) one can find the incipient (most unstable) mode. Since a ≥ b

Fig. 4. Mode mosaic for the onset of convection in a porous layer. The mode shapes depend
on the dimensions a and b (normalized by the height of the layer).
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only half of the region is needed. Figure 5 shows the critical Rayleigh number for
various lengths and widths of the domain. For small b the shape is a long trough.
Since the rounded ends have little effect, the solution approaches that of a long
rectangle. For b→ 0 the critical Rayleigh number of 4π2 occurs at integer values
of a,which is similar to rectangular domain studied by Beck [16]. However, for
b > 0 the rounded ends cause the Rc = 4π2 lines to be curved and skewed.

The critical Rayleigh number is important because below Rc the heat transfer
is solely by conduction, while above Rc the heat transfer is dramatically increased
by convection [15].

Fig. 5. Mosaic for the critical Rayleigh number. Solid curves are for the minimum Rc = 4π2.
Dashed curves are for Rc = 40, unless otherwise indicated.

The practical applications of our stability mosaics are as follows. Suppose
we need a stadium-shaped insulation of length a′ and width b′. The aspect ratio
α = a′/b′ = a/b is a ray from the origin in Fig. 5. Since a = a′/H one can adjust
the thickness H (and thus a) such that Rc on the ray is maximized. Let us note
that very small a implies very large H, which is impractical. Figure 4 then shows
which mode of convection is prevalent.

5. Conclusions

Our Ritz method is well suited for the determination of the eigenvalues and
eigenfunctions of the Helmholtz equation in a stadium-shaped domain. For our
applications, we were able to obtain at least 10 accurate eigenvalues and their
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corresponding eigenfunctions. Additional advantage of the present Ritz method
is that the integrals in Eq. (2.7) can be computed once and for all, i.e., adding
more terms into the series does not affect the already computed values.

The many computed eigenfunctions (mode shapes) are shown in Fig. 3 for
various stadium-shaped geometries. Most interesting are the mode changes and
the evolution of mode shapes when a long strip morphs into a circle.

The obtained results can be applied to the sloshing of a liquid in a stadium-
shaped tank. The eigenvalues can be used to compute the natural frequencies of
the system using Eq. (3.6). By varying the shape and depth of a liquid tank, it
is possible to avoid resonances of the sloshing fluid.

The other application, no less important, is the thermo-convective stability
in a porous layer. Due to the completeness and independence of the Helmholtz
eigenfunctions and the use of Eq. (4.10) we were able to derive the fourth-order
Eq. (4.7) and the simple form of Eq. (4.13). The stability mosaics shown in
Figs. 4 and 5 were then easily constructed. These results are fundamental to
convective transport in porous media.
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