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Two-dimensional foam is a type of cellular solid materials containing a high vol-
ume fraction of pores. The thermal behavior of foam depends strongly on its micro-
scopic structure. In this study, a two-dimensional closed-cell foam model containing
randomly distributed air voids and solid walls is designed via a Voronoi diagram
enhanced by the shrinking technique to approximately represent the real foam struc-
ture. The porosity, pore size and solid wall thickness of the established random foam
structure is examined by introducing the so-called shrinking ratio. Subsequently, the
effective thermal conductivity of the rebuilt foam model is numerically presented
through the finite element analysis. The numerical results obtained are verified by
comparison with the available theoretical and experimental results. In the analysis,
the effects of porosity, number of pores and thermal conductivity of solid phase in
foam structures are investigated respectively to reveal the relationship of geometric
parameters and thermal properties of solid phase with effective thermal conductivity
of the foam.

Key words: closed-cell foam, microstructure, Voronoi tessellation, shrinking ratio,
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1. Introduction

The Voronoi tessellation or Voronoi diagram is generated by con-
structing the perpendicular bisectors of pairs of adjacent points and thus each
cell possesses several connected neighbors. Because of this distinctive feature,
the Voronoi tessellation with random polygonal cells has been directly applied
to mesh complex geometries with various convex polygons [1–4]. As a type of
cellular solid materials, a real foam structure including closed-cell or open-cell
foam usually possesses random and complex geometric morphology such as nu-
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merous and disordered pores or cells, irregular cell shape, and nonuniform cell
walls [5]. Originally the random Voronoi tessellation is suitable for geometrically
reproducing foam structures at microstructure level. The Voronoi tessellation
and more particularly the Laguerre–Voronoi tessellation have recently been pro-
posed to reconstruct two-dimensional (2D) and three-dimensional (3D) foam
microstructures [6–12].

When the irregularity of pore shapes, the randomness of pore locations and
the interaction of pores are incorporated in foam structures, analytical analysis
becomes impractical and the use of numerical methods, mainly the finite element
method, is appropriate. The combination of the Voronoi tessellation and the fi-
nite element technique has been widely used to study the mechanical and thermal
properties of the 2D foam materials. For example, Silva et al. [13] numerically
studied the elastic properties of non-periodic microstructure of 2D cellular solids
with the help of the Voronoi diagram and the finite element technique, and subse-
quently they examined the effects of non-periodic microstructure and defects on
the compressive strength of 2D cellular solids [14]. Chen et al. [15] investigated
the influence of six different imperfections on the yielding of 2D foams using the
finite element method. Zhu et al. [16] constructed periodical 2D Voronoi foam
structures with different degrees of irregularity and determined their effective
elastic properties by applying the finite element analysis. Li et al. [12] established
the 2D Voronoi cellular solid models based on a modified Voronoi tessellation
technique and studied their negative Poisson’s ratio by using the finite element
method. Tang et al. [7] investigated the effects of cell size and shape irregularity
on mechanical properties of 2D and 3D Voronoi foams using the finite element
analysis. In addition to the mechanical properties, the thermal-physical proper-
ties of metallic foams also play a significant role in modeling the heat transfer
phenomena in foam materials for designing new porous media. In this field, Lu
and Chen [17] calculated the apparent thermal conductivity of 2D closed-cell
aluminum alloy foam with various microstructures including regular honeycomb,
Voronoi structures and the Johnson–Mehl model by means of finite element tech-
nique. Lu et al. [18] developed a finite element model of 2D closed-cell aluminum
foam with circular pores and numerically investigated the effect of the distribu-
tion of circular pores on the effective thermal property of the foam. Li et al.

[9] established 2D and 3D Voronoi finite element models for simulating thermal
properties of closed-cell metal foams with different cell shape irregularity. How-
ever, little study on thermal properties of metallic foam was conducted by using
both the Voronoi tessellation and the finite element method, and local morpho-
logical parameters of both pore and solid phases in real foam structures were not
fully discussed. Thus, it is necessary to conduct further investigation in this area.

In this work, in order to quantitatively investigate thermal property of real
closed-cell foam, a simple and efficient shrinking algorithm of Voronoi tessellation
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is developed for producing 2D virtual microstructure of its statistically equiv-
alent counterpart with randomly distributed polygonal pores that are closed-
packed and non-overlapping. Practically, the statistically equivalent counterpart
of a real foam can be understood as an approximate replacement of the ac-
tual scanned image of a real foam sample in which the size, shape and quantity
of pores and the wall thickness between neighboring pores can be experimen-
tally measured and then counted and averaged for data statistics, as illustrated
for the geometrical rebuilt of two-phase ceramic composite [19] and closed-cell
aluminum foams [20]. The shrinking technique allows us to produce controllable
local-geometrical-morphology of any particular polygonal pore through a specific
shrinking ratio and thus provides an opportunity to create various virtual foams
with precisely controllable parameters including porosities, number of pores and
thickness of solid walls. In order to evaluate thermal conductivities of the foams
that have different porosities (i.e. 55%–95%), the finite element technique is em-
ployed to solve the energy balance equations of heat transfer in the foams for
both solid and air phases. The results are validated against available theoretical
predictions and experimental results.

2. Generation of closed-cell foam structure

with shrunk Voronoi tessellations

Since it is difficult to study numerically the complicated real foam structure
directly, building an acceptable geometric model to serve as an idealized rep-
resentative volume element (RVE), to represent the microstructural features of
a non-periodic real foam material is a key issue for microstructure analysis of
such a material. Currently, the methods of reconstructing a foam structure in-
clude mainly the computed tomography (CT) scanning technology [21–23] and
the Voronoi tessellation (VT) technology [9, 10, 12]. The CT scanning technol-
ogy can reproduce a geometric representation mostly close to the actual foam
structure by using numerous scanning images of the sample with specified poros-
ity, but it usually requires strong capability of image post-processing. Further,
the efficiency and accuracy of reconstruction model strongly depends on the CT
scanning resolution. Different from the CT scanning technology, the Voronoi
tessellation technology is a virtual approximate reconstruction of a real foam
structure over Voronoi tessellations to provide a full control of microstructure.
One can flexibly adjust microstructure and porosity of virtual foam manually us-
ing numerous geometrical tessellations to represent morphological imperfections
in real foam materials [6, 13, 24, 25].

In this section, the Voronoi tessellation method is employed to generate the
approximate Voronoi diagram of actual foam with the same number of pores
and domain dimensions, and then the 2D virtual closed-cell foam structure with
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Fig. 1. The basic reconstruction process with shrunk Voronoi tessellations.

controllable morphological parameters is constructed through the shrinking of
the Voronoi diagram for the follow-up finite element thermal analysis. The ba-
sic reconstruction process is shown in Fig. 1. It is worth noting that only 2D
model is considered in the paper for the purpose of clear description of the
basic procedure of the present approach. Similar 2D treatments can also be
found in [12–16] for foam analysis. Strictly speaking, reducing one dimension
will cause the honeycomb-type model with open cells along the neglected di-
rection, however, the 2D model can provide a qualitative description of trends
and significantly reduce computational cost, compared to 3D model. Actually,
the present approach below can be straightforwardly extended for producing
3D foam model having more complex microstructure, without any theoretical
difficulty.
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2.1. Generation of Voronoi diagram

In the present study, 2D Voronoi diagram with the same number of pores as
that of the real foam material is generated by randomly placing a set of seed
points inside the specific 2D foam region and the number of polygonal cells is
controlled by the number of seed points. To avoid very small cells, which are
not beneficial to quantitatively investigate the effect of averaged pore size for
different form models, the centroid Voronoi technique is employed by iteratively
setting the seed points coincide with the centroids of each cell [2]. Figure 2 shows
a centroid Voronoi diagram in a square domain with 200 Voronoi polygonal cells.
The ratio of maximum and minimum areas of the produced Voronoi cells can be
flexibly controlled by setting the number of iterations or iteration tolerance [1].
For example, the area ratio of the biggest and smallest polygonal cells is 15.86
(see Fig. 2a) and 1.46 (see Fig. 2b) after 1 and 50 iterations, respectively. In this
work, we focus on the development of the shrinking algorithm to produce the 2D
foam, and then quantitatively investigate its effective thermal property caused
by different controlling parameters. The presence of too small cells may make
the statistics of averaged size of pores meaningless. However, it is worth noting
that the developed shrinking algorithm described below is also suitable for the
Voronoi diagram with more random arrangement and bigger size difference of
cells, as shown in Fig. 2a.

Fig. 2. Schematic diagram of centroid Voronoi tessellations in a square domain with
different number of iterations.

2.2. Shrinking algorithm for generating closed polygonal pores

Some basic theories related to the convex polygon are described in this section
for the Voronoi tessellation as shown in Fig. 2. To do so, three Voronoi polygonal
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cells connected to each other are considered and shown in Fig. 3. Referred to the
Cartesian coordinate system, the coordinates of the corners and the centroid of
one cell is represented by (xi, yi) and (x0, y0), respectively, as shown in Fig. 3.

Fig. 3. Schematic diagram of shrinkage of a particular Voronoi polygonal cell.

Assuming that the polygon is shrunk at a specific ratio, i.e. α ∈ (0, 1), the
new coordinate (x̃i, ỹi) of the corner (xi, yi) can be determined by the following
coordinate transformation

(2.1)
x̃i − x0 = α(xi − x0),

ỹi − y0 = α(yi − y0),

from which we have

(2.2)
x̃i − xi = (α− 1)(xi − x0),

ỹi − yi = (α− 1)(yi − y0).

Similarly, if (xk, yk) is one of the adjacent corners, its new location (x̃k, ỹk)
after shrinking operation can be derived from Eq. (2.2) as

(2.3)
x̃k − xk = (α− 1)(xk − x0),

ỹk − yk = (α− 1)(yk − y0).

Combining Eqs. (2.2) and (2.3) produces

(2.4)
x̃k − x̃i = α(xk − xi),

ỹk − ỹi = α(yk − yi).
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Obviously, Eq (2.4) keeps the line passing points (xi, yi) and (xk, yk) (line 1)
and the line passing points (x̃i, ỹi) and (x̃k, ỹk) (line 2) parallel, due to the
following relationship

(2.5)
x̃k − x̃i

ỹk − ỹi
=
xk − xi

yk − yi
.

According to the Heron’s formula [26], the triangular area can be expressed
in terms of the lengths of the three sides:

(2.6) A =
√

s(s− a)(s− b)(s− c),

where a, b and c are respectively side length of the triangle, and the semiperimeter
of the triangle s = (a+ b+ c)/2.

For the original triangle consisting of points (xi, yi), (xk, yk), and (x0, y0),
the corresponding lengths of three sides are written by

(2.7)

a =
√

(xi − x0)2 + (yi − y0)2,

b =
√

(xk − x0)2 + (yk − y0)2,

c =
√

(xi − xk)2 + (yi − yk)2.

Similarly, the side lengths of the shrunk triangle can be given by

(2.8)

ã =
√

(x̃i − x0)2 + (ỹi − y0)2,

b̃ =
√

(x̃k − x0)2 + (ỹk − y0)2,

c̃ =
√

(x̃i − x̃k)2 + (ỹi − ỹk)2.

Making use of the basic relations (2.1) and (2.4), we have

(2.9) ã = αa, b̃ = αb, c̃ = αc,

from which the semiperimeter of the shrunk triangle can be written as

(2.10) s̃ = (ã+ b̃+ c̃)/2 = αs.

Thus, with the Heron’s formula, the area of the shrunk triangle Ã is expressed
as

(2.11) Ã =

√

s̃(s̃− ã)(s̃− b̃)(s̃− c̃) = α2A.

Further, the area of the shrunk polygon can be given from the relation (2.11).
Thus, for the Voronoi diagram shown in Fig. 2, the area ratio β of the original
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polygons over the shrunk polygons, that is the porosity of a foam structure, can
be given by

(2.12) β =
N

∑

n=1

Ãn

/

N
∑

n=1

An =
N

∑

n=1

α2
nAn

/

N
∑

n=1

An,

where An and Ãn are the area of the nth original and shrunk polygons, respec-
tively. αn is the shrinking ratio of the nth polygon and N is the number of
Voronoi polygonal cells. Apparently, the porosity β and the solid wall thickness
can be controlled by adjusting the shrinking ratio αn to meet the specified re-
quirement. Specially, when all polygonal cells have the same shrinking ratio α,
we have β = α2 by Eq. (2.12). In the subsequent study, the same shrinking ratio
is used for all polygonal cells, unless a special statement is made. For example,
in order to obtain the foam material with porosity β = 0.85, we can solve β = α2

to get the required shrinking ratio α = 0.922.
From the aforementioned procedure, it can be seen that we could generate

a controllable closed-cell foam structure with any given values of porosity and
wall thickness by adjusting the shrinking ratio. Figure 4 shows an example of
the closed-cell foam structure being generated by the present shrinking algorithm
with a constant shrinking ratio.

Fig. 4. Example of the generated closed-cell foam structure and the corresponding boundary
conditions for heat transfer analysis.
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3. Effective thermal conductivity of the rebuilt foam structure

3.1. Numerical model

Because the heat transfer of closed-cell metal foams is mainly the heat con-
duction in the metal matrix and the air fluid inside the pores, the heat convection
and radiation can be ignored. This is mainly due to the facts that the closed-cell
metal foams usually have relatively small enclosed pores and the ratio of ther-
mal conductivity of the metal phase and the air fluid phase is extremely high
[9, 21, 27]. The steady-state heat transfer behavior in a foam structure can, thus,
be modelled by the coupled energy balancing equations for the solid and air fluid
phases [28]

(3.1)
∇ · qs = 0,

∇ · qf = 0,

where qs and qf are heat flux vectors in the solid and fluid phases, respectively,
which can be expressed in terms of the temperature variable by the Fourier’s
law,

(3.2)
qs = −ks∇Ts,

qf = −kf∇Tf .

In Eq. (3.2), ks and kf are thermal conductivity of the solid phase and the
air fluid phase, respectively, and Ts and Tf are respectively the corresponding
temperature fields of the solid and air fluid material phase.

Additionally, the continuous conditions for the local thermal equilibrium at
the phase interface between solid and fluid require

(3.3)
Ts = Tf at phase interface,
qs · n = qf · n at phase interface,

where n is the unit normal vector to the interface.
To determine the effective thermal conductivity of the closed-cell foam struc-

ture, appropriate boundary conditions should be added to the specific surface of
a representative sample [29], i.e. applying the inlet temperature Tin on the left
surface, outlet temperature Tout on the right surface, and an adiabatic condition
on the top and bottom surfaces, as shown in Fig. 4. Here, we assume Tin > Tout

so that we can produce temperature difference between the left and right surfaces
to drive heat energy flowing from left to right. Obviously, analytically solving the
heat transfer system consisting of Eqs. (3.1)–(3.3) with specific boundary con-
ditions is impossible due to the complex microstructure of foam materials, thus
numerical solutions are often resorted to through various numerical methods,
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such as the finite element method (FEM) [30–32], the hybrid FEM [33–35], or
the boundary element method (BEM) [36, 37]. In this study, the finite element
approach is employed to obtain heat flux distribution in the foam structure.

Once the resulting heat flux component along the x-direction on the right
surface Γ is obtained, the effective thermal conductivity of the closed-cell foam
material can be given by [3, 38, 39]

(3.4) ke =
q̄1L

Tin − Tout
,

where the average heat flux component q̄1 is evaluated as [38]:

(3.5) q̄1 =
1

L

(
∫

Ls

q1s dΓ +

∫

Lf

q1f dΓ

)

and Ls and Lf are the respective surface area of the solid and fluid phases with
L = Ls + Lf . L denotes the total area of the right surface of the sample foam.
Practically, for the present 2D foam structure, the line integral (3.5) is evaluated
by the trapezoidal numerical integration.

In this study, the commercial software ABAQUS is employed to investigate
the overall thermal conductivities of the rebuilt 2D closed-cell foam models,
which are assumed to have unit side length to address the generality of analysis.
The solid wall material is assumed to be pure aluminum, which has the thermal
conductivity of 237 W/(mK) at the room temperature (20◦) [28]. Besides, the
thermal conductivity of enclosed air fluid at the room temperature (20◦) is taken
as 0.02569 W/(mK) [28]. Obviously, the thermal conductivity of the aluminum
is 9225 times that of the air in this two-phase foam system. Both the solid wall
phase and the air fluid phase are modeled with DC2D8 elements (see ABAQUS
element library for details). The analysis begins with a specific higher tempera-
ture of 320 K over the left wall and a lower temperature of 300 K over the right
wall of the foam.

The porosity of the rebuilt aluminum foam is assumed to be 0.55, 0.65, 0.75,
0.85 and 0.95, respectively, which covers a large range of porosity. Additionally,
once the foam porosity is specified, a given pore size can be obtained by adjusting
the number of pores. In this work, the number of pores in the foam structure is set
to 100, 200 and 300, respectively. As a result, total 15 different foam structures
are created in the study, as displayed in Fig. 5. To assess the size difference of
these foams, the average radius of pores for each foam structure is defined by

(3.6) raverage =

√

∑N
n=1 Ãn/(N × π).

Table 1 illustrates the variation of the average radius of pores in terms of the
porosity and the number of pores.
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Fig. 5. 15 different foam structures created by the present shrinking algorithm.
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Table 1. Average radius of pores for different foam structures.

Porosity
Number of pores

100 200 300

0.55 0.0418 0.0296 0.0242

0.65 0.0455 0.0322 0.0263

0.75 0.0489 0.0345 0.0282

0.85 0.0520 0.0368 0.0300

0.95 0.0550 0.0389 0.0317

3.2. Asymptotic theoretical models

So far, a wide variety of theoretical modes have been developed for prediction
of thermal conductivity of closed-cell foams (see [40] for a review report in this
area). When the thermal conductivity of the solid phase is far greater than that of
the air phase in metal, i.e. ks ≫ kf , these models can be simplified. Among these
simplified theoretical models, the Parallel–Series, Series–Parallel and Maxwell
models overestimate the thermal conductivity of high-porosity foams, while the
simplified Bruggemann’s model

(3.7)
ke

ks
=

(

ρfoam

ρsolid

)n

= (1 − β)n

can give the prediction close to the experimental data [40]. In Eq. (3.7), the
symbol denotes the density, and the exponent n = 1.5 for the Bruggemann’s
model.

Besides, for the high-porosity metal foams, Kanaun and Babaii Kochekseraii
presented the simplest theoretical prediction with the upper and lower limits of
thermal conductivity of the foam [41], that is,

(3.8)
ke

ks
=

2(1 − β)

3

and

(3.9)
ke

ks
=

(1 − β)

3
.

Evidently, the actual effective thermal conductivities of metal foam structures
with relatively large but finite values of porosity are usually in-between the two
asymptotics defined by Eqs. (3.8) and (3.9).

Apart from the above theoretical predictions, Gong et al. [42] gave the fol-
lowing expression to model the thermal conductivity of the two-phase porous
system (solid and air)

(3.10) (1 − β)
ks − ke

ks + 2km
+ β

kf − ke

kf + 2km
= 0,
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where the value of km is permitted to change for different porous materials to
meet the experimental data [42]. Here, the value of km is determined through
fitting the present numerical results for the developed metallic foam structure.

4. Results and discussion

In this section, the heat conduction in a metal form, shown in Fig. 5, which
is composed of both the solid and air phases, is considered for predicting its
thermal conductivity. The steady-state energy balancing equations presented in
Section 3.1 are solved numerically over the entire foam RVE region by the stan-
dard finite elements method so that we can obtain the temperature fields and
their gradients at any point of the two-phase foam. In practical computation,
a relatively high mesh density of the foam structure is required to achieve ac-
curate and convergent results such that the maximum relative difference in the
predicted thermal conductivity is less than a specified tolerance, say 0.05%. Ta-
ble 2 illustrates four meshes by giving different approximated element sizes for
the foam structure A1 shown in Fig. 5. It is found that the relative difference
decreases from 0.485% to 0.044%, as the element size, is reduced from 0.0136
to 0.0034. The approximated element size 0.0034 can produce extra fine mesh
in the computational domain, which can give better accuracy, as indicated in
Table 2.

Table 2. Variations of results in mesh sensitivity analysis.

Mesh configurations ke

Approximated element size: 0.0136

Mesh1 Number of elements: 6387 67.5234

Number of nodes: 19454

Approximated element size: 0.0068

Mesh2 Number of elements: 29977 67.1959

Number of nodes: 90520

Approximated element size: 0.0045

Mesh3 Number of elements: 68643 67.2561

Number of nodes: 206818

Approximated element size: 0.0034

Mesh4 Number of elements: 120238 67.2268

Number of nodes: 361891

Additionally, from the above procedure, it is noted that the present shrinking
algorithm just produces the foam structure with fully closed pores. Practically,
the pores close to the foam boundary are permitted to be open. Here, a simple
comparison is made for these two different cases. For convenience, the foam model
D2 in Fig. 5 is modified by expanding related edges of pores on the boundary,
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as shown in Fig. 6, to create the foam structure with open boundary pores. The
porosity of the resulted foam is 0.861. Correspondingly, a new foam model with
fully closed pores is created to hold the same porosity by the present shrinking
algorithm. Results in Table 3 indicate that there is a negligible difference between
the values of the effective thermal conductivity of the two foam structures. Thus,
the effect of open boundary pores on the thermal conductivity of foam can be
ignored in practice, and in the following analysis, we just pay our attention to
the foam materials with fully-closed pores.

Fig. 6. Expanding procedure for producing open boundary pores.

Table 3. Comparison of the two foams with same porosity.

Approximated
element size

Number of elements ke

Foam with open boundary pores 2.0 × 10−3 342481 17.5943

Foam with fully closed pores 1.2 × 10−3 949412 17.5465

4.1. Effect of the porosity of foam

It should be noted that the thermal property of metal foams depends on both
the porosity and the pore size. In this section, the effects of the porosity and the
pore size on the effective thermal conductivity of the foam are investigated. Table
4 lists the finite element solutions for fifteen different foam structures generated
using the procedure described above. It is seen that the pore size controlled by
the number of pores has little effect on the effective thermal properties of the
foams when the porosity keeps constant. For the present medium-high porosity,
all relative derivations between the maximum and minimum values are less than
0.5%. In addition, the results in Table 4 indicate that the effective thermal
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conductivity of the present closed-cell foams decreases with the increase in the
porosity, as expected.

Table 4. Numerical results of the effective thermal conductivity for different

foam structures.

Porosity
Number of pores n Relative

derivation
Average

100 200 300

0.55 67.2268 67.2763 67.2803 0.0795% 67.2611

0.65 49.2008 49.2777 49.2666 0.1561% 49.2484

0.75 33.3085 33.3353 33.3024 0.0987% 33.3154

0.85 19.0071 18.9991 18.9632 0.2310% 18.9898

0.95 6.0579 6.0563 6.0794 0.3800% 6.0645

On the other hand, to verify the present numerical results, the theoretical
predictions obtained using Eqs. (3.7), (3.8) and (3.9) as well as the available
experimental results [40] are plotted in Fig. 7, from which it is clearly shown
that the numerical predictions of the normalized effective thermal conductivities
of the foam structure decrease nonlinearly with the increase of porosity and
the values are in-between the upper and lower limits obtained from Eqs. (3.8)
and (3.9). Besides, the experimental results and the theoretical results from the
Bruggemann’s model are all in-between the upper and lower limits. Moreover,
the Bruggemann’s model can provide acceptable fit to the numerical and experi-
mental results.

Fig. 7. Comparison of numerical results and other available solutions.
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In addition, the most obstacle of using the expression in Eq. (3.10) is to
determine the parameter km, whose value depends on the property of the porous
material [42]. To bypass this, the data fitting technique is employed based on the
obtained numerical results in Table 4, and km = 113.943 W/(mK) is obtained for
the present closed-cell foam models. With this value, the expression in Eq. (3.10)
can provide results which match well with the numerical results obtained for the
present medium-high porosity, as shown in Fig. 7.

4.2. Effect of the thermal conductivity of solid material

In this section, dependence of the effective thermal conductivity of the foam
structure on the matrix material is investigated. To do this, two values of β =
0.65 and β = 0.85 covering medium and high porosity are used. The thermal
conductivity of the solid matrix material is assumed to be changed in the range
[0.2, 400] W/(mK), which covers most of materials commonly used in engineer-
ing, from low heat conduction material like cement to high heat conduction
material like pure copper. The number of pores is chosen as 200 for simplifica-
tion. Figure 8 illustrates the variation of the effective thermal conductivity ke

of the foam with respect to ks. It can be seen from Fig. 8 that the effective
thermal conductivity of the foam increases linearly with the increase of thermal
conductivity of the solid matrix phase. This can be attributed to the big differ-
ence of thermal conductivity of solid phase and air phase, which is also the basis
of Eqs. (19)–(21).

Fig. 8. Variation of the effective thermal conductivity of the foam with that of the solid
matrix phase.
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5. Conclusions

In this study, the two-dimensional closed-cell foam model based on the Voro-
noi shrinking technique is geometrically constructed and then numerically ana-
lyzed for predicting the thermal conductivity of the foam. It is found that the
morphological parameters of the foam microstructure such as porosity and wall
thickness can be easily and precisely achieved by adjusting the shrinking ratio.
The present random foam model based on Voronoi tessellation shrinking is ver-
ified using the available theoretical and experimental results. Subsequently, the
effects of porosity, number of pores and solid wall material on the effective ther-
mal conductivity of the foam are investigated. It is observed that the effective
thermal conductivity of the rebuilt foam model nonlinearly decreases with the
increase of the porosity, while it linearly relates to the thermal conductivity of
solid matrix material when there is a big difference of thermal property of solid
material and air enclosed in the pores. Besides, we find that the effective thermal
conductivity of the foam is not sensitive to the minor change from the fully-closed
foam model to that with open boundary pores under the same porosity.
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