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1. Introduction

The prediction of the thermal conductivity of materials with multiple
porosity has been one of hot topics in the area of porous media for more than one
hundred years. Heat transfer in single- and multi-porosity materials has received
much attention in science and engineering, for instance, heat extraction in hot
dry rock, heat transfer in biological tissue, geothermal and oil-gas reservoirs (see
Straughan [1, 2], Miao et al. [3]).

There are two sets of the mathematical models for single and double porosity
materials, where: (i) fluid flow in pore system is described by using Darcy’s law
and (ii) the behavior of porous solids is described by using the mechanics of
materials with voids (vacuous pores).
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The first model for single porosity deformable solid by using the classical
Darcy’s law is presented by Biot [4]. This law has been extended to describe fluid
flow through undeformable double porosity materials in Barenblatt et al. [5],
Warren and Root [6]. The theory for deformable materials with double poros-
ity by using the extended Darcy’s law developed by Wilson and Aifantis [7].
This theory unifies the earlier proposed models of Barenblatt et al. [5] for
porous media with double porosity and Biot [4] for porous media with single
porosity. In the last three decades more general models of the theories of elasticity
and thermoelasticity for double porosity materials by using the extended Darcy’s
law have been introduced in [8–13] and studied by several authors [14–20]. The
mathematical models of elasticity and thermoelasticity are presented by using
the extended Darcy’s law for media with multiple porosity in Bai et al. [21],
Moutsopoulos et al. [22] and Straughan [2]. In addition, in these models
the dependent variables are the displacement vector, the pressures in the pore
networks and the variation of temperature.

Nunziato and Cowin [23, 24] have established a theory for the behavior of
single porous deformable materials in which the skeletal or matrix materials are
elastic and the interstices are voids (vacuous pores). This theory of deformable
materials with voids has been extensively studied by several authors (see [25] and
references therein). Recently, Ieşan and Quintanilla [25] have developed the
theory of Nunziato and Cowin [24] for thermoelastic deformable materials with
double porosity structure by using the mechanics of materials with voids. The
basic BVPs of this theory are studied in [26–29]. In addition, in these models the
dependent variables are the displacement vector, the volume fractions of pores
and fissures and the variation of temperature.

In this paper the linear theory of thermoelasticity of Ieşan and Quin-

tanilla [25] is considered. The purpose of the present paper is to develop the
classical potential method in the linear theory of thermoelasticity for materials
with a double porosity structure with voids (vacuous pores) based on the me-
chanics of materials with voids (see [25]). This work is articulated as follows.
In Section 2 the governing field equations of the considered theory are given.
In Section 3 the fundamental solution of the system of equations of steady vi-
brations is constructed explicitly by means of elementary functions and its basic
properties are established. In Section 4 the Sommerfeld–Kupradze type radiation
conditions are established and the basic internal and external BVPs are formu-
lated. In Section 5 the uniqueness theorems for these problems are proved. In
Section 6 the basic properties of the surface (single-layer and double-layer) and
volume potentials are established and finally, the existence theorems for regu-
lar (classical) solutions of the internal and external BVPs of steady vibrations
are proved by using the potential method and the theory of singular integral
equations.
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2. Governing equations

Let x = (x1, x2, x3) be a point of the Euclidean three-dimensional space R
3,

let t denote the time variable, t ≥ 0. In what follows, we consider an isotropic
and homogeneous elastic material with a double porosity structure with voids
(vacuous pores) that occupies the region Ω of R

3. û = (û1, û2, û3) denotes the
displacement vector, ϕ̂(x, t) and ψ̂(x, t) are the changes of volume fractions from
the reference configuration corresponding to pores and fissures, respectively; θ̂ is
the temperature measured from the constant absolute temperature T0 (T0 > 0).

We assume that subscripts preceded by a comma denote partial differentia-
tion with respect to the corresponding Cartesian coordinate, repeated indices are
summed over the range (1, 2, 3), and the dot denotes differentiation with respect
to t.

The governing field equations in the linear dynamical theory of elastic mate-
rials with a double porosity structure based on the mechanics of materials with
voids have the following form (see [25]):

• Constitutive equations

(2.1)

tlj = λerrδlj + 2µelj + (bϕ̂+ dψ̂ − γ0θ̂)δlj ,

σ̂
(1)
l = αϕ̂,l + βψ̂,l, σ̂

(2)
l = βϕ̂,l + γψ̂,l,

ρη = γ0err + γ1ϕ̂+ γ2ψ̂ + aθ̂, ql = kθ̂,l;

• Equations of motions

(2.2)

tlj,j = ρ(¨̂ul − F̂l),

σ̂
(1)
l,l + ξ̂(1) = ρ1

¨̂ϕ− ρF̂4,

σ̂
(2)
l,l + ξ̂(2) = ρ2

¨̂
ψ − ρF̂5;

• Equation of energy

(2.3) ρT0η̇ = ql,l + ρF̂6.

Here λ, µ, b, d, α, β, γ, α1, α2, α3, γ0, γ1, γ2, a, k are constitutive coefficients, tlj is
the component of the total stress tensor; σ̂(1)

l , σ̂
(2)
l and ql are the components of

the equilibrated stress and the heat flux vectors, respectively; η is the entropy per
unit mass, ρ is the reference mass density, ρ > 0; ρ1 and ρ2 are the coefficients
of the equilibrated inertia, ρ1 > 0, ρ2 > 0; F̂(1) = (F̂1, F̂2, F̂3) is the body force
per unit mass, F̂4 and F̂5 are the extrinsic equilibrated body forces per unit
mass associated to macro pores and fissures, respectively; F̂6 is the heat supply
per unit mass, δlj is the Kronecker’s delta, elj are the components of the strain
tensor,

(2.4) elj = 1
2(ûl,j + ûj,l), l, j = 1, 2, 3,
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the functions ξ̂(1) and ξ̂(2) are the intrinsic equilibrated body forces and defined
by

(2.5) ξ̂(1) = −berr − α1ϕ̂− α3ψ̂ + γ1θ̂, ξ̂(2) = −derr − α3ϕ̂− α2ψ̂ + γ2θ̂.

Remark 1. Clearly, the last two equations of (2.1) and equation (2.3) imply
that in the considered model the heat transport through porous materials is
based on the classical Fourier’s law of heat conduction (parabolic type equation
of heat conduction).

Remark 2. Obviously, in the considered model the temperatures of the solid,
pore and fissure systems are in a local thermal equilibrium, i.e. the solid, pore
and fissure networks have the same temperature. On the other hand, it is very
interesting for engineering and geomechanics the mathematical models of ther-
moelasticity of double porosity materials based on the Maxwell–Cattaneo law of
heat conduction (the hyperbolic type equation of heat conduction) or/and based
on the local thermal non-equilibrium, i.e. the solid, pore and fissure networks are
endowed with their own temperatures.

Substituting Eqs. (2.1), (2.4) and (2.5) into (2.2) and (2.3) we obtain the
following system of equations of motion in the full coupled linear theory of ther-
moelasticity for materials with a double porosity structure expressed in terms of
the displacement vector û, the pressures ϕ̂, ψ̂ and the temperature θ̂:

(2.6)

µ∆û + (λ+ µ)∇ div û + b∇ϕ̂+ d∇ψ̂ − γ0∇θ̂ = ρ(¨̂u − F̂(1)),

α∆ϕ̂+ β∆ψ̂ − α1ϕ̂− α3ψ̂ − bdiv û + γ1∇θ̂ = ρ1
¨̂ϕ− F̂4,

β∆ϕ̂+ γ∆ψ̂ − α3ϕ̂− α2ψ̂ − d div û + γ2∇θ̂ = ρ2
¨̂
ψ − F̂5,

k∆θ̂ − T0(a
˙̂
θ + γ0 div ˙̂u + γ1

˙̂ϕ+ γ2
˙̂
ψ) = −ρF̂6,

where ∆ is the Laplacian operator.

Remark 3. It is well-known that in solid mechanics one encounters two types
of dynamical problems; on the one hand, there are the problems in which the laws
of motion as functions of time are known in advance and usually have a sinusoidal
character; on the other hand, there are the problems in which the character of
the dependence of time is unknown and has to be determined from the solution
itself. The problems of the first type describe the steady-state or the steady
vibrations. The problems of the second type describe the nonstationary motions,
unrestricted with respect to the time. A sufficiently complete bibliography for
the most important classical investigations of this kind is given in Nowacki [30]
and Kupradze et al. [31].

In the follows we study the steady vibrations problems of the full coupled
linear theory of thermoelasticity for materials with a double porosity structure.
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Usually, as in the classical theory of thermoelasticity (see e.g. [30] and [31]),
the steady vibrations case of the dynamic equations means, that all the depen-
dent variables (displacement vector, temperature, etc.) are postulated to have a
harmonic time variation.

Consequently, if the displacement vector û, the volume fractions ϕ̂, ψ̂, the
temperature θ̂ and the components of body forces F̂j (j = 1, . . . , 6) are postu-
lated to have a harmonic time variation, that is,

{û, ϕ̂, ψ̂, θ̂, F̂j}(x, t) = Re[{u, ϕ, ψ, θ, Fj}(x) e−iωt],

then from (2.6) we obtain the following system of equations of steady vibrations
in the linear theory of elasticity for materials with a double porosity structure

(2.7)

(µ∆ + ρω2)u + (λ+ µ)∇ div u + b∇ϕ+ d∇ψ − γ0∇θ = −ρF(1),

(α∆ + η1)ϕ+ (β∆ − α3)ψ − bdiv u + γ1θ = −ρF4,

(β∆ − α3)ϕ+ (γ∆ + η2)ψ − d div u + γ2θ = −ρF5,

(k∆ + a′)θ + γ′0 div u + γ′1ϕ+ γ′2ψ = −ρF6,

where ω is the oscillation frequency, F(1) = (F1, F2, F3), ηl = ρlω
2 − αl, a′ =

iωaT0, γ
′
j = iωγjT0, l = 1, 2, j = 1, 2, 3.

We introduce the matrix differential operator A(Dx) = (Alj(Dx))6×6, where

Alj(Dx) = (µ∆ + ρω2)δlj + (λ+ µ)
∂2

∂xl∂xj
,

Al4(Dx) = b
∂

∂xl
, Al5(Dx) = d

∂

∂xl
, Al6(Dx) = −γ0

∂

∂xl
,

A4l(Dx) = −b ∂
∂xl

, A5l(Dx) = −d ∂

∂xl
, A6l(Dx) = γ′0

∂

∂xl
,

A44(Dx) = α∆ + η1, A45(Dx) = A54(Dx) = β∆ − α3,

A55(Dx) = γ∆ + η2, A46(Dx) = γ1, A56(Dx) = γ2,

A64(Dx) = γ′1, A65(Dx) = γ′2, A66(Dx) = k∆ + a′,

Dx =

(

∂

∂x1
,
∂

∂x2
,
∂

∂x3

)

, l, j = 1, 2, 3.

It is easily seen that the system (2.7) we can rewritten in the following matrix
form

(2.8) A(Dx)U(x) = F(x),

where U = (u, ϕ, ψ, θ) and F = (−ρF1,−ρF2, . . . ,−ρF6) are six-component
vector functions.
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The purpose of this paper is to investigate the internal and external BVPs
of steady vibrations for the system (2.7) by means of the potential method and
the theory of integral equations. For this we need some basic properties of the
fundamental solution of the system (2.7) and the surface and volume potentials.

3. Fundamental solution

In this section the fundamental solution of the system (2.7) (the fundamental
matrix of the operator A(Dx)) is constructed explicitly by means of elementary
functions and its basic properties are established.

Definition 1. The fundamental solution of the system (2.7) is the matrix
Γ(x) = (Γlj(x))6×6 satisfying the following equation in the class of generalized
functions

(3.1) A(Dx)Γ(x) = δ(x)J,

where δ(x) is the Dirac delta, J = (δlj)6×6 is the unit matrix, x ∈ R
3.

We introduce the notation:
1)

Λ1(∆) =
1

kα0µ0
detB(∆),

where

B(∆) =









µ0∆ + ρω2 b∆ d∆ −γ0∆
−b α∆ + η1 β∆ − α3 γ1

−d β∆ − α3 γ∆ + η2 γ2

γ′0 γ′1 γ′2 k∆ + a′









4×4

and α0 = αγ − β2, µ0 = λ + 2µ. We can consider Λ1(−ξ) = 0 as an algebraic
equation of the fourth degree, which admits four roots λ2

1,λ
2
2, λ

2
3 and λ2

4 (with
respect to ξ). Then we have

Λ1(∆) =
4

∏

j=1

(∆ + λ2
j ).

We assume that the values λ2
1, λ

2
2, . . . , λ

2
5 are distinct and different from zero,

where λ2
5 = ρω2/µ.

2)

nj1(∆) = − 1

kα0µµ0
[(λ+ µ)B∗

j1(∆) − bB∗
j2(∆) − dB∗

j3(∆) + γ′0B
∗
j4(∆)],

njl(∆) =
1

kα0µ0
B∗

jl(∆), j = 1, 2, 3, 4, l = 2, 3, 4,

where B∗
lj is the cofactor of the element Blj of matrix B.
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3)

(3.2)

L(Dx) = (Llj(Dx))6×6, Llj(Dx) =
1

µ
Λ1(∆)δlj + n11(∆)

∂2

∂xl∂xj
,

Ll;m+2(Dx) = n1m(∆)
∂

∂xl
, Lm+2;l(Dx) = nm1(∆)

∂

∂xl
,

Lm+2;p+2(Dx) = nmp(∆), l, j = 1, 2, 3, m, p = 2, 3, 4.

4)

(3.3)

Y(x) = (Ylm(x))6×6, Y11(x) = Y22(x) = Y33(x) =
5

∑

j=1

η2jγ
(j)(x),

Y44(x) = Y55(x) = Y66(x) =
4

∑

j=1

η1jγ
(j)(x),

Ylm(x) = 0, l 6= m, l,m = 1, 2, · · · , 6,
where

(3.4) γ(j)(x) = −e
iλj |x|

4π|x|
and

η1m =
4

∏

l=1, l 6=m

(λ2
l −λ2

m)−1, η2j =
5

∏

l=1, l 6=j

(λ2
l −λ2

j )
−1, m = 1, . . . , 4, j = 1, . . . , 5.

We have the following

Theorem 1. If

(3.5) kα0µµ0 6= 0,

then the matrix Γ(x) defined by

(3.6) Γ(x) = L(Dx)Y(x)

is the fundamental solution of the system (2.7), where the matrices L(Dx) and

Y(x) are given by (3.2) and (3.3), respectively.

Proof. On the basis of identities

A(Dx)L(Dx) = Λ(∆), Λ(∆)Y(x) = δ(x)J,

where

Λ(∆) = (Λlj(∆))6×6,

Λ11(∆) = Λ22(∆) = Λ33(∆) = Λ1(∆)(∆ + λ2
5),
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Λ44(∆) = Λ55(∆) = Λ66(∆) = Λ1(∆),

Λlj(∆) = 0, l 6= j, l, j = 1, . . . , 6,

it follows (3.1). 2

Hence, the matrix Γ(x) is constructed by 5 metaharmonic functions (solu-
tions of the Helmholtz equation) γ(j) (j = 1, . . . , 5) (see (3.4)).

Theorem 1 directly leads to the following basic properties of Γ(x).

Theorem 2. Each column of the matrix Γ (x) is a solution of the homoge-

neous equation

(3.7) A(Dx)U(x) = 0

at every point x ∈ R
3 except the origin.

Theorem 3. If the condition (3.5) is satisfied, then the fundamental solution

of the system

µ∆u + (λ+ µ)∇ div u = 0,

α∆ϕ+ β∆ψ = 0, β∆ϕ+ γ∆ψ = 0, k∆θ = 0

is the matrix Ψ(x) = (Ψlj(x))6×6, where

(3.8)

Ψlj(x) =
1

µ

(

∆δlj −
λ+ µ

µ0

∂2

∂xl∂xj

)

γ(6)(x) = λ′
δlj
|x| + µ′

xlxj

|x|3 ,

Ψ44(x) =
γ

α0
γ(7)(x), Ψ45(x) = Ψ45(x) = − β

α0
γ(7)(x),

Ψ55(x) =
α

α0
γ(7)(x), Ψ66(x) =

1

k
γ(7)(x),

Ψl;j+3(x) = Ψl+3;j(x) = Ψm6(x) = Ψ6m(x) = 0,

γ(6)(x) = −|x|
8π
, γ(7)(x) = − 1

4π|x| ,

λ′ = −λ+ 3µ

8πµµ0
, µ′ = − λ+ µ

8πµµ0
, l, j = 1, 2, 3, m = 4, 5.

Obviously, (3.6) and (3.8) imply the following results.

Corollary 1. The relations

(3.9) Ψlj(x) = O(|x|−1), Ψmm(x) = O(|x|−1) (no sum)

hold in the neighborhood of the origin, where l, j = 1, 2, 3 and m = 4, 5, 6.
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Theorem 4. The relations

Γlj(x) = O(|x|−1), Γmr(x) = O(|x|−1),

Γ66(x) = O(|x|−1), Γl;j+3(x) = O(1),

Γl+3;j(x) = O(1), Γm6(x) = O(1), Γ6m(x) = O(1)

hold in the neighborhood of the origin, where l, j = 1, 2, 3, m, r = 4, 5.

On the basis of Theorem 4 and Corollary 1 we can prove the following

Theorem 5. The relations

(3.10) Γlj(x) − Ψlj(x) = const.+O(|x|)

hold in the neighborhood of the origin, where l, j = 1, . . . , 6.

Thus, in view of (3.9) and (3.10), matrix Ψ(x) gives the singular part of the
fundamental solution Γ(x) in the neighborhood of the origin.

4. Boundary value problems

In what follows we assume that the constitutive coefficients satisfy the in-
equalities

(4.1)
µ > 0, 3λ+ 2µ > 0, α > 0, α0 > 0,

α1 > 0, (3λ+ 2µ)β0 > 3β1, a > 0, k > 0.

where β0 = α1α2 − α2
3, β1 = α1d

2 − 2α3bd+ α2b
2.

Obviously, the condition (4.1) implies

α2 > 0, β0 > 0, γ > 0, µ0 > 0, µ0β0 > β1 ≥ 0.

Let S be the closed surface surrounding the finite domain Ω+ in R
3, S ∈ C1,ν ,

0 < ν ≤ 1, Ω+ = Ω+ ∪ S; n(z) is the external unit normal vector to S at z.
The scalar product of two vectors U = (u1, u2, . . . , u6) and V = (v1, v2, . . . , v6)
is denoted by U · V =

∑6
j=1 uj v̄j , where v̄j is the complex conjugate of vj .

Definition 2. A vector function U = (u, ϕ, ψ, θ) = (U1, U2, . . . , U6) is called
regular in Ω− (or Ω+) if

(i) Ul ∈ C2(Ω−) ∩ C1(Ω−) (or Ul ∈ C2(Ω+) ∩ C1(Ω+)),

(ii) Ul =
5

∑

j=1

U
(j)
l , U

(j)
l ∈ C2(Ω−) ∩ C1(Ω̄−),
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(iii) (∆ + λ2
j )U

(j)
l (x) = 0 and

(4.2)

(

∂

∂|x| − iλj

)

U
(j)
l (x) = eiλj |x|o(|x|−1) for |x| ≫ 1,

where U (5)
4 = U

(5)
5 = U

(5)
6 = 0, j = 1, . . . , 5, l = 1, . . . , 6.

In Vekua [32] it is proved that the relation (4.2) implies

(4.3) U
(j)
l (x) = eiλj |x|O(|x|−1) for |x| ≫ 1,

where j = 1, . . . , 5, l = 1, . . . , 6.
Relations (4.2) and (4.3) are the Sommerfeld-Kupradze type radiation condi-

tions in the full coupled linear theory of thermoelasticity for solids with a double
porosity structure.

In the sequel, we use the matrix differential operator

P(Dx,n) = (Plj(Dx,n))6×6,

where

(4.4)

Plj(Dx,n) = µδlj
∂

∂n
+µnj

∂

∂xl
+λnl

∂

∂xj
, Pl4(Dx,n) = bnl,

Pl5(Dx,n) = dnl, Pl6(Dx,n) = −γ0nl, P44(Dx,n) = α
∂

∂n
,

P45(Dx,n) = P54(Dx,n) = β
∂

∂n
, P55(Dx,n) = γ

∂

∂n
,

P66(Dx,n) = k
∂

∂n
,

Pl+3;j(Dx,n) = Pm6(Dx,n) = P6m(Dx,n) = 0, l, j = 1, 2, 3, m = 4, 5

and ∂/∂n is the derivative along the vector n.
The basic internal and external BVPs of steady vibrations in the theory of

thermoelasticity for materials with double porosity structure are formulated as
follows.

Find a regular (classical) solution to (2.8) for x ∈ Ω+ satisfying the boundary
condition

(4.5) lim
Ω+∋x→z∈S

U(x) ≡ {U(z)}+ = f(z)

in the internal Problem (I)+F,f ,

(4.6) lim
Ω+∋x→z∈S

P(Dx,n(z))U(x) ≡ {P(Dz,n(z))U(z)}+ = f(z)

in the internal Problem (II )+F,f , where F and f are prescribed six-component
vector functions.
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Find a regular (classical) solution to (2.8) for x ∈ Ω− satisfying the boundary
condition

lim
Ω−∋x→z∈S

U(x) ≡ {U(z)}− = f(z)

in the external Problem (I)−F,f ,

(4.7) lim
Ω−∋x→z∈S

P(Dx,n(z))U(x) ≡ {P(Dz,n(z))U(z)}− = f(z)

in the external Problem (II )−F,f , where F and f are prescribed six-component
vector functions, suppF is a finite domain in Ω−.

5. Uniqueness theorems

In this section the uniqueness of regular solutions of the BVPs (K)+F,f and
(K)−F,f is studied, where K = I, II . In the sequel we use the matrix differential
operators:

A(0)(Dx) = (A
(0)
lj (Dx))3×3, A

(0)
lj (Dx) = µ∆δlj + (λ+ µ)

∂2

∂xl∂xj
,1)

A(1)(Dx) = (A
(1)
lr (Dx))3×6, A

(1)
lr (Dx) = Alr(Dx),

A(m)(Dx) = (A
(m)
1r (Dx))1×6, A

(m)
1r (Dx) = Am+2;r(Dx);

P(0)(Dx,n) = (P
(0)
lj (Dx,n))3×3, P

(0)
lj (Dx,n) = Plj(Dx,n),2)

P(1)(Dx,n) = (P
(1)
lr (Dx,n))3×6, P

(1)
lr (Dx,n) = Plr(Dx,n),

where l, j = 1, 2, 3, m = 2, 3, 4 and r = 1, . . . , 6.
We introduce the notation

(5.1)

W (0)(u) =
1

3
(3λ+ 2µ)|div u|2 +

µ

2

3
∑

l,j=1, l 6=j

∣

∣

∣

∣

∂uj

∂xl
+
∂ul

∂xj

∣

∣

∣

∣

2

+
µ

3

3
∑

l,j=1

∣

∣

∣

∣

∂ul

∂xl
− ∂uj

∂xj

∣

∣

∣

∣

2

,

W (1)(U) = W (0)(u) − ρω2|u|2 + (bϕ+ dψ − γ0θ) div u,

W (2)(U) = α|∇ϕ|2 + β∇ψ · ∇ϕ− (η1ϕ− α3ψ − bdiv u + γ1θ)ϕ,

W (3)(U) = β∇ϕ · ∇ψ + γ|∇ψ|2 − (−α3ϕ+ η2ψ − d div u + γ2θ)ψ,

W (4)(U) = k|∇θ|2 − (a′θ + γ′0 div u + γ′1ϕ+ γ′2ψ)θ.



358 M. Svanadze

We have the following

Lemma 1. If U = (u, ϕ, ψ, θ) is a regular vector in Ω+, then

(5.2)

∫

Ω+

[A(1)(Dx)u(x) · U(x) +W (1)(U)] dx

=

∫

S

P(1)(Dz,n)U(z) · u(z) dzS,

∫

Ω+

[A(2)(Dx)u(x)ϕ(x) +W (2)(U)] dx =

∫

S

(

α
∂ϕ

∂n
+ β

∂ψ

∂n

)

ϕ(z) dzS,

∫

Ω+

[A(3)(Dx)u(x)ψ(x) +W (3)(U)] dx =

∫

S

(

β
∂ϕ

∂n
+ γ

∂ψ

∂n

)

ψ(z) dzS,

∫

Ω+

[A(4)(Dx)u(x)θ(x) +W (4)(U)] dx =

∫

S

k
∂θ

∂n
θ(z) dzS.

Proof. On the basis of the divergence theorem the following identities are
proved (see [31])

(5.3)

∫

Ω+

[A(0)(Dx)u(x) · u(x) +W (0)(u)] dx =

∫

S

P(0)(Dz,n)u(z) · u(z) dzS,

∫

Ω+

[∆ϕ(x)ψ(x) + ∇ϕ(x) · ∇ψ(x)] dx =

∫

S

∂ϕ(z)

∂n(z)
ψ(z) dzS,

∫

Ω+

[∇ϕ(x) · u(x) + ϕ(x) div u(x)]dx =

∫

S

ϕ(z)n(z) · u(z) dzS.

Keeping in mind (5.1), from (5.3) we obtain the identities (5.2). 2

We are now in a position to study the uniqueness of regular solutions of the
BVPs (K)+F,f and (K)−F,f , where K = I, II . We have the following results.

Theorem 6. Two regular solutions of the internal BVP (I)+F,f , may differ

only for an additive vector U = (u, ϕ, ψ, θ), where

(5.4) θ(x) = 0 for x ∈ Ω+

and the five-component vector V = (u, ϕ, ψ) is a regular solution of the following

system

(5.5)

(µ∆ + ρω2)u + (λ+ µ)∇ div u + b∇ϕ+ d∇ψ = 0,

(α∆ + η1)ϕ+ (β∆ − α3)ψ − bdiv u = 0,

(β∆ − α3)ϕ+ (γ∆ + η2)ψ − d div u = 0,

γ0 div u + γ1ϕ+ γ2ψ = 0
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satisfying the boundary condition

(5.6) {V(z)}+ = 0 for z ∈ S.

In addition, problems (I)+0,0 and (5.5), (5.6) have the same eigenfrequencies.

Proof. Suppose that there are two regular solutions of problem (I)+F,f . Then
their difference U is a regular solution of the internal homogeneous BVP (I)+0,0.
Hence, U is a regular solution of the homogeneous system of equations (3.7) in
Ω+ satisfying the homogeneous boundary condition

(5.7) {U(z)}+ = 0 for z ∈ S.

On the basis of (3.7) and (5.7), from (5.2) we obtain

(5.8)

∫

Ω+

W (j)(U) dx = 0, j = 1, 2, 3, 4.

Clearly, from (5.1) we have

ReW (4)(U) − ωT0Im [W (1)(U) +W (2)(U) +W (3)(U)] = k|∇θ|2

and from (5.8) it follows that
∫

Ω+

|∇θ(x)|2 dx = 0.

Hence, ∇θ(x) ≡ 0 in Ω+ and consequently,

(5.9) θ(x) = c = const for x ∈ Ω+.

On the basis of the homogeneous boundary condition (5.7) from (5.9) we obtain
the relation (5.4). By virtue of (5.4) from (3.7) we get the system (5.5). Obviously,
in view of the condition (5.7) the five-component vector V = (u, ϕ, ψ) satisfies
the boundary condition (5.6).

Finally, it is easy to see that the homogeneous boundary value problems
(I)+0,0 and (5.5), (5.6) have the same eigenfrequencies. 2

Remark 4. In the particular case, when porosities are neglected in the
isotropic elastic solid (i.e. ϕ = ψ ≡ 0), the BVP (5.5), (5.6) is reduced to the
following BVP

(5.10) (µ∆ + ρω2)u(x) = 0, div u(x) = 0, {u(z)}+ = 0

for x ∈ Ω+, z ∈ S. On the other hand, in the classical theory of thermoelasticity,
the first internal homogeneous BVP of steady vibrations is reduced to the BVP
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(5.10) (see [31]). In Dafermos [33], the existence of eigenfrequencies of the
homogeneous BVP (5.10) is proved.

Let R(Dz,n(z)) be the following matrix differential operator

R(Dz,n(z)) = (Rlj(Dz,n(z)))5×5, Rlj = Plj , l, j = 1, . . . , 5.

where Plj is given by (4.4).

Theorem 7. Two regular solutions of the internal BVP (II )+F,f , may differ

only for an additive vector U = (u, ϕ, ψ, θ), where θ satisfies the condition (5.4),
the vector V = (u, ϕ, ψ) is a regular solution of the system (5.5) satisfying the

boundary condition

(5.11) {R(Dz,n(z))V(z)}+ = 0 for z ∈ S.

In addition, problems (I)+0,0 and (5.5), (5.11) have the same eigenfrequencies.

Proof. Suppose that there are two regular solutions of problem (II )+F,f . Then
their difference U is a regular solution of the internal homogeneous BVP (II )+0,0.
Hence, U is a regular solution of the homogeneous system of equations (3.7) in
Ω+ satisfying the homogeneous boundary condition

(5.12) {P(Dz,n(z))U(z)}+ = 0 for z ∈ S.

Quite similarly as in Theorem 6, we obtain the relation (5.9). On the other hand,
from (3.7) it follows that

(5.13) Λ1(∆)θ(x) = 0.

By virtue of (5.9) and the relation λj 6= 0 (j = 1, . . . , 5) from (5.13) we have
(5.4) and consequently, the system (3.7) implies (5.5). Obviously, in view of the
condition (5.12) the vector V satisfies the boundary condition (5.11).

Finally, it is easy to see that the homogeneous boundary value problems
(II )+0,0 and (5.5), (5.11) have the same eigenfrequencies. 2

Remark 5. In the particular case, when porosities are neglected in the
isotropic elastic solid (i.e. ϕ = ψ ≡ 0), the BVP (5.5), (5.11) is reduced to
the following BVP

(5.14)

(µ∆ + ρω2)u(x) = 0, div u(x) = 0,
{

2
∂u(z)

∂n(z)
+ [n(z) × curlu(z)]

}+

= 0

for x ∈ Ω+, z ∈ S, where [n × curlu] is the vector product of the vectors n

and curlu. On the other hand, in the classical theory of thermoelasticity, the



Boundary value problems of steady vibrations. . . 361

second internal homogeneous BVP of steady vibrations is reduced to the BVP
(5.14) (see [31]). In [33], the existence of eigenfrequencies of the homogeneous
BVP (5.14) is proved.

Theorem 8. The external BVP (K)−F,f has one regular solution, where

K = I, II .

Theorem 8 can be proved similarly to Theorems 6 and 7 using the radiation
conditions (4.2) and (4.3).

6. Existence theorems

In the sequel we use the matrix differential operator

P̃(Dx,n) = (P̃lj(Dx,n))6×6,

where

P̃lm(Dx,n) = Plm(Dx,n), Pl6(Dx,n) = −γ′0 nl,

P̃l+3;j(Dx,n) = Pl+3;j(Dx,n), l = 1, 2, 3, m = 1, . . . , 5, j = 1, . . . , 6.

It is easy to verify that the operator P̃(Dx,n) may be obtained from the operator
P(Dx,n) by replacing γ0 by γ′0 and vice versa.

We introduce the following notation:

1) Z(1)(x,g) =
∫

S Γ(x − y)g(y) dyS (single-layer potential),

2) Z(2)(x,g) =
∫

S [P̃(Dy,n(y))Γ⊤(x − y)]⊤g(y) dyS (double-layer potential),

3) Z(3)(x,φ, Ω±) =
∫

Ω± Γ(x − y)φ(y) dy (volume potential),

where Γ(x) = (Γlj(x))6×6 is the fundamental matrix of the operator A(Dx)
defined by (3.6); g and φ are six-component vector functions; Γ⊤ is the transpose
of the matrix Γ.

On the basis of properties of the matrix Γ(x) (see section 3) we have the
following results.

Theorem 9. If S ∈ Cm+1,ν , g ∈ Cm,ν ′

(S), 0 < ν ′ < ν ≤ 1, and m is a

non-negative integer, then:

a) Z(1)(·,g) ∈ C0,ν′

(R3) ∩ Cm+1,ν′

(Ω±) ∩ C∞(Ω±),

b) A(Dx)Z(1)(x,g) = 0,

(6.1) c) {P(Dz,n(z))Z(1)(z,g)}± = ∓1
2g(z) + P(Dz,n(z))Z(1)(z,g),

d) P(Dz,n(z))Z(1)(z,g)

is a singular integral, where z ∈ S, x ∈ Ω±.
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Theorem 10. If S ∈ Cm+1,ν , g ∈ Cm,ν ′

(S), 0 < ν ′ < ν ≤ 1, then:

a) Z(2)(·,g) ∈ Cm,ν′

(Ω±) ∩ C∞(Ω±),

b) A(Dx)Z(2)(x,g) = 0,

c) {Z(2)(z,g)}± = ±1
2 g(z) + Z(2)(z,g)(6.2)

for the non-negative integer m,

d) Z(2)(z,g) is a singular integral, where z ∈ S,

e) {P(Dz,n(z))Z(2)(z,g)}+ = {P(Dz,n(z))Z(2)(z,g)}−, for the natural

number m, where z ∈ S, x ∈ Ω±.

Theorem 11. If S ∈ C1,ν , φ ∈ C0,ν′

(Ω+), 0 < ν ′ < ν ≤ 1, then:

a) Z(3)(·,φ, Ω+) ∈ C1,ν′

(R3) ∩ C2(Ω+) ∩ C2,ν′

(Ω+
0 ),

b) A(Dx)Z(3)(x,φ, Ω+) = φ(x),

where x ∈ Ω+, Ω+
0 is a domain in R

3 and Ω+
0 ⊂ Ω+.

Theorem 12. If S ∈ C1,ν , suppφ = Ω ⊂ Ω−, φ ∈ C0,ν′

(Ω−), 0<ν ′<ν≤1,
then:

a) Z(3)(·,φ, Ω−) ∈ C1,ν′

(R3) ∩ C2(Ω−) ∩ C2,ν′

(Ω−
0 ),

b) A(Dx)Z(3)(x,φ, Ω−) = φ(x),

where x ∈ Ω−, Ω is a finite domain in R
3 and Ω−

0 ⊂ Ω−.

We introduce the notation

(6.3)

K(1)g(z) ≡ 1
2g(z) + Z(2)(z,g),

K(2)g(z) ≡ −1
2g(z) + P(Dz,n(z))Z(1)(z,g),

K(3)g(z) ≡ −1
2g(z) + Z(2)(z,g),

K(4)g(z) ≡ 1
2g(z) + P(Dz,n(z))Z(1)(z,g),

Kχg(z) ≡ 1
2g(z) + χZ(2)(z,g)

for z ∈ S, where χ is a complex number. Obviously, on the basis of Theorems 9
and 10, Kj and Kχ are the singular integral operators (j = 1, 2, 3, 4).

Let σ(j) = (σ
(j)
lm)6×6 be the symbol of the singular integral operator K(j)

(j = 1, 2, 3, 4) (see [31]). Taking into account (6.3) we find

(6.4) detσ(j) =
1

64

[

1 − µ2

(λ+ 2µ)2

]

=
(λ+ µ)(λ+ 3µ)

64(λ+ 2µ)2
> 0.

Hence, the operator K(j) is of the normal type, where j = 1, 2, 3, 4.
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Let σχ and indKχ be the symbol and the index of the operator Kχ, respec-
tively. It may be easily shown that

detσχ =
(λ+ 2µ)2 − µ2χ2

64(λ+ 2µ)2

and detσχ vanishes only at two points χ1 and χ2 of the complex plane. By virtue
of (6.4) and detσ1 = detσ(1) we get χj 6= 1 (j = 1, 2) and

indK1 = indK(1) = indK0 = 0.

Quite similarly we obtain indK(2) =−indK(3) =0 and indK(4) =−indK(1) =0.
Thus, the singular integral operator K(j) (j = 1, 2, 3, 4) is of the normal

type with an index equal to zero. Consequently, Fredholm’s theorems are valid
for K(j).

Remark 6. The definitions of a normal type singular integral operator, the
symbol and the index of operator, and Fredholm’s theorems for the singular
integral equations are given in Kupradze et al. [31] and Mikhlin [34].

By Theorems 11 and 12 the volume potential Z(3)(x,F, Ω±) is a regular
solution of (2.8), where F ∈ C0,ν′

(Ω±), 0 < ν ′ ≤ 1; suppF is a finite domain
in Ω−. Therefore, further we will consider problems (K)+0,f and (K)−0,f , where
K = I, II . Now, we prove the existence theorems of a regular (classical) solution
of these BVPs.

Problem (I)+0,f . Let us assume that ω is not an eigenfrequency of the BVP
(I)+0,0. We seek a regular solution to this problem in the form of the double-layer
potential

(6.5) U(x) = Z(2)(x,g) for x ∈ Ω+,

where g is the required six-component vector function.
Obviously, by Theorem 10 the vector function U is a solution of (3.7) for

x ∈ Ω+. Keeping in mind the boundary condition (4.5) and using (6.2), from
(6.5) we obtain, for determining the unknown vector g, a singular integral equa-
tion

(6.6) K(1)g(z) = f(z) for z ∈ S.

We prove that the equation (6.6) is always solvable for an arbitrary vector f .
Let us consider the associate homogeneous equation

(6.7) K(4)h(z) = 0 for z ∈ S,

where h is the required six-component vector function. Now, we prove that (6.7)
has only the trivial solution.
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Indeed, let h0 be a solution of the homogeneous equation (6.7). On the basis
of Theorem 9 and Eq. (6.1) the vector function V(x) = Z(1)(x,h0) is a regu-
lar solution of the external homogeneous BVP (II )−0,0. Using Theorem 8, the
problem (II )−0,0 has only the trivial solution, that is

(6.8) V(x) ≡ 0 for x ∈ Ω−.

On the other hand, by Theorem 9 and (6.8) we get

{V(z)}+ = {V(z)}− = 0 for z ∈ S,

i.e., on the basis of Theorem 9 the vector V(x) is a regular solution of the problem
(I)+0,0. Using Theorem 6 and the assumption that ω is not an eigenfrequency of
the BVP (I)+0,0, the problem (I)+0,0 has only the trivial solution, that is

(6.9) V(x) ≡ 0 for x ∈ Ω+.

By virtue of (6.8), (6.9) and the identity (6.1) we obtain

h0(z) = {P(Dz,n)V(z)}− − {P(Dz,n)V(z)}+ = 0 for z ∈ S.

Thus, the homogeneous equation (6.7) has only the trivial solution and therefore
on the basis of Fredholm’s theorem the integral equation (6.6) is always solvable
for an arbitrary vector f . We have thereby proved

Theorem 13. If S ∈ C2,ν , f ∈ C1,ν′

(S), 0 < ν ′ < ν ≤ 1, and ω is not an

eigenfrequency of the BVP (I)+0,0, then a regular solution of the internal BVP

(I)+0,f exists, is unique and is represented by the double-layer potential (6.5),
where g is a solution of the singular integral equation (6.6) which is always

solvable for an arbitrary vector f .

Problem (II )+0,f . Let us assume that ω is not an eigenfrequency of the BVP
(II )+0,0. We seek a regular solution to this problem in the form of the single-layer
potential

(6.10) U(x) = Z(1)(x,g) for x ∈ Ω+,

where g is the required six-component vector function.

Obviously, by Theorem 9 the vector function U is a solution of (3.7) for
x ∈ Ω+. Keeping in mind the boundary condition (4.6) and using (6.1), from
(6.10) we obtain, for determining the unknown vector g, a singular integral
equation

(6.11) K(2)g(z) = f(z) for z ∈ S.

We prove that the equation (6.11) is always solvable for an arbitrary vector f .
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Let us consider the homogeneous equation

(6.12) −1

2
g0(z) + R(Dz,n)Z(1)(z,g0) = 0 for z ∈ S,

where g0 is the required six-component vector function. Now we prove that (6.12)
has only the trivial solution. On the basis of Theorem 9 and Eq. (6.12) the vector
function V(x) = Z(1)(x,g0) is a regular solution of the internal homogeneous
BVP (II)+0,0. Using Theorem 7 and the assumption that ω is not an eigenfre-
quency of the problem (II)+0,0, this problem has only the trivial solution, that
is

(6.13) V(x) ≡ 0 for x ∈ Ω+.

On the other hand, by Theorem 9 and (6.13) we get

{V(z)}− = {V(z)}+ = 0 for z ∈ S,

i.e., on the basis of Theorem 9 the vector V(x) is a regular solution of problem
(I)−0,0. Using Theorem 8 the problem (I)−0,0 has only the trivial solution, that is

(6.14) V(x) ≡ 0 for x ∈ Ω−.

By virtue of (6.13), (6.14) and the identity (6.1) we obtain

g0(z) = {P(Dz,n)V(z)}− − {P(Dz,n)V(z)}+ = 0 for z ∈ S.

Thus, the homogeneous equation (6.12) has only the trivial solution and therefore
on the basis of Fredholm’s theorem the integral equation (6.11) is always solvable
for an arbitrary vector f .

We have thereby proved

Theorem 14. If S ∈ C2,ν , f ∈ C0,ν′

(S), 0 < ν ′ < ν ≤ 1, and ω is not an

eigenfrequency of the BVP (II )+0,0, then a regular solution of the internal BVP

(II )+0,f exists, is unique and is represented by the single-layer potential (6.10),
where g is a solution of the singular integral equation (6.11) which is always

solvable for an arbitrary vector f .

Problem (I)−0,f . Quite similarly the following theorem is proved.

Theorem 15. If S ∈ C2,ν , f ∈ C1,ν′

(S), 0 < ν ′ < ν ≤ 1, then a regular

solution U of the external BVP (I)−0,f exists, is unique and is represented by the

sum of double-layer and single-layer potentials

U(x) = Z(2)(x,g) + (1 − i)Z(1)(x,g) for x ∈ Ω−,
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where g is a solution of the singular integral equation

K(3) g(z) + (1 − i)Z(1)(z,g) = f(z) for z ∈ S.

which is always solvable for an arbitrary vector f .

Problem (II )−0,f . We seek a regular solution to this problem in the form

(6.15) U(x) = Z(1)(x,h) + U∗(x) for x ∈ Ω−,

where h is the required six-component vector function and the six-component
vector function U∗ is a regular solution of the equation

(6.16) A(Dx)U∗(x) = 0 for x ∈ Ω−.

Keeping in mind the boundary condition (4.7) and using (6.1), from (6.15)
we obtain the following singular integral equation for determining the unknown
vector h

(6.17) K(4) h(z) = f∗(z) for z ∈ S,

where

(6.18) f∗(z) = f(z) − {P(Dz,n)U∗(z)}−.

Now, we prove that the equation (6.17) is always solvable for an arbitrary
vector f . We assume that the homogeneous equation

(6.19) K(4)h(z) = 0

has m linearly independent solutions {h(l)(z)}m
l=1 that are assumed to the or-

thonormal. By Fredholm’s theorem the solvability condition of Eq. (6.17) can be
written as

(6.20)

∫

S

{P(Dz,n)U∗(z)}− ·ψ(l)(z)dzS = Nl,

where
Nl =

∫

S

f(z) ·ψ(l)(z)dzS

and {ψ(l)(z)}m
l=1 is a complete system of solutions of the homogeneous associated

equation of (6.19), i.e.

K(1)ψ(l) = 0, l = 1, . . . ,m.
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It is easy to see that the condition (6.20) takes the form (for details see [31])

(6.21)

∫

S

h(l)(z) · {U∗(z)}−dzS = −Nl, l = 1, . . . ,m.

Let the vector U∗ be a solution of (6.16) and satisfies the boundary condition

(6.22) {U∗(z)}− = f̂(z),

where

(6.23) f̂(z) =
m

∑

l=1

Nlh
(l)(z).

By virtue of Theorem 15 the BVP (6.16), (6.22) is always solvable. Because of the
orthonormalization of {h(l)(z)}m

l=1, the condition (6.21) is fulfilled automatically
and the solvability of (6.17) is proved. Consequently, the existence of a regular
solution of the problem (II )−0,f is proved too. Thus, the following theorem has
been proved.

Theorem 16. If S ∈ C2,ν , f ∈ C0,ν ′

(S), 0 < ν ′ < ν ≤ 1, then a regular

solution U of the external BVP (II )−0,f exists, is unique and is represented by

the sum (6.15), where h is a solution of the singular integral equation (6.17)
which is always solvable, U∗ is the solution of BVP (6.16),(6.22) which is always

solvable; and the vector functions f∗ and f̂ are determined by (6.18) and (6.23),
respectively.

7. Concluding remarks

1. In this paper the linear theory of thermoelasticity for materials with a dou-
ble porosity structure based on the mechanics of materials with voids is consid-
ered and the following results are obtained:

i) the fundamental solution of the system of equations of steady vibrations is
constructed explicitly by means of elementary functions and its basic properties
are established;

ii) the Sommerfeld-Kupradze type radiation conditions are established;
iii) the uniqueness theorems of the basic internal and external BVPs of steady

vibrations are proved;
iv) the basic properties of the surface (single-layer and double-layer) and

volume potentials are established;
v) the existence theorems for regular (classical) solutions of the above men-

tioned BVPs are proved by using the potential method and the theory of singular
integral equations.
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2. On the basis of results of this paper it is possible to construct the funda-
mental solution and to prove the uniqueness and existence theorems in the linear
theories of elasticity and thermoelasticity for materials with a multiple poros-
ity structure by using the potential method and the theory of singular integral
equations.

3. The BVPs of the classical theories of elasticity and theormoelasticity are
investigated by using the potential method in Kupradze et al. [31], Kupradze

[35], Burchuladze and Gegelia [36]. An extensive review of works on this
method can be found in Gegelia and Jentsch [37].
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