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This paper presents the patient-specific simulations of the aortic valve based
on the proposed geometric model. A structural analysis is performed by using the
finite element method to determine the stress-strain state of the aortic valve. The
study is focused on the investigation of various turbulence models crucial for the
appropriate description of the flow in the deceleration phase, following the peak sys-
tole. A comparative study of the flow solution without a turbulence model and the
numerical results obtained by using various turbulence models is also performed. The
results yielded by the shear-stress transport k-ω model supplemented with the in-
termittency transition equation most closely match those of numerical simulations
without a turbulence model.
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1. Introduction

Heart diseases are the leading cause of human deaths in the world.
The highest standardized death rates from the cardiovascular diseases were often
recorded in Eastern Europe [1]. The aortic stenosis is one of the most common
valvular disorders encountered in clinical practice, and its prevalence is expected
to increase in Europe and North America [2]. The assessment of the aortic steno-
sis severity is still a challenge for researchers because the definition of severe
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stenosis has changed during the past years and differs from one guideline to an-
other [3]. Severe aortic stenosis is usually defined in terms of the aortic valve
area and the mean pressure gradient. However, discrepancies are frequently ob-
served between the mean gradient and the valve area in a single patient [4]. They
may potentially lead to underestimation of the stenosis and symptom severity
and thus to inappropriate delay of the aortic valve replacement, which may have
a negative impact on the patient’s outcome. These patients represent the most
challenging category with respect to the appropriate diagnostic and therapeutic
management [5].

The velocity and pressure field of the valve flow are the main quantities of
interest for the assessment of stenotic severity. Sufficiently accurate computa-
tional models combined with medical imaging can serve as an alternative tool
for medical research providing a better quantitative knowledge of the heart flow
haemodynamics required for improving the diagnostic and patient care [6]. In this
context, the use of computational fluid dynamics (CFD) has gained relevance for
the heart valve assessment [7]. It has been shown that the combination of CFD
and medical imaging techniques can be highly effective in studying complex car-
diovascular dynamics and can provide the detailed haemodynamic information
that is unobtainable by using the direct measurement techniques [8, 9]. Despite
the progress in the numerical methods and the constantly increasing power of
modern computers, the considered problem is still very challenging, owing to
complex moving geometries, intrinsic flow unsteadiness and very intense veloc-
ity gradients [9].

Two different approaches are currently used for the numerical solution of the
considered problem. Models taking into account the fluid-structure interaction
(FSI) are very promising. The first attempt to model the FSI problem was un-
dertaken by Peskin [10], who introduced the immersed boundary method. This
method was extended to include the 3D problems and applied to several valve
and heart simulations. The fictitious domain is another variant of the Eulerian
method, in which the influence of the wall on the flow is imposed by using the
velocity constraints only. A few studies employed the fictitious domain method
in the FSI simulations of the aortic valve [11, 12], but none of them succeeded
in employing physiological boundary conditions. The experimental validation of
FSI computations applied to a two-dimensional aortic valve model was demon-
strated by De Hart [12]. The of the 3D patient-specific aortic root and valve was
presented by Nicosia et al. [13]. The computations were made in an uncoupled
manner and took into account the opening and closing behaviour. The aortic
valve and root were modelled using the Hughes–Liu shell elements with linear
elastic material behaviour. For stability reasons, the peak diastolic pressure was
reduced. The initial FSI analyses of the heart valves [12, 13] were restricted to
non-physiological flow regimes due to computational challenges. More recently,
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the attempts to investigate the coupled interaction of valves with the complex
haemodynamic environment in anatomic, patient-specific domains was also made
in [14]. With the advent of massively parallel computational platforms, continu-
ous algorithmic advances of separate numerical codes and FSI coupling [15, 16],
and the 3D FSI simulations of the heart valves in patient-specific left heart
anatomies could be performed [17]. The review on the coupled multiscale and
multiphysics models for the simulation of the cardiac function, including the
cardiac electrophysiology system as well as the haemodynamics inside the heart
chambers were presented by Quarteroni et al. [18]. However, the FSI compu-
tations require profound knowledge of the complex tissue rheology [19], the elec-
trical properties [20] or even the external load due to the surrounding organs [9].
It is hardly possible to obtain the required data in a non-invasive way today.

An alternative approach based on the geometry extracted from medical im-
ages seems to be better suited for patient-specific analysis and is compatible with
clinical routine [9]. With the advent of ultrasound, computer tomography and
magnetic resonance imaging modalities, as well as with advances in image pro-
cessing techniques, it is now possible to obtain patient-specific, morphologically
realistic 3D images of the heart valves at various time instances in the cardiac
cycle. Therefore, a patient-specific structural and haemodynamic analysis is be-
ing increasingly used in biomechanics of blood circulation. The initial attempts
to simulate the blood flow in the heart chambers were based on simplified geome-
tries, e.g., straight axisymmetric aortic lumens [21]. Bluestein et al. [22] have
performed the 2D unsteady turbulent simulations of the mechanical valve for
the fixed leaflet position to study platelet activation. Marquez et al. [23] have
shown that different aortic valve geometries have significantly different haemo-
dynamics in the valve wake. A series of the valve leaflet deformed geometries,
from the valve opening to the valve closure, were extracted from the finite ele-
ment simulation and used to create a series of haemodynamic models by Sirois

et al. [6].
The aortic valve has a complex 3D geometry, which is composed of three

leaflets and Valsalva sinuses connected together through the commissures. The
patient-specific aortic valve geometry can be reconstructed directly from in vivo
echocardiography, magnetic resonance imaging or computed tomography mea-
surements [24]. These models can incorporate patient-specific realism to a high
degree, provided that imaging modalities of sufficient resolution are available to
accurately reconstruct the valve motion [25]. A temporal interpolation between
successive images must be used to reconstruct the geometry motion over the car-
diac cycle. Obviously, the accuracy of the resulting kinematics and, consequently,
the clinical relevance of the 3D haemodynamic model both depend on the ac-
curacy of the interpolation technique and the initial temporal resolution of the
acquired images. The present-day scanning frequency per heartbeat is technolog-
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ically limited; therefore, the current in-vivo methods for representing the moving
aortic valve benefit from the application of the predefined geometric model de-
scribed by parametric curves. Past geometric descriptions of the aortic root were
two-dimensional [26]. A 3D representation of the aortic valve was introduced by
Thubrikar [27] for designing the trileaflet prosthetic valves. Even though this
model was developed for prosthetic valves, a recent study by this group [28] has
extended the parametric description of the native valves’ post valve-sparing pro-
cedures. Claiborne et al. [29] have suggested optimizing polymeric prosthetic
valves by manufacturing them with variable thickness; however, a mathematical
description of their geometry was not provided. Rankin et al. [30] have described
the surfaces of the leaflets as three identical hemispheres and the commissures as
a cylinder of the same calibre. Most of the discussed studies that used parametric
relationships to describe the aortic valve geometry have focused on the cusps and
the commissures, but have not included the geometry of the sinuses. Recently,
Haj-Ali et al. [31] have suggested a simple 3D geometrical representation of the
native trileaflet aortic valve, comprising the leaflets and the root. Two indepen-
dent parametric curves defined the cusp and one represented the sinuses, while
some additional dependent curves have also been generated to join the cusps
and the sinuses. The proposed parametric model was also employed to describe
different geometries of bicuspid aortic valves [32].

At physiological flow rates, the flow through the aortic valve is known to
become turbulent when the fluid jet expands downstream of the valve. Under
the pulsatile flow conditions, the turbulence is intermittent, peaking only in the
deceleration phase, following the peak systole [33]. This turbulence is known
to be a predominant factor, influencing the energy losses caused by the aortic
stenosis. Consequently, 3D models have no predictive value for the aortic steno-
sis, as long as turbulence is not properly described. Various turbulence models
of the Reynolds-averaged Navier–Stokes (RANS) equations were employed in
mechanical prosthetic aortic valve simulations. Kiris et al. [34] have used a fi-
nite volume method with overset grids to solve the 3D RANS equations closed
with the mixing-length turbulence model for simulating the flow through the
Björk–Shiley mechanical valve. In their turbulence model, the turbulent viscos-
ity is determined only by the profile of the boundary layer and the distance
from the wall. Bluestein et al. [22, 35] have employed Wilcox k-ω model in
simulations of mechanical valves because this turbulence model is better suited
for the low Reynolds number transitional flows. Transient and turbulent simula-
tion [35] depicted the intricate dynamics of the shed vortices in the wake, with
the results validated using a digital particle image velocimetry. Sirois et al. [6]
have performed a quantitative analysis of haemodynamics before and after the
transcatheter-aortic valve intervention by using the k-ε model to describe the
turbulent flow in the transition range. In the direct numerical simulation (DNS),
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full Navier–Stokes equations have been solved without any averaging or assump-
tions about the production and dissipation of turbulence [36]. The DNS method
has been employed in the models of the pulsatile flow through bileaflet mechan-
ical heart valves (MHV), including the valves with the fixed leaflets [37] and
full FSI simulations [7, 38]. The DNS of the pulsatile flow through a bileaflet
MHV mounted in an idealized axisymmetric aorta geometry has been carried
out in [39] by prescribing the leaflet motion from the experimental data. How-
ever, the DNS approach requires very fine temporal and spatial discretization
and, consequently, very large computational resources because the selected mesh
resolution is usually lower than the Kolmogorov scale. Moreover, turbulent mod-
els are rarely applied to patient-specific simulations of the native aortic valve
flows. Hence, the validation of these models for clinically relevant problems is
expected to be the topic of future research.

Simulation of a cardiac cycle is largely related to evaluation of age-matched
material properties and numerical models. From the point of view of material
behaviour the aortic valve structure was characterized by elastic behaviour [13]
or strong nonlinearity of strain-stress relationship [19]. Auricchio et al. [40]
modified Holzapfel’s model [41] taking into account anisotropy and good fit to
experimental data in both directions of the native aortic valve. Aortic walls and
leaflets were considered as thin structures and were often modelled by using mem-
brane and shell elements [6, 13, 32, 38] in finite element analysis (FEA). Nicosia

et al. [13] modelled the aortic valve and root by using Hughes–Liu shell elements
with linear elastic material behaviour. The uncoupled computations considered
the opening and closing behaviour. In the last few years, modified hyper-elastic
nonlinear rotational-free shell elements were proposed [42]. The application of
shell elements could help reducing the needed computational power because it
employs only five degrees of freedom in each node. Even though it is a common
assumption in structural models, shell meshes might present additional chal-
lenges in FSI models, particularly those that apply the flow pressure load on
each side of the valve. There is only a single node in the thickness; therefore,
it might be impossible to define separate pressures on each side since the flow
model can usually calculate only a single pressure value in each location, which
leads to zero pressure difference on the leaflet. Marom et al. [43] suggested to
overcome this problem by adding virtual surfaces on each side of the leaflet,
which can represent the real outer surfaces of the leaflets. In this method, the
main idea was to transfer the flow-pressure load from the virtual surfaces, or
virtual thickness, to the shell nodes. Thus, the local outer forces on the shell
nodes were based on the pressure gradient, as they should be. Obviously, each
virtual node should move with the corresponding shell node of the finite element
model, for example, by rigid body motion based on the displacement and rota-
tion of the specific shell node. Another challenge is the definition of stress-free
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configuration, which might not exist in native valves. Recently, 3D models using
volume elements have been used for aorta modelling [44, 45].

The present work aims to delineate the important systolic turbulent flow
features, obtained in the patient-specific aortic valve computations, based on
the proposed 3D geometric model. A comparative study of various turbulence
models is presented for the case of the haemodynamic analysis. Other parts of
the paper are organized as follows: Section 2 presents the mathematical model
used in the analysis, Section 3 describes the patient-specific aortic valve problem,
including the novel geometric model based on the parametric curves, Section 4
contains details of the numerical model, while Section 5 provides the FEA of the
valve leaflets as well as the simulation results of the turbulent flow through the
aortic valve, and Section 6 gives the concluding remarks.

2. Governing equations

A transient flow of viscous incompressible fluid was described by the Navier–
Stokes equations as follows [46, 47]:

ρ
∂u

∂t
+ ρu · ∇ · u = ∇ · σ,(2.1)

∇ · u = 0,(2.2)

where u is the velocity vector, ρ is density, ∇ is the gradient operator, ∇· is the
divergence operator. In the case of the Newtonian incompressible fluid, stress
tensor σ can be expressed by the formula:

(2.3) σij = −pδij + µe

(

∂ui

∂xj
+
∂uj

∂xi

)

,

where p is pressure, µe is effective viscosity, and δij is Kronecker delta. The
Newtonian flow model was considered, since the blood in the aorta and large
arteries behaves accordingly [48]. The non-Newtonian blood behaviour becomes
relevant only in the cases of slow flows in the capillaries, whose diameter can be
even smaller than that of a red cell, but they are not relevant to our study.

The need for turbulence modelling arises because the local Reynolds number
of the blood flow past the aortic valve might reach high values in the deceleration
phase, following the peak systole [33]. In this work, the two-equation shear-stress
transport (SST) k-ω model [49] was used to avoid the explicit simulation of the
smallest scales, because it could be applied for the computation of the turbulent
flows with a relatively low Reynolds number. The RANS equations used for
turbulence modelling have the same general form as the instantaneous Navier–
Stokes equations (2.1)–(2.3), with the time-averaged velocities and the Reynolds
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stresses that can be incorporated into the stress description (2.3) by using the
effective viscosity:

(2.4) µe = µ+ µt,

where µ is the viscosity coefficient and µt is turbulent viscosity. The SST k-ω
model accounts for the transport of the turbulent shear stress, introducing a
limiter α to the formulation of turbulent viscosity:

(2.5) µt =
1

α

ρk

ω
,

where k is turbulent kinetic energy and ω is the specific dissipation rate. The
proper transport behaviour of the turbulent shear stress was obtained, specifying

(2.6) α = max

[

1

α∗
,
SF

a1ω

]

,

where S is the strain rate magnitude and F is the blending function. The coef-
ficient α∗ damps the turbulent viscosity causing the low-Reynolds number cor-
rection:

(2.7) α∗ = α∗
∞

(

α∗
0 + Ret

6

1 + Ret

6

)

, Ret =
ρk

µω
, α∗

0 =
βi

3
, α∗

∞ = 1, a1 = 0.31.

Since the k-ω model had been modified over the years, the production terms
were added to both the k and ω equations, which improved the accuracy of the
model for predicting free shear flows. The distribution of turbulent kinetic energy
and the specific dissipation rate were described by the equations:

ρ
∂k

∂t
+ ∇ · (ρku) = ∇ ·

((

µ+
µt

σk

)

∇k
)

+ G̃k − Ỹk + Sk,(2.8)

∂(ρω)

∂t
+ ∇ · (ρωu) = ∇ ·

((

µ+
µt

σω

)

∇ω
)

+Gω − Yω +Dω + Sω,(2.9)

where σk and σω are the turbulent Prandtl numbers for k and ω, respectively,
the production term G̃k denotes the generation of turbulence kinetic energy due
to the mean velocity gradients, the production term Gω means the generation of
ω, the destruction terms and Ỹk and Yω denote the dissipation of k and ω due
to turbulence, respectively, Dω is the cross-diffusion term, and Sk and Sω are
user-defined source terms. In different regions, βi from formula (2.7), as well as
σk and σω, were defined by using the blending function F1:

(2.10) βi = F1βi,1 + (1 − F1)βi,2, σk =
1

F1
σk,1

+ 1−F1
σk,1

, σω =
1

F1
σω,1

+ 1−F1
σω,2

.
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The constants of the applied turbulence model are as follows: βi,1 = 0.075,
βi,2 = 0.0828, σk,1 = 1.176, σω,1 = 2.0, σk,2 = 1.0 and σω,2 = 1.168. Other
details of the applied turbulence model can be found in [49].

The formulation of the SST k-ω model was enhanced by the intermittency
transport equation to evaluate laminar-turbulent transition of the boundary lay-
ers of the wall. The intermittency transition model [50] was considered as a fur-
ther development of the γ-Reθ transition model [51]. The following transport
equation for intermittency γ was used:

(2.11)
∂(ργ)

∂t
+ ∇ · (ργu) = ∇ ·

((

µ+
µt

σt

)

∇γ
)

+ Pγ − Eγ .

The boundary condition for γ is zero normal flux on the aortic wall, while the
value of γ is equal to 1 on the inlet. The transition and relaminarization source
terms were defined as follows:

Pγ = FlengthρSγ(1 − γ)Fonset,(2.12)

Eγ = ca2ρΩγFturb(ce2γ − 1),(2.13)

where S is the strain rate magnitude and Ω is the magnitude of the absolute
vorticity rate. The formulation of the function Fonset, which was used to activate
the source term (2.12), included the ratio of the local vorticity Reynolds number
to the critical Reynolds number. Unlike the γ-Reθ transition model, the criti-
cal Reynolds number was not computed from the transport equation, but was
obtained algebraically. The function Fturb, the local vorticity Reynolds number
Reν and the constants of the intermittency model were defined as follows:

(2.14)
Fturb = e−(

Ret
2

)4 , Reν =
σd2

wS

µω
, Flength = 100,

ce2 = 50, ca2 = 0.06, σγ = 1.0,

where dw is the wall distance. The details of the intermittency transition model,
including experimental correlations of the critical Reynolds number, can be found
in [50].

The coupling of the intermittency transition model (2.11)–(2.14) with the
SST k-ω model (2.5)–(2.10) was accomplished by modifying the source terms of
equation (2.8). The production term G̃k was obtained by multiplying γ and the
original term of the turbulent kinetic energy equation Gk, which was computed
using the Kato–Launder formulation [52]:

(2.15) G̃k = γGk = γµtSΩ.
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This formulation helps to avoid the excessive levels of the turbulence intensity
in stagnation regions. The destruction term Ỹk was obtained from the original
term Yk by using the formula:

(2.16) Ỹk = Yk max(γ, 0.1).

It is worth noting that the production and destruction terms of the ω-equation
(2.9) were not modified.

The structural analysis of the aortic valve is aimed to determine the mechan-
ical response of the aortic tissue throughout a cardiac cycle. The aortic valve
contains three leaflets that open when the left ventricle of the heart contracts
(systole) to eject blood into the aorta. The aortic valve leaflets are attached in-
side the aortic root, which balloons out around each of the leaflets’ attachments,
creating the three aortic sinuses. The structural model of the aorta elaborated in
the present research involves aortic valve leaflets, Valsalva sinuses and the aortic
walls. In spite of variety of results obtained elsewhere, evaluation of mechanical
response of patient-specific aortic tissues comprising evaluation of stresses and
identification of the exact shape and location of the leaflet surface during blood
flow is still a challenging task. Description of mechanical behaviour of aortic
tissue follows conventional large strain approach used in nonlinear continuum
mechanics. The configuration of a given domain during deformation is assumed
to be time-dependent. The formulation of such problems uses a Lagrangian de-
scription. Quantities are originally defined in the reference configuration at time
instant t = 0, while time variation is referred to current configuration at time t.
For the sake of clarity, left superscripts 0 and t will denote reference and current
configurations, respectively. Consequently, the position of a material point in the
reference configuration is denoted by 0xi, while current position is txi. The solid
body motion is characterised by the displacement vector tui = txi − 0xi.

Although detailed studies [18] indicate presence of dynamic and hysteric ef-
fects even under moderate loads, the quasi-static formulation of structure model
is sufficient in many cases, see [18, 45, 53]. The mathematical model of the quasi-
static deformation of the structure domain at time instant t is described by the
momentum equation. This equation differs from that of fluid (2.1)–(2.3), and it
can be written as follows:

(2.17) ∇ · t
σ = ρs · tfs,

where t
σ denotes the Cauchy stress tensor, considered in the configuration t,

∇· is the tensor divergence operator, vector tfs presents body force and ρs is the
constant density.

Commonly used boundary conditions were applied in structural model.
Firstly, a relatively conservative choice of kinematic boundary conditions, re-
stricting the normal component of the displacement on the base of the structure
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at the basal cut plane, was used. Internal surfaces of the aorta leaflets were
loaded by the time-dependent fluid pressure. The quasi-static loading predefined
character of constitutive model. By typical thermo-dynamical considerations, the
Cauchy stress tensor was then obtained by differentiating a pseudo-strain energy
W with respect to strain.

In summary, the soft aortic tissue, including both aortic valve walls and
its leaflets, was considered as a transversally isotropic and nearly incompressible
solid by applying hyper-elastic Fung-type constitutive model [19]. A strain energy
potential function U was defined as a function of suitable components Eij of the
Green–Lagrange strain tensor:

(2.18) U =
ch
2

(eQ − 1) +
1

2
K(J − 1)2,

where

(2.19) Q = b1E
2
11 + b2(E

2
22 + E2

33 + E2
23 + E2

32) + b3(E
2
12 + E2

21 + E2
13 + E2

31),

while Ch, b1, b2, b3 are the model parameters, K = 2/d is the bulk modulus,
d is material incompressibility parameter, J = det(F) is the volume change,
F is the deformation gradient, F = J−1/3F is the deformation gradient with the
eliminated volume change, and B = F ·FT

is the deviatoric stretch matrix (the
left Cauchy–Green strain tensor).

3. A description of the patient-specific problem

The complex geometry of the aortic valve is composed of three leaflets at-
tached to the aortic root. Behind them, three anatomic dilatations make the
Valsalva sinuses. The new geometrical model was proposed to simplify a math-
ematical description of the aortic valve by reducing the number of parametric
curves and retaining the required accuracy. A critical prerequisite for the patient-
specific analysis of the aortic valve was the integration of the state-of-the-art
clinical imaging with biomechanical computations. The altered blood flow dy-
namics past the aortic valve might be an important factor, causing complications
in the ascending aortic root in patients.

The patient-specific geometry of the aortic valve was obtained from elec-
trocardiographically gated 4D images that were acquired from a human subject
by using the Philips iE33 ultrasonographic system (Philips Healthcare, Andover,
MA, USA). The acquired DICOM images were converted from polar coordinates
to Cartesian coordinates by using the plugin of QLAB-v9.0 (Philips Healthcare,
Andover, MA, USA) quantification software. The medical imaging interaction
toolkit (MITK) [54] was employed to obtain the geometric parameters of the aor-
tic sinuses, valve leaflets and ascending aorta from the medical images (Fig. 1).
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Fig. 1. The image analysis using medical imaging interaction toolkit.

The 3D images of the closed aortic valve were selected from the subject’s data
set at the end of the diastole for extracting the main geometric parameters.

A 3D geometric model was constructed from the parametric curves according
to the extracted patient-specific geometric parameters. The 3D surface model of
sinuses was based on the extrusion of the curtate epicycloid parametric curve [55]
as follows:

x = (a+ b) cos t+ λ(z)b cos
(a+ b)t

b
,

a

b
= 3, 0 < λ(z) < 1,(3.1)

y = (a+ b) sin t+ λ(z)b sin
(a+ b)t

b
,

a

b
= 3, 0 < λ(z) < 1,(3.2)

where a is the radius of the aortic root scaled by the parameter λ(z), 0≤z≤1,
which must be fitted to real geometry (Fig. 2a), b is a small radius of the epicy-
cloid forming surface of sinuses and t is the parameter varying from 0 to 2π.

a) b)

Fig. 2. Parametric curves: a) the epicycloid of sinuses, b) xz projection of the cycloidal type
surface of revolution.
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The analytical surface model of the valve leaflets is based on the cycloidal-type
surfaces of revolution [56] (Fig. 2b), whose mathematical expression is defined
as follows:

x = a′(t+ sin t) cosϕ = r(z) cosϕ,(3.3)

y = a′(t+ sin t) sinϕ = r(z) sinϕ,(3.4)

z = c(1 + cos t) = z,(3.5)

r(z) = a′
[

√

z(2c− z)

c
+ arccos

(

z

c
− 1

)]

,(3.6)

where a′ is the radius of the leaflet surface of the aortic valve, c is the half-height
of the sinus root, r(z) is the radius of the revolution surface, t is the parameter
varying from −π to π, and ϕ is the angle, which varies from 0 to 2π.

a) b) c)

Fig. 3. The geometric model: a) the cycloid revolution surfaces after overlapping, cutting
and smoothing, b) the curtate epicycloid extraction and cycloid revolution before cutting,

c) the final geometry of the aortic sinuses and the valve.

The patient-specific geometry of the aortic valve was defined by NURBS sur-
faces generated in Salome 7.6.0 (OPEN CASCADE SAS, Guyancourt, France).
Boolean cutting and joining operations were performed to combine the NURBS
surfaces into the final geometry. Figure 3 presents the separate parts of the CAD
model of the analytically described aortic valve. Figure 3a shows the cycloid rev-
olution surfaces after overlapping, cutting and smoothing. Figure 3b presents the
curtate epicycloid extraction and cycloid revolution (before cutting). Figure 3c
shows the final geometry of the aortic sinuses and the valve. The patient-specific
geometry was imported into the ANSYS DesignModeler [57] to generate the
finite element (FE) meshes and finite volume meshes for a solid and a flow,
respectively.

The systolic phase of the cardiac cycle was analysed by applying the time-
dependent plug flow as the inflow boundary condition. According to the exper-
imental data, the mass flow rate was equal to 0.40 kg/s, which was equivalent
to 1.41 m/s velocity at the peak systole. All simulations started from a zero
flow initial condition and the prescribed inflow was accelerated according to the
measured waveform shown in Fig. 4. The turbulence intensity of 5% and the
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Fig. 4. The mass flow rate specified on the inlet.

hydraulic diameter equal to 0.018 m were specified on the inlet. On the outlet,
the prescribed pressure and zero velocity gradient normal to the boundary were
applied to allow the vortices shed by the leaflets exit the computational domain
with minimal disturbances. The no-slip boundary conditions were prescribed for
velocity on the aorta walls and leaflet surfaces.

4. The numerical model

4.1. Discretisation approach and numerical details

The differential flow equations (2.1)–(2.3), (2.8)–(2.11) were solved by the
finite volume method on collocated grids [57]. The pressure-based solver with
the first-order implicit transient formulation was used for fluid simulations. The
under-relaxation of equations, also known as implicit relaxation, is used in the
pressure-based solver to stabilise the convergence behaviour of the outer non-
linear iterations by introducing selective amounts of variables in the system of
discretized equations. The default value of 0.75 of the under-relaxation factor
was selected for the pressure and velocity components. The coupled solution
of the momentum and continuity equations was considered to accelerate the
convergence of the numerical computations. Application of the coupled scheme
could be advantageous in the cases of patient-specific aortic valves with complex
native geometries, lower mesh quality, and large number of expensive nonlin-
ear iterations and poor convergence of the numerical solution. Gradients were
evaluated by using the least squares cell-based scheme to ensure sufficient ac-
curacy on unstructured meshes with skewed and distorted finite volumes. The
second-order upwind scheme was applied to discretize the convective terms in
momentum equations. The second-order accurate pressure discretization scheme
was used to reduce the number of nonlinear iterations. The blood was modelled
as an incompressible Newtonian fluid with the density set to ρ = 1060 kg/m3.
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The dynamic viscosity coefficient was µ = 0.004028 kg/(m · s). For structural
analysis, the material of the solid part with the specific weight of 1000 kg/m3

was considered.
A mathematical model (2.17) of the structural part, including Valsalva si-

nuses and the aortic walls, was solved by using one of the most popular methods,
called the finite element method (FEM). Large deformation problem, taking into
account material transversally isotropic model (2.18), (2.19), could be expressed
for FE e in incremental way:

(4.1) [M e]e{t+∆tüe} + ([tKe
L] + [tKe

NL({ue})]{∆ue} = {tF e},

where {∆ue} means change of displacement in the interval between t and t+∆t,
[M e]e is mass matrix, [tKe

L] and [tKe
NL({ue})] – are linear and nonlinear parts

of stiffness matrix, and {tF e} is loading. The solid second-order tetrahedral
elements SOLID187 with 10 nodes, having translations in the nodal x, y and z
directions, were used for the FE computations performed by ANSYS [57].

The model (2.18), (2.19), was used to fit the circumferential and radial stress-
strain data of the aortic valve leaflet obtained from tensile tests [40]. The pa-
rameters of the model (2.18), (2.19), were identified using “curve fitting” with
experimental data module available in ANSYS, and a good fit was found with
parameters equal to Ch = 589 kPa, b1 = 4.19, and b2 = 0.299. Since b3 could
not be obtained by the tensile test, it was assumed to be equal to b2 [58].

4.2. The solution procedure

Initially, the geometry of the aortic valve was reconstructed from parametric
curves according to the electrocardiographically gated images that were acquired
from a human subject at the end of the diastole. According the patient-specific
geometry, the FE meshes and finite volume meshes were generated for a solid and
a flow to have the conforming boundary. The structural analysis was performed
by using the finite element method to determine the stress-strain state of the aor-
tic valve and to obtain the positions of opened valve leaflets at the peak systole.
Several ways to load the aortic valve leaflets were investigated. The results ob-
tained applying the pressure drop, relevant to the peak systole conditions, were
compared with those computed by using the pressure and viscous force extracted
from the preliminary CFD solution. The pressure and viscous force values were
mapped from the fluid mesh cells handled by ANSYS Fluent into the solid mesh
nodes handled by ANSYS Mechanical APDL on the leaflet surfaces by using
“Surface FSI Mapping” facilities for one-way flow-structure interaction.

The haemodynamic analysis of systolic turbulent flow through aortic valve
was performed by using the finite volume method. The research was focused on
the flow, close to the peak systole, because of the highest pressure gradients that
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are measured during the peak systole in the clinical practice. The geometry of
the already opened valve was imported from the structural analysis to weaken
coupling of structural and CFD solvers, to reduce the following deformations
of fluid mesh and to save computational resources. Thus, the solution domain
and the resulting finite volume mesh were allowed to move only in the time in-
terval, enclosing the peak systole, and were fixed in the remaining parts of the
time range to avoid expensive remeshing and relevant convergence issues. The
moving boundary update was performed transferring the displacements from the
structural analysis to the fluid mesh nodes by the smart bucket algorithm [57].
The applied algorithm generated interpolation weights that were ideal for trans-
ferring the profiles of non-conserved quantities from a source mesh to a target
mesh. In moving boundary zones, enclosing valve leaflets, the diffusion-based
smoothing [57] of the finite volume meshes was applied. The mesh motion was
governed by the Laplace equation, preserving the number of nodes and the mesh
topology. The diffusion coefficient was a function of the cell volume to control
how the boundary motion diffuses into the interior of the domain. Larger cells
were caused to absorb more of mesh motion, preserving the quality of smaller
cells. Two or three iterations of uncoupled solvers with the relevant load and
displacement transfer were performed to eliminate large changes in numerical
solutions, because the movement of the opened aortic valve leaflets was very
small after the peak systole. The main outcome of haemodynamic analysis was
a comparative study of various turbulence models for the pulsatile transitional
aortic valve flows, including the low-Reynolds number turbulence.

5. The numerical results

A critical prerequisite for patient-specific analysis of the aortic valve was the
integration of state-of-the-art clinical imaging with biomechanical computations.
Pre-processing, visualization and all computations were performed on the Open-
Stack cloud infrastructure hosting software services [59–61] for patient-specific
numerical analysis of the aortic valve flows.

5.1. The finite element analysis of the stress-strain state of the aortic valve

The structural model for determining the stress-strain state was constructed.
The structural problem was solved according to the principles of the standard
FEA, where three FE meshes of various densities were generated. The smallest
elements were obtained near the surface of the valve leaflets, called commissures.
The models, consisting of the 94 808, 190 805 and 410 502 FEs and having 2, 4
and 5 FEs per leaflet thickness, respectively, were constructed and verified. The
aortic valve leaflets were loaded by the pressure drop relevant to the peak systole
conditions (t = 0.140 s). Two cases of the pressure load were considered:
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Case 1: p(t) = p1(t) − p2(t) pressure load, varying in time.
Case 2: load, varying in time and space.

The Case 1 pressure load was described by the analytical pressure curves
(Fig. 5a) applied on surfaces of the valve leaflets. The curve from inlet side
was denoted as p1 curve, which reached maximum at physiological conditions
of healthy patient (120 mmHg). The curve p2, applied from the opposite side,
caused maximum pressure drop equal to 1500 Pa. The Case 2 load was ex-
tracted from the preliminary CFD solution obtained by using the ANSYS Fluent
(Figs. 6a and 6b). The pressure and viscous force were mapped from the fluid
onto the leaflet surfaces, associated with a FE mesh for structural analysis, by
using “Surface FSI Mapping” facilities of ANSYS Fluent. Initially, the values
of the variables available on cell centroids were calculated on the nodes of the
finite volume mesh. The 0th-order interpolation was applied to provide target
node values using the source data. Finally, load files were written for the uncou-
pled FEM analysis of aortic valve displacements and deformations, performed
by using the ANSYS Mechanical APDL. Although haemodynamic stresses were
shown to regulate valvular biology, the native wall shear stress experienced by

a) b) c)

Fig. 5. Description of Case 1: a) analytical pressure curves, b) illustration of the fine FE
mesh (410 502 FEs), c) distribution of the equivalent (von Mises) stress (in MPa).

a) b) c)

Fig. 6. Description of Case 2: a) transversal view of the pressure distribution (in Pa)
computed by using CFD analysis, b) longitudinal view of the pressure distribution on the

wall surfaces of the aortic valve, c) distribution of the equivalent (von Mises) stress (in Pa) at
the peak systole (red arrow shows position of the leaflet bell).
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the aortic valve leaflets remained largely unknown [44]. Accordingly, Case 2 was
divided into two subcases:

Case 2-1: only pressure was mapped.
Case 2-2: pressure and viscous force were mapped to take into account the

wall shear stress.
The solution of the nonlinear large deformation problem (4.1) was performed

in an iterative manner by using the program-controlled time substep size, with
the smallest size ∆tmin = 1 ·10−8 s. The preconditioned conjugate gradient itera-
tive solver, using full Newton–Raphson schema, was considered. Some difficulties
of convergence were avoided when an automatic asymmetric frictionless contact
pair was selected. The augmented Lagrange method with penetration tolerance
0.10 was the most successful.

Table 1. Summary of structural analysis results.

Parameter Model

Case 1
Case 2-1 Case 2-2

Coarse mesh Fine mesh

von Mises stress, MPa
maximum

1.42 2.11 1.37 1.39

In leaflet bell 0.39 0.40 0.36 0.37

Displacement, mm
maximum

6.04 6.81 6.89 7.33

The results referring to the stress-strain state in the peak systole are pre-
sented as the equivalent (von Mises) stress on deformed state in Fig. 5c. The
results obtained for different load cases are presented in Table 1. The Case 1
load revealed the results of von Mises stress, which reached the maximum value
of 1.42 MPa at the commissures of leaflets for the coarse FE mesh and 2.11 MPa
for the fine FE mesh near the stress concentration area (Fig. 5c). In Case 2-1, the
stresses only reached 1.37 MPa (Fig. 6c), while the load in Case 2-2 produced
stress values of 1.39 MPa. Thus, 3% stress increase could be observed in the
leaflet bell zone. It is worth noting that the computed stresses had the values
similar to those found in Sturla et al. [62], where the reported stresses varied
from 0.3 to 0.4 MPa.

In case of the pressure drop at the peak systole conditions, there was a notice-
able asymmetry of in-plane distribution of the maximal principal stress among
the leaflets and regional variation of the stress on each leaflet. Variation of princi-
pal stress vectors (which is not presented) was parallel to radial direction, which
mimicked the reorientation of fibre directions. Maximum principal stresses were
0.065, 0.064 and 0.061 MPa on the non-coronary (NC), right (R) and left (L)
leaflet, respectively. Differences between stresses, acting on the three sinuses of
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the aortic root, were less relevant. Their average values were equal to 0.189,
0.188 and 0.186 MPa on the right, non-coronary and left sinus, respectively. In
the region above the left and non-coronary sinus, in the so-called sinotubular
junction (STJ), the maximum circumferential and longitudinal stresses of the
aortic wall were 0.355 and 0.324 MPa, respectively. Above the right sinus they
were equal to 0.340 and 0.300 MPa.

Different load scenarios caused different maximum values of total displace-
ments as well as different distribution of the displacement field. Figures 7a and 7b
show the distribution of displacements at the peak systole conditions in case
of mild aortic valve stenosis. Displacements are investigated in three selected
points of NC leaflet: the first point is placed in the commissure, the second point
is located in the bell region, and the third point is considered near the leaflet
attachment with aortic root, in the so-called base region. In Fig. 7, arrows vi-
sualize the displacement vector of the first point. In Case 1, the displacements
of the first point u1,Case 1 = 0.00491 m are 30% less than the maximal values

a) b)

c)

Fig. 7. Total displacements of the outer (ventricular) leaflet surfaces (undeformed surfaces
are showed by mesh): a) for Case 1, b) for Case 2, c) temporal variation of the displacements

of the selected points for Case 1.



The geometric model-based patient-specific simulations. . . 335

umax,Case 1 = 0.00703 m that are observed in the other location. In Case 2, the
maximal values of displacements u1,Case 2 = umax,Case 2 = 0.00716 m are obtained
in the first point. In Case 1, displacement values of the second point and third
point are equal to u2,Case 1 = 0.00378 m and u3,Case 1 = 0.00078 m, respectively.
These values are 16% and 3% less than the displacements of the second point
and third point in Case 2, respectively. Figure 7c shows the temporal variation of
displacements of the three considered points. It is obvious that displacements of
the third point at the leaflet base are significantly smaller than that of the first
point and second point. It was also observed that the increment of displacements
of aortic valve leaflets decreased in the short time interval near the peak systole.

In Case 2, a pressure obtained from the patient-specific CFD computations
was different on each leaflet, which caused asymmetry in the displacement field.
Wall shear stresses increased the displacements by 6% and affected the cross-
sectional area of the flow jet at the vena contracta.

5.2. The analysis of the turbulent aortic valve flow

The haemodynamic analysis was performed to assess the turbulent blood flow
past the aortic leaflets. The patient-specific geometry obtained from the electro-
cardiographically gated images was employed for the finite volume analysis of
the aortic valve [59]. The solution domain was discretized by meshes, containing
from 1.25 to 1.78 million of finite volumes. The resulting distance of the first
volume centre from the wall ranged from 1.2 µm to 90.1 µm. Figure 8 shows
the complex 3D flow patterns at t = 0.165 s in the longitudinal section of aortic
sinuses. The velocity field was visualized by using streamlines coloured accord-
ing to the pressure field. It is worth noting that the velocity field at t = 0.165 s
acquired the oscillating character because of turbulent effects, following the peak
systole (t = 0.140 s). Thus, a turbulence model was required to damp oscillations
and to avoid the divergence of the solution.

Fig. 8. Pressure field and streamlines of a complex flow pattern at t = 0.165 s in the aortic
sinuses.
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Figure 9 shows the distribution of the gauge pressure at t = 0.124 s in vertical
cross-sections of the aortic sinuses, when the accelerating flow through the aortic
valve approaches the peak systole. The position of three scaled cross-sections at
the coordinates z1 = 0.021 m, z2 = 0.025 m and z3 = 0.030 m are marked
by lines in Fig. 8. The colour map visualizes the distribution of the pressure
field, revealing a complex flow pattern with vortices following the open valve in
Fig. 9. Larger vortices are formed in the aortic sinuses, while smaller vortices
develop behind the junctions of these sinuses. It is worth noting that the high
Reynolds number k-ε turbulence model significantly smoothes the vortex field
(Fig. 9b). The results of the SST k-ω model (Fig. 9c) are closer to the laminar
flow (Fig. 9a). Thus, the detailed investigation and comparison of turbulence
models is necessary for the haemodynamic analysis of the aortic valve because
the applied model can have a strong influence on the distribution of the pressure
field and the resulting flow pattern.

a)

b)

c)

Fig. 9. Distribution of the pressure field in vertical cross-sections (z1 = 0.021 m,
z2 = 0.025 m, z3 = 0.030 m) of the aortic sinuses at t = 0.124 s: a) a laminar flow, b) the k-ε

turbulence model, c) the SST k-ω turbulence model.

In the present research, various modifications of the k-ω model were inves-
tigated to evaluate the effects of the low Reynolds number turbulence in the
pulsatile aortic valve flow. Figure 10 presents the values of turbulent variables
plotted on a line segment (z = 0.040 m). The curve “ke” denotes the results
yielded by the standard k-ε turbulence model. The curves “ko”, “ko-sst”, “ko-re”,
“ko-cv” and “ko-itr” present the results obtained by using the standard k-ω model,
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a) b)

Fig. 10. Distribution of turbulent variables on the line segment placed at z = 0.040 m:
a) turbulent dissipation rate in the case of the accelerating flow t = 0.080 s, b) turbulent

kinetic energy at the peak systole, when t = 0.140 s.

the SST k-ω model (2.5)–(2.10), the SST k-ω model with the low Reynolds num-
ber correction (2.7), the SST k-ω model with the low Reynolds number correction
and curvature correction, as well as the SST k-ω model enhanced by the intermit-
tency transition equation (2.11), respectively. The transitional turbulence model
based on the intermittency transition equation includes the corrections of the low
Reynolds number, the curvature and cross flow transition. The transition model,
which does not evaluate the cross-flow transition, was also investigated, but the
curves “ko-itr-cf”, representing the results yielded by it, completely overlapped
the “ko-itr” curves. Therefore, the results obtained without taking into account
the cross-flow transition are not shown in some figures. Figure 10a shows the
values of the specific dissipation rate in the case of the accelerating flow, when
t = 0.080 s. The intermittency transition model (2.11)–(2.14) yields very high
values of the specific dissipation rate in the laminar layer near the wall. The
standard k-ω model gives the lowest values of the specific dissipation rate in the
case of the accelerating flow. Figure 10b presents the distribution of turbulent
kinetic energy at the peak systole, when t = 0.140 s. All k-ω models generate sig-
nificantly lower kinetic energy values than the k-ε model. It is worth noting that
the values of the SST k-ω model enhanced by intermittency transition equation
are the lowest.

Figure 11 shows the distribution of turbulent viscosity in the case of the peak
systole, when t = 0.140 s. The main flow and two large vortices resulted in three
peaks of turbulent viscosity values that can be clearly seen in the curve “ke”
of the k-ε model. All k-ω models generated much lower turbulent viscosity, but
the turbulent viscosity values of the standard k-ω model most closely matched
those of the k-ε model. The lowest turbulent viscosity values of the SST k-ω
were obtained using the intermittency transition model, and this resulted in
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Fig. 11. Turbulent viscosity values on a line segment (z = 0.040 m) in the case of the peak
systole, when t = 0.140 s.

the lowest diffusion of laminar flow vortices. Other variants of k-ω turbulence
models produced slightly different turbulent viscosity values, but the curve “ko-
cv”, representing the SST k-ω model with the low Reynolds number correction
and curvature correction, most closely matched the curve “ko-itr”.

a) b)

Fig. 12. Time evolution of the variables at the point with the coordinates x = 0.000 m,
y = 0.000 m, z = 0.070 m: a) pressure, b) z velocity component.

Figure 12 presents time evolution of the pressure and z velocity component at
the centreline point with the coordinates x = 0.000 m, y = 0.000 m, z = 0.070 m.
The laminar solution had an oscillating nature in the case of both variables. The
application of the k-ε model resulted in an overdiffusive solution. The results
yielded by the k-ω models were much closer to the laminar solution. In most
cases, the SST k-ω model enhanced by intermittency transition produced the
lowest turbulent viscosity values (Fig. 10); therefore, its solution most closely
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matched the laminar one. It is worth noting that the curve “ko-cv” was closer to
the curve “ko-itr” than the other ones. Therefore, the SST k-ω model with the
low Reynolds number correction and curvature correction can also be useful for
predicting the velocity and pressure fields.

Figure 13 presents time evolution of the accumulated iteration number (AIN ),
which illustrates the convergence rate of the numerical solution. Only a part of
the time interval was considered to make the differences between the curves
more obvious. The laminar solution revealed the slowest convergence caused
by small diffusion terms relevant to higher Reynolds numbers. Moreover, the
laminar solution did not converge from the time instance t = 0.288 s. Rather
unexpectedly, convergence of the k-ε model was slower than that of the k-ω
models. The simplest k-ω model (the curve “ko”) allowed for achieving the fastest
convergence, while other k-ω models demonstrated similar convergence rates. At
the considered scale, the curves “ko-re”, “ko-itr” and “ko-itr-cf” nearly overlapped,
which indicates almost identical convergence rates.

Fig. 13. Solution convergence of different turbulence models.

Figure 14 shows time evolution of pressure differences between the laminar
and turbulent solutions. Each curve represents the difference between the laminar
flow pressure plam and the turbulent flow pressure ptur obtained by using the
particular turbulence model in L2 norm E = ‖plam−ptur‖2, which shows medium
variation of the pressure differences in the solution domain. It is evident that the
difference between the results obtained by using the k-ε model and the laminar
flow is the largest. The results yielded by all k-ω models are closer to the laminar
solution, which is natural for low Reynolds number turbulence flows. In most of
the time instances, the k-ω with intermittency transition model revealed the
smallest difference. Its curve “ko-itr” was identical to the curve “ko-itr-cf” of the
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Fig. 14. Time evolution of pressure differences between the laminar and turbulent solutions
in L2 norm.

same model, which did not evaluate the cross-flow transition. Therefore, it can
be concluded that the influence of the cross-flow transition is not significant in
the investigated aortic valve flows.

6. Conclusions

The computational analysis of the patient-specific aortic valve is presented.
The proposed 3D geometric model based on the parametric curves and on the
resulting NURBS surfaces is close to the aortic valve anatomy. Therefore, it can
be effectively used for quantitative representation of the native valve structures.
The computed values of von Mises stress are in agreement with the results re-
ported in the literature. Physiological pulsatile flow conditions and complex 3D
blood flow patterns of the aortic valve caused the oscillating laminar solution and
convergence difficulties at the end of the flow deceleration phase. The applied
turbulence models help to damp oscillations and improve the convergence of the
solution. However, the standard k-ε turbulence model significantly smoothes the
vortex field. The shear-stress transport k-ω model supplemented with the inter-
mittency transition equation revealed the lowest diffusion of the laminar flow
vortices and the smallest differences between the solutions of the laminar and
turbulent flows. This model seems to be best suited for adequate modelling of
the turbulent and transitional flows through the aortic valve. The performed
quantitative comparison of the numerical solutions has shown that the influence
of the cross-flow transition can be neglected in the case of the investigated flow
conditions. However, using the low Reynolds number correction and curvature
correction of the k-ω turbulence models can be rather important.
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