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The incremental Mori–Tanaka model of elasto-plastic composites is dis-
cussed, and the corresponding finite-step formulation is shown to lead to discontinu-
ities in the overall response at the instant of elastic-to-plastic transition in the matrix.
Specifically, two situations may be encountered: the incremental equations may have
two solutions or no solution. In the former situation, switching between the two so-
lutions is associated with a jump in the overall stress. Response discontinuities are
studied in detail for a special case of proportional deviatoric loading. The discontinu-
ities constitute an undesirable feature of the incremental Mori–Tanaka scheme that
apparently has not been discussed in the literature so far. Remedies to the related
problems are briefly discussed.
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1. Introduction

Mean-field homogenization methods, such as the Mori–Tanaka method
[1, 2], self-consistent and generalized self-consistent method [3–6], differential
and incremental schemes [7, 8] or double- and coated-inclusion methods [9, 10],
offer good predictive capabilities at low computational cost, as compared to much
more involved multiscale methods, such as the FE2 method [11, 12].

Since those methods were originally developed for elastic composites, their
application in the context of non-linear material behavior requires proper lin-
earization of the governing stress–strain relations. Different approaches have been
proposed in the literature, namely the transformation field analysis with elastic
localization rule and inelastic strain playing the role of eigenstrain [13], incre-
mental tangent [4, 14], secant [15], non-incremental tangent [16–19], asymptotic
tangent [20], additive tangent [21] or sequential [22] linearization procedures.

Among the mean-field approaches mentioned above, the Mori–Tanaka (MT)
scheme, due to its simplicity, seems to be the most often used method applied to
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metal-matrix composites covering a large range of material behaviours, including
elasto-plasticity [13, 23, 24], elasto-viscoplasticity [15, 25, 26], damage [20, 27],
phase transformations [28, 29], shape memory effects [30–32], and others. Exten-
sions to the finite strain regime have also been reported [33, 34].

This paper is focused on the incremental MT scheme applied to elasto-plastic
composites. The scheme has been originally formulated in the rate form that em-
ploys the instantaneous tangent moduli [4, 35] of the matrix phase. Its practical
application, for instance, in the finite element method, requires time integration
of the rate equations, and a robust implementation of an incremental finite-step
model is essential.

The incremental MT scheme is based on the Eshelby concept of an inclu-
sion immersed in an infinite matrix [36]. Accordingly, the Eshelby tensor (or
the polarization tensor) that depends on the tangent stiffness tensor of the ma-
trix is needed. The elasto-plastic tangent tensor is in general anisotropic so that
the corresponding Eshelby tensor (or the polarization tensor) would have to
be calculated employing numerical integration. However, isotropization of the
elasto-plastic tangent is usually performed in order to avoid an overly stiff re-
sponse [23, 24], and closed-form formulae are available for an isotropic stiffness
tensor. Note that isotropization is not always needed, e.g., when the so-called
additive tangent MT scheme is applied to elasto-viscoplastic composites [26].

Early finite element implementations of the incremental MT scheme go back
to the works of Pettermann et al. [35] and Doghri and Ouaar [23]; in [35],
the temperature effects were additionally taken into account. In those models,
micro-macro transition relations were obtained via strain concentration tensors
expressed in terms of the algorithmic (consistent) tangent stiffness tensor of the
matrix, and an implicit iterative scheme was employed to solve the resulting
nonlinear equations. Consistent linearization of the overall response was not
attempted, hence quadratic convergence could not be achieved at the global
level. Computational schemes capable of consistent linearization of the overall
response have been developed, e.g., in [37, 38].

A formulation suitable for automation and leading to an efficient and robust
incremental MT model has been recently developed by Sadowski et al. [39].
Accordingly, relatively large load (strain) increments have been employed in fi-
nite element computations, and the simulations have revealed convergence prob-
lems that turn out to be related to discontinuities in the incremental finite-step
response. Those discontinuities are discussed in the present paper.

Detailed analysis is carried out for a special case of proportional deviatoric
loading in which the governing equations reduce to scalar (rather than tensorial)
equations. The analysis shows that two situations may be encountered depending
on the properties of the phases and on the details of the formulation of the
incremental MT method. It is shown that a range of overall strain increments



Response discontinuities in the solution of Mori–Tanaka scheme 5

exists in which the incremental equations have two solutions or no solution at all.
Furthermore, if there are two solutions, then the overall stresses corresponding to
those solutions differ one from the other, and switching between the two solutions
is associated with a jump in the overall stress.

Apparently, the response discontinuities and the related features of the in-
cremental MT method have not been discussed in the literature so far.

2. The Mori–Tanaka homogenization approach

2.1. Micro- and macro-response of elastic composite

The Mori–Tanaka scheme [1] is a mean-field model originally dedicated to
the estimation of effective properties of linearly elastic two-phase composites. It
originates from the Eshelby solution to the problem of an ellipsoidal inclusion
embedded into an infinite linearly elastic matrix [36]. The main outcome of this
solution is that the strain inside the inclusion ε1 is uniform and related to the far-
field strain ε0 in the matrix by the fourth-order Eshelby tensor. Hill [4] noticed
an important consequence of this result that has been written in the form of the
so-called interaction equation,

(2.1) σ1 − σ0 = −L∗ (ε1 − ε0) ,

where σ1 and σ0 denote the stress tensor in the inclusion and the far-field stress
tensor, respectively. L∗ is the fourth-order tensor, called the Hill tensor, which
can be expressed in terms of the polarization tensor P,

(2.2) L∗ = P
−1 − L0, P = P̂(L0),

and P depends only on the elastic stiffness L0 of the matrix and on the shape
of inclusions [40]. Here the superimposed hat is used to distinguish the function
from its value.

Now, let us consider a two-phase composite material composed of ellipsoidal
inclusions embedded in a matrix. The MT model is obtained by identifying ε0

and σ0 with the average strain and stress in the matrix, respectively. Further-
more, the matrix is identified as the reference medium in the interaction equation
(2.1), so that the Hill tensor L∗ is evaluated in terms of the elastic stiffness L0

of the matrix, as in Eq. (2.2).
The overall strain and stress in the two-phase composite are obtained by

averaging of the corresponding local quantities,

(2.3) ε̄ = (1 − c) ε0 + cε1, σ̄ = (1 − c)σ0 + cσ1,

where c is the volume fraction of inclusions. The overall response of the elastic
composite can now be obtained from the interaction equation (2.1) and the
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averaging rule (2.3), using also the linear constitutive equations of the individual
phases, σi = Liεi, i = 0, 1.

2.2. Incremental Mori–Tanaka scheme

The MT scheme, originally formulated for elastic composites, can be adapted
to elasto-plastic composites by applying incremental linearization, as proposed
by Hill [4]. Within that scheme, linearization of the non-linear behavior of the
phases is performed, and the rate form of the constitutive equation of the i-th
phase is used for that purpose,

(2.4) σ̇i = L
ep
i ε̇i ,

where L
ep
i is the current elasto-plastic (constitutive) tangent stiffness tensor of

the respective phase. The interaction equation takes the following rate form:

(2.5) σ̇1 − σ̇0 = −L∗ (ε̇1 − ε̇0) ,

where the Hill tensor L∗:

(2.6) L∗ = P
−1 − L

ep
0 , P = P̂(Lep

0 ),

and the polarization tensor P depends now on the elasto-plastic tangent L
ep
0

and, as in the elastic case, on the inclusion shape. Note that the elasto-plastic
tangent L

ep
0 is anisotropic even if the material itself is isotropic, and various

isotropization schemes are usually applied to avoid an excessively stiff overall
response [23, 24], see Appendix B.

Using Eq. (2.4), the interaction equation (2.5) can be written in the following
equivalent form:

(2.7) ε̇1 =
(

I + P(Lep
1 − L

ep
0 )

)

−1
ε̇0.

As in the case of an elastic composite, the overall rate response of the elasto-
plastic composite is then obtained by solving the interaction equation (2.7) and
the averaging rule (2.3).

2.3. Incremental finite-step formulation

The theory presented in the preceding subsections is nowadays well estab-
lished. In order to use the incremental MT method in practice, e.g., as a two-
phase material model in the framework of the finite element method, the rate
equations in Section 2.2 must be integrated over time. Application of a time
integration scheme leads to an incremental finite-step formulation in which, at
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a typical time step tn → tn+1, the quantities at tn are known, and the current
quantities at tn+1 are to be found by solving the incremental problem.

By applying a generalized mid-point rule [23] to the linearized constitutive
equation (2.4), the following finite-step relationship is obtained:

(2.8) ∆σi = L
ep,n+θ
i ∆εi, L

ep,n+θ
i = (1 − θ)Lep,n

i + θLep,n+1
i ,

where θ ∈ [0, 1], the superscript n or n + 1 indicates the time instant at which
the quantity is evaluated, and ∆ denotes the increment, so that, for instance,
∆εi = ε

n+1
i − ε

n
i . The interaction equation (2.5) is also expressed in terms of

increments,

(2.9) ∆σ1 − ∆σ0 = −L∗ (∆ε1 − ∆ε0) ,

where the Hill tensor L∗ depends now on the tangent operator L
ep,n+θ
0 ,

(2.10) L∗ = P
−1 − L

ep,n+θ
0 , P = P̂(Lep,n+θ

0 ).

The averaging rule (2.3) completes the set of governing equations from which
the overall stress increment ∆σ̄ can be computed for a prescribed overall strain
increment ∆ε̄. Note that, unlike in the rate formulation in Section 2.2, the in-
teraction equation (2.9) in the finite-step formulation is not equivalent to the
finite-step counterpart of Eq. (2.7), viz.

(2.11) ∆ε1 =
(

I + P(Lep,n+θ
1 − L

ep,n+θ
0 )

)

−1
∆ε0,

because the latter explicitly exploits the linearized constitutive equations (2.8),
while the former does not. In fact, the actual stress increments ∆σi = σ

n+1
i −σ

n
i

can be employed in the interaction equation (2.9) instead of the approximate
increments resulting from the linearization (2.8), and this formulation is adopted
in the present work, see also [26, 39]. Formulations based on Eq. (2.11) are
employed, e.g., in [23, 35, 38].

The governing equations of the incremental MT scheme are non-linear and
thus must be solved iteratively, e.g., using the Newton method. The solution
must then be linearized in order to compute the overall consistent (algorithmic)
tangent L̄

alg = ∂∆σ̄/∂∆ε̄ which is needed, for instance, when the MT model
is used as a constitutive model in FE computations. Consistent linearization of
the resulting doubly-nested iteration-subiteration scheme, which is not a trivial
task, and its impact on the overall performance of the elasto-plastic MT model
are discussed in detail by Sadowski et al. [39].

Let us note that exact linearization of the incremental MT model is usu-
ally not performed in practical applications of the incremental MT scheme,
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e.g., [23, 35]. Actually, the fixed point iteration method, used in [23, 35] to solve
the incremental equations resulting from the MT scheme, does not admit exact
linearization. Problems with exact linearization of the elasto-plastic MT model
have been mentioned also in other related papers, e.g., [29, 41]. As an exception,
a computational scheme that includes exact linearization of the MT model has
been reported in [37, 38].

Let us note also that in some formulations, e.g. [23, 35, 39, 41], the incremen-
tal linearization (2.8) and the corresponding interaction equation (2.9) employ
the algorithmic tangent L

alg
i = ∂∆σi/∂∆εi rather than the constitutive elasto-

plastic tangent L
ep
i .

As explained above, incremental linearization of the constitutive equations is
an essential element of the elasto-plastic MT scheme. In case of rate equations,
linearization (2.4) is exact, even though the elasto-plastic tangent L

ep
0 suffers

discontinuity at the transition from the elastic to the plastic state. The discon-
tinuity of the local tangent results then in discontinuity of the overall tangent,
but the overall response is continuous.

However, for a finite step, linearization (2.8) provides only an approximation
of the actual incremental response. Moreover, if the step involves the elastic-
to-plastic transition, then the accuracy of the approximation delivered by the
current (weighted) elasto-plastic tangent may be low. This may lead to response
discontinuities that constitute the main concern of the present paper and appar-
ently have not been discussed in the literature yet.

3. Response discontinuities for proportional deviatoric loading

3.1. Origin of response discontinuities at the elastic-to-plastic transition

Consider the finite-step incremental MT scheme introduced in Section 2.3
and a time increment that would correspond to the elastic-to-plastic transition
in the matrix. The matrix is thus assumed to be in an elastic state at t = tn.
Furthermore, we introduce a parametrization of the overall strain increment
∆ε̄ = αǫ, with α > 0 and ǫ fixed, such that for small α the matrix is still elastic,
but for sufficiently large α it would be plastic at t = tn+1.

Now, we observe that the tangent operator L
ep,n+1
0 and thus also L

ep,n+θ
0

suffer discontinuity at the instant of elastic-to-plastic transition. Actually, for
θ = 0 the latter one would not change with an increasing α, but the correspond-
ing explicit Euler scheme is highly inaccurate, and is thus not considered here.
Typical values for θ are θ = 0.5 (mid-point rule) and θ = 1 (backward Euler
scheme).

Discontinuity of L
ep,n+θ
0 implies discontinuity of the Hill tensor L∗ in the

interaction equation (2.9) and this results in discontinuity of the solution of the
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equations governing the incremental MT scheme. As a result, the overall stress
may suffer discontinuity at the instant of elastic-to-plastic transition. Actually,
as shown below, a range of values of the scaling parameter α can be found
for which either there is no solution or there are two solutions, each associated
with a different value of the overall stress. The two situations are schematically
illustrated in Fig. 2 that is discussed in detail in Section 3.5.

Considering application of the incremental MT model in finite element com-
putations, the two situations mentioned above are highly undesirable since they
negatively affect the convergence properties and overall robustness of the corre-
sponding finite element scheme.

The related convergence problems are illustrated in Fig. 1a that shows, af-
ter [39], the results of finite element computations in which the incremental MT
scheme has been used as the constitutive model evaluated at the Gauss points.
The results correspond to tension of a rectangular plate with a central hole. The
material was a two-phase composite with an elasto-plastic matrix and spherical
elastic inclusions. The finite element model involved 368 640 hexahedral elements
and about 1.2 million degrees of freedom. More details can be found in [39].

The response discontinuities discussed above were frequently encountered
during the solution process, and the computations could only proceed with rather
small load increments, see Fig. 1a. For larger load increments, convergence of the

a) b)

Fig. 1. Illustration of the impact of response discontinuities on the convergence behavior
and robustness of the incremental MT scheme employed in finite element computations:

a) basic MT scheme exhibiting severe convergence problems that are caused by the
discontinuities; b) MT scheme enhanced by a substepping strategy that eliminates the

discontinuities. The diagrams present the force–displacement curves with dots indicating the
load steps for the problem of tension of a rectangular composite block with a hole, cf. [39].
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global Newton iterations could not be achieved. On the other hand, as shown in
Fig. 1b, the solution could be obtained in just 10 large steps once the MT scheme
has been combined with a substepping strategy that eliminates the response dis-
continuities, cf. Section 4. The enhanced incremental MT scheme proves therefore
to be highly robust and thus suitable for large-scale simulations.

Below, the response discontinuities are studied in detail for a special case of
proportional deviatoric loading for which the incremental solution can be found
in a closed form. Some remedies are discussed next.

3.2. Proportional deviatoric loading

From now on, the discussion is restricted to a two-phase composite with
spherical isotropic elastic inclusions, uniformly dispersed in an elasto-plastic
isotropic matrix that obeys the J2-plasticity model with linear isotropic
hardening.

A strain-controlled, proportional loading is considered so that the overall
strain ε̄ can be expressed as

(3.1) ε̄ = ε̄N,

where ε̄ increases monotonically, and N is a constant tensor satisfying the fol-
lowing conditions

(3.2) N = const, trN = 0, ‖N‖ = 1.

Accordingly, the overall strain ε̄ is a deviator, trε̄ = 0, and so is its increment ∆ε̄,

(3.3) ∆ε̄ = ∆ε̄N.

The incremental MT scheme is now employed based on the interaction equa-
tion (2.9) in which the elasto-plastic tangent L

ep,n+1
0 is used to compute the Hill

tensor L∗ and the polarization tensor P, i.e., the backward Euler scheme (θ = 1)
is applied. Furthermore, following the usual practice, the polarization tensor P is
evaluated in terms of the isotropized tangent, see Appendix B. Other options are
discussed in Sections 3.7 and 4. It is shown, see Appendix A, that under those
assumptions all local and total stress and strain tensors are also proportional
to N, namely

(3.4) ∆σ̄ = ∆σ̄N, ∆εi = ∆εiN, ∆σi = ∆σiN for i = 0, 1,

and the problem can be treated as one-dimensional. As a consequence, equations
introduced in Section 2 can be written in a scalar form.

The incremental interaction equation (2.9) is thus written as follows:

(3.5) ∆σ1 − ∆σ0 = −2Gep
∗

(∆ε1 − ∆ε0) ,
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where

(3.6) Gep
∗

=
1

2P ep
−Gep

0 , P ep =
3(2Gep

0 +Ke
0)

5Gep
0 (4Gep

0 + 3Ke
0)
,

and Ke
0 is the elastic bulk modulus of the matrix. Here, Gep

∗ and P ep are scalar
coefficients derived from the respective tensors L∗ and P, see Appendix A, and P

is determined using the isotropized tangent shear modulus Gep(iso)
0 specified by

Eq. (B.1), so that Gep(iso)
0 = Gep

0 , compare Eqs. (A.10) and (B.1). Superscript
‘ep’ refers to the quantities associated with the general constitutive elasto-plastic
tangent. Superscripts ‘e’ or ‘p’ refer to the quantities related, respectively, to the
elastic or plastic state of the matrix.

The incremental form of the averaging rule is now the following:

(3.7) ∆ε̄ = (1 − c)∆ε0 + c∆ε1, ∆σ̄ = (1 − c)∆σ0 + c∆σ1.

The incremental constitutive equations take the form

(3.8) ∆σ0 = 2Ge
0(∆ε0 − ∆γ0), ∆σ1 = 2Ge

1∆ε1,

where Ge
0 and Ge

1 are the elastic shear moduli of the matrix and the inclusions,
respectively. The matrix may undergo plastic deformation, thus Eq. (3.8)1 in-
cludes the increment of plastic multiplier ∆γ0 ≥ 0. The yield function of the
matrix can also be written in a scalar form,

(3.9) φn+1
0 = σn

0 + ∆σ0 − σy,0 −H0(γ
n
0 + ∆γ0),

where σy,0 is the initial yield stress, H0 is the hardening modulus, and the fol-
lowing standard complementarity conditions hold:

(3.10) ∆γ0 ≥ 0, φn+1
0 ≤ 0, ∆γ0 φ

n+1
0 = 0.

3.3. Elastic step

First, a fully elastic step is considered so that φn+1
0 ≤ 0, ∆γ0 = 0 and

Gep
0 = Ge

0. Solution of Eqs. (3.5)–(3.9) yields the following elastic response

(3.11) ∆σ0 = 2Ge
0∆ε0, ∆σ1 = 2Ge

1∆ε1, ∆ε0 = αe
0∆ε̄, ∆ε1 = αe

1∆ε0,

and

(3.12) ∆σ̄ = 2αe
0

(

(1 − c)Ge
0 + cαe

1G
e
1

)

∆ε̄,

where

(3.13) αe
1 =

Ge
0 +Ge

∗

Ge
1 +Ge

∗

, αe
0 =

1

1 − c+ cαe
1

, Ge
∗

=
Ge

0(8G
e
0 + 9Ke

0)

6(2Ge
0 +Ke

0)
.
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The overall strain, denoted by ε̄φ0
, for which the matrix reaches the limit of

elastic regime, is evaluated by setting φn+1
0 = 0 and is equal to

(3.14) ε̄φ0
= ε̄|φ0=0 =

σy,0

2Ge
0α

e
0

.

The corresponding overall stress σ̄e
φ0

is then specified as

(3.15) σ̄e
φ0

= σ̄|φ0=0 = σy,0

(

1 − c+ cαe
1

Ge
1

Ge
0

)

.

3.4. Elasto-plastic step

Let us consider now a step that involves the elastic-to-plastic transition.
Accordingly, we have φn

0 < 0, φn+1
0 = 0, ∆γ0 > 0 and Gep

0 = Gp
0 . Again, by

solving Eqs. (3.5)–(3.9), the increments of strain and stress in the phases are
obtained in the form

∆ε0 = αp
0∆ε̄− cαp

0β
p
1 , ∆ε1 = αp

1∆ε0 + βp
1 ,(3.16)

∆σ0 = 2Gp
0∆ε0 + ∆σ∗0, ∆σ1 = 2Ge

1∆ε1,(3.17)

where

αp
1 =

Gp
0 +Gp

∗

Ge
1 +Gp

∗

, αp
0 =

1

1 − c+ cαp
1

, Gp
∗

=
Gp

0(8G
p
0 + 9Ke

0)

6(2Gp
0 +Ke

0)
,(3.18)

Gp
0 =

Ge
0H0

2Ge
0 +H0

, ∆σ∗0 = 2Ge
0

σy,0 − σn
0

2Ge
0 +H0

, βp
1 =

∆σ∗0
2(Ge

1 +Gp
∗)
.(3.19)

The increment ∆γ0 of plastic multiplier is determined from the yield condition
φn+1

0 = 0. Using Eqs. (3.9) and (3.16)–(3.19), ∆γ0 is found equal to

(3.20) ∆γ0 =
2Ge

0

2Ge
0 +H0

∆ε0 −
σy,0 − σn

0

2Ge
0 +H0

.

The overall strain ε̄γ0 that would correspond to the elasto-plastic regime in
the limit ∆γ0 = 0 can be determined from Eq. (3.20),

(3.21) ε̄γ0 = ε̄|∆γ0=0 = ε̄n + (σy,0 − σn
0 )

(

1

2Ge
0α

p
0

+
cGe

0

(2Ge
0 +H0)(Ge

1 +Gp
∗)

)

,

where

(3.22) ε̄n =
σn

0

2Ge
0α

e
0

.
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3.5. Response discontinuity

Above we have determined two limit values of the overall strain, ε̄φ0
and ε̄γ0 ,

that are associated with the transition from the elastic to the plastic state in
the matrix. Assuming that the matrix is in the elastic state, for ε̄n+1 < ε̄φ0

we have φn+1
0 < 0 and ∆γ0 = 0. Assuming that the matrix is in the plastic

state, for ε̄n+1 > ε̄γ0 we have φn+1
0 = 0 and ∆γ0 > 0. Clearly, each of the two

states individually satisfies the complementarity conditions (3.10). A continuous
transition from the elastic to the plastic state would be possible if the two limit
strains were equal to each other so that for ε̄n+1 = ε̄φ0

= ε̄γ0 we would have
φn+1

0 = 0 and ∆γ0 = 0.
However, in general, the two limit strains are not equal to each other. Indeed,

using Eqs. (3.14) and (3.21), the difference between the limit strains, referred to
as the strain gap δε̄, is found equal to

(3.23) δε̄ = ε̄γ0 − ε̄φ0
= cαe

0 (ε̄φ0
− ε̄n)

(

αp
1 − αe

1 +
2(Ge

0)
2

(2Ge
0 +H0)(Ge

1 +Gp
∗)

)

.

The strain gap δε̄ can be positive or negative depending on the sign of the last
term in the parenthesis in Eq. (3.23). It can be verified that

(3.24) δε̄ < 0 if Ge
1 > Ge

0 and δε̄ > 0 if Ge
1 < Ge

0.

The two situations are illustrated in Fig. 2. It has to be stressed that the sketch
in Fig. 2 and the discussion that follows concern a single load step associated
with the overall strain increment ∆ε̄ of varying length, and the initial state being
characterized by (ε̄n, σ̄n).

Case (a) in Fig. 2 corresponds to negative δε̄. It follows that two solutions of
the governing equations exist for ε̄γ0 ≤ ε̄n+1 ≤ ε̄φ0

. Each solution corresponds
to either elastic or plastic state in the matrix. The shaded zone indicates the
range of strain increments in which two solutions are possible. In particular, it
is shown in the bottom-left figure that in the shaded zone we have φn+1

0 ≤ 0 and
∆γ0 ≥ 0, thus both solutions satisfy the complementarity conditions (3.10) (the
corresponding feasible branches are indicated by solid lines; the infeasible ones
by dashed lines).

It is also indicated in Fig. 2 that each solution is associated with a distinct
value of the overall stress. The related stress jump can be found in a closed form.
However, the explicit formula is not provided here as it is rather lengthy. It can
be verified that the stress jump δσ̄ at ε̄n+1 = ε̄φ0

, defined as

(3.25) δσ̄ = σ̄p
φ0

− σ̄e
φ0

if δε̄ < 0,

see Fig. 2, is always negative, δσ̄ < 0. Furthermore, the dependence of δσ̄ on the
previous strain ε̄n is linear, and δσ̄ is proportional to the term (ε̄φ0

− ε̄n), just
like in the case of strain gap δε̄, see Eq. (3.23).
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Fig. 2. Illustration of the response discontinuities at the elastic-to-plastic transition in the
incremental Mori–Tanaka scheme. See text for explanations.

For a positive strain gap δε̄, see case (b) in Fig. 2, the governing equations
have no solution for ε̄φ0

< ε̄n+1 < ε̄γ0 , and the corresponding range of strain
increments is indicated by a shaded zone. In particular, in this zone, the com-
plementarity conditions (3.10) are violated, i.e., either φn+1

0 > 0 or ∆γ0 < 0, as
shown in the bottom-right figure.
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3.6. Illustrative example

The analytical results derived above are illustrated by the following numerical
example of a two-phase composite. The reference values of the material param-
eters used in the study are summarized in Table 1. The reference value of the
volume fraction of spherical inclusions is c = 0.1.

Table 1. Reference values of material properties of the phases.

Matrix (‘0’) Inclusion (‘1’)

Bulk modulus, Ke
i [GPa] 65 240

Shear modulus, Ge
i [GPa] 30 180

Yield stress, σy,0 [MPa] 75 –

Hardening modulus, H0 [MPa] 240 –

According to formula (3.23), the strain gap δε̄ is proportional to the term
(ε̄φ0

− ε̄n). The stress jump δσ̄ is also proportional to (ε̄φ0
− ε̄n). Accordingly, the

numerical results are presented below for ε̄n = 0 (which corresponds to σ̄n = 0),
i.e., as if the elastic-to-plastic transition was approached in one step. The values
of δε̄ and δσ̄ corresponding to 0 < ε̄n < ε̄φ0

can be simply obtained by scaling
those results by the factor (ε̄φ0

− ε̄n)/ε̄φ0
.

The dependence of the normalized strain gap δε̄/ε̄φ0
on the elastic shear

moduli ratio Ge
1/G

e
0 is shown in Fig. 3a for Ge

1/G
e
0 ≤ 1 and in Fig. 3b for

Ge
1/G

e
0 ≥ 1. Here, the material parameters for the matrix are those presented

in Table 1, and the elastic shear modulus Ge
1 of inclusions is varied in a wide

range. Let us note that the strain gap δε̄ does not depend on the bulk modulus
of inclusions, cf. Eq. (3.23). Additionally, the influence of the hardening modulus
of the matrix H0, normalized by the elastic shear modulus Ge

0, is also presented
in Fig. 3, the ratio of H0/G

e
0 = 0.008 corresponding to the reference parameters

given in Table 1.
When Ge

1/G
e
0 = 1, there is no strain gap, δε̄ = 0. For higher values of this

ratio, the strain gap δε̄ is negative, and the two solutions are possible according
to the scheme shown in Fig. 2a. On the contrary, if Ge

1/G
e
0 < 1, the strain gap

δε̄ is positive, and no solution exists for ε̄φ0
< ε̄n+1 < ε̄γ0 , see Fig. 2b.

As it is shown in Fig. 3a, for the limit case of a porous material, i.e. for Ge
1 = 0,

strain gap has a finite value. This value depends on the hardening modulus of
the matrix, and it increases significantly as the hardening modulus H0 decreases
to zero. For instance, δε̄/ε̄φ0

≈ 15.3 for Ge
1 = 0 and for the reference ratio of

H0/G
e
0 = 0.008. Accordingly, the solution does not exist for a large range of

strain increments.
The case when two solutions may exist is presented in Fig. 3b. Here, the

magnitude of the (now negative) strain gap is approximately three orders of
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magnitude smaller compared to the case of no solution, cf. Fig. 3a. Additionally,
the strain gap is by far less sensitive to the hardening modulus of the matrix,
see Fig. 3b. The strain gap vanishes for rigid inclusions, i.e., for Ge

1/G
e
0 → ∞.

a) b)

Fig. 3. Normalized strain gap δε̄/ε̄φ0
as a function of the ratio of elastic shear moduli:

a) Ge
1/Ge

0 ≤ 1 and b) Ge
1/Ge

0 ≥ 1.

The effect of Poisson’s ratio ν0 on the strain gap is shown in Fig. 4. Here,
the shear modulus Ge

0 is fixed at the reference value given in Table 1, and the
bulk modulus Ke

0 is varied according to the varying value of ν0. The dependence

a) b)

Fig. 4. Effect of Poisson’s ratio ν0 on the normalized strain gap δε̄/ε̄φ0
for a) Ge

1/Ge
0 ≤ 1

and b) Ge
1/Ge

0 ≥ 1.
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of δε̄/ε̄φ0
on Ge

1/G
e
0 is similar to that shown in Fig. 3. The effect of ν0 is more

pronounced for Ge
1/G

e
0 > 1 than for Ge

1/G
e
0 < 1.

The dependence of the normalized stress jump δσ̄/σy,0 on the ratio Ge
1/G

e
0 is

shown in Fig. 5. Note that δσ̄ is defined only for δε̄ ≤ 0, i.e. for Ge
1/G

e
0 ≥ 1. The

effect of the hardening modulus H0 and Poisson’s ratio ν0 is also depicted. It
can be seen that for rigid inclusions (Ge

1/G
e
0 → ∞) the stress jump δσ̄ is of the

order of 0.1σy,0, which is a considerably large value. Let us note that the stress
jump δσ̄ is finite for Ge

1/G
e
0 → ∞, even though the strain gap δε̄ is tending to 0

in this case, cf. Figs. 3b and 4b.

a) b)

Fig. 5. Normalized stress jump δσ̄/σy,0 as a function of the elastic shear moduli ratio
Ge

1/Ge
0 ≥ 1. The effect of the normalized hardening coefficient H0/Ge

0 (a) and Poisson’s ratio
ν0 (b) is also shown.

3.7. Alternative formulations of the incremental MT scheme

The detailed analysis presented above concerns the specific formulation of the
incremental MT scheme adopted in Section 3.2. As already mentioned, the finite-
step scheme can be formulated in several versions, and in this section we briefly
discuss the influence of the formulation itself on the response discontinuities.

The coefficient P ep, Eq. (3.6)2, derived from the polarization tensor P cor-
responds to the isotropization of the elasto-plastic tangent L

ep
0 according to

Eq. (B.1). If the alternative isotropization method, see Eq. (B.2), is adopted,
then P ep takes the following form:

(3.26) P ep =
3(2G0 +Ke

0)

5G0(4G0 + 3Ke
0)
, G0 =

1

5
(4Ge

0 +Gep
0 ).
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It can be verified that in this case we have

(3.27) δε̄ < 0 if Ge
1 < Ge

0 and δε̄ > 0 if Ge
1 > Ge

0,

so that the sign of the strain gap δε̄ is opposite to that in the case of isotropization
(B.1), see Eq. (3.24). The sign of the stress jump δσ̄, which is now defined for
Ge

1 < Ge
0, see Eq. (3.25), depends on material parameters through the following

expression:

(3.28) sign(δσ̄) = −sign
(

(Ge
1 −Ge

0)((G
e
1 −Ge

0)H0 + 2Ge
1G

e
0)

)

,

and can be either positive or negative.
Another version of the incremental MT scheme is obtained when the inter-

action equation (2.9) is replaced by its transformed form (2.11), cf. [23, 38]. In
that case, the strain gap can be expressed in the following form:

(3.29) δε̄ = cαe
0 (ε̄φ0

− ε̄n)(αp
1 − αe

1),

and δε̄ is negative independently of the isotropization method, (3.6)2 or (3.26).
Accordingly, there are always two solutions and a non-zero stress jump δσ̄ of the
sign specified by

(3.30) sign(δσ̄) = −sign((Ge
1 −Ge

0)H0 + 2Ge
1G

e
0).

Concluding, the finite-step incremental MT scheme exhibits the response
discontinuities regardless of the details of the formulation. Those details influence
the specific qualitative and quantitative features, for instance, the sign of the
strain gap δε̄.

4. Possible remedies

The response discontinuities discussed above constitute a highly undesirable
feature of the incremental MT scheme. This particularly concerns application of
the incremental MT scheme as a material model in finite element computations.
Some remedies are discussed below.

As shown in Section 3.5, the strain gap δε̄ and the associated stress jump δσ̄
depend on the stress state at the end of the previous step. In particular, δε̄ and
δσ̄ are proportional to the term (ε̄φ0

− ε̄n), so that both gaps decrease when ε̄n

gets closer to ε̄φ0
. The problems related to response discontinuities may thus be

reduced by reducing the load increments. However, apart from increasing the
computational cost, this does not solve the problem completely as the problems
may still be encountered, though with a lower probability.
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Let us note that in a typical medium- or large-scale finite element computa-
tion there are thousands or even millions of integration (Gauss) points at which
the constitutive model is evaluated at each time increment and at each global
Newton iteration. Accordingly, even if the problematic range of strain increments
is small, the probability of encountering the discontinuity is in practice high.

The response discontinuities are caused by the jump of the tangent stiffness
of the matrix in the elastic-to-plastic transition. The jump can be reduced by
adopting the generalized mid-point rule (2.8) and by formulating the interaction
equation (2.9) in terms of the tangent operator L

ep,n+θ
0 with θ < 1. For instance,

the mid-point rule (θ = 0.5) has been used in [23], and a heuristic approach for
determining θ has been proposed in [37].

Let us consider again the proportional deviatoric loading discussed in Sec-
tion 3. In case of the elasto-plastic step, the tangent modulus Gep

0 corresponding
to the generalized mid-point rule takes the form

(4.1) Gep
0 = (1 − θ)Ge

0 + θGp
0 ,

and the scalar coefficients Gep
∗ and P ep defined by Eq. (3.6) are then expressed in

terms of Gep
0 defined above. With the above redefinition, the remaining formulae

corresponding to the elasto-plastic step, cf. Section 3.4, are not changed. The
form of Eqs. (3.23)–(3.25) that characterize the response discontinuities also
remains unchanged.

Application of the generalized mid-point rule indeed reduces the range of
strains in which response discontinuities occur. This is illustrated in Fig. 6 for
the case of θ = 0.5. The normalized strain gap δε̄/ε̄φ0

is significantly smaller

a) b)

Fig. 6. Normalized strain gap δε̄/ε̄φ0
corresponding to the mid-point rule (4.1) for θ = 0.5:

a) Ge
1/Ge

0 ≤ 1 and b) Ge
1/Ge

0 ≥ 1.



20 P. Sadowski, K. Kowalczyk-Gajewska, S. Stupkiewicz

a) b)

Fig. 7. Normalized strain gap δε̄/ε̄φ0
as a function of parameter θ for the fixed ratio of

elastic shear moduli and for H0/Ge
0 = 0.008.

than in the case of θ = 1 shown in Fig. 3, but it is not equal to zero. Dependence
of the strain gap δε̄/ε̄φ0

on θ is illustrated in Fig. 7 for selected values of the
ratio Ge

1/G
e
0.

It follows that the problems related to response discontinuities cannot be
completely avoided by applying the mid-point rule, and convergence problems
can be easily encountered in middle- or large-scale computations. Referring to the
illustrative example reported in Fig. 1, for the mid-point rule with θ = 0.5 (the
corresponding results are not provided for brevity), the number of steps needed
to complete the simulation was equal to 15. The MT scheme employing the mid-
point rule is thus more robust than the basic MT scheme that corresponds to
θ = 1 (49 steps, Fig. 1a). At the same time, it is not as robust as the MT scheme
employing the substepping strategy that is described below (10 steps, Fig. 1b).

An ultimate remedy to the problem of response discontinuities, applicable in
a general case of multiaxial, non-monotonic and non-radial loading, is to split
the step involving the elastic-to-plastic transition into two substeps. Specifically,
in a strain-controlled process with a prescribed strain increment ∆ε̄, such that
ε̄

n+1 = ε̄
n + ∆ε̄, the following two substeps are considered,

(4.2) ε̄
n+β = ε̄

n + β∆ε̄, ε̄
n+1 = ε̄

n+β + (1 − β)∆ε̄, β ∈ (0, 1).

The first substep is purely elastic and ends exactly at the instant of the elastic-
to-plastic transition. The fraction β is determined from the condition φn+β

0 = 0.
The second substep proceeds then purely in the plastic regime. Substepping is
not needed in case of a purely elastic or purely plastic step.
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When the inclusions are elastic, implementation of the substepping scheme
is relatively straightforward. In brief, a trial elastic step is first considered, for
which the equations of the MT model are solved in a closed form. If the yield
condition φn+1

0 ≤ 0 is violated, then the step is elastic-plastic, and parameter
β is determined from the condition φn+β

0 = 0. Importantly, the substepping
procedure admits exact linearization.

The incremental MT scheme enhanced by the above substepping strategy
has been successfully implemented in a finite element code, and its efficiency and
robustness in three-dimensional finite element computations have been demon-
strated in [39]. An illustrative example taken from [39] has been provided in
Section 3.1, cf. Fig. 1.

In the case of proportional deviatoric loading discussed in Section 3 and
for linear hardening, the substepping scheme discussed above yields an exact
response for arbitrarily large strain increments.

5. Conclusion

The incremental Mori–Tanaka model of elasto-plastic composites has been
discussed with the focus on its finite-step formulation. The sudden change of the
elasto-plastic tangent moduli at the instant of the elastic-to-plastic transition
in the matrix has been shown to lead to discontinuities in the overall response.
Specifically, depending on the details of the formulation and on the properties of
the phases, the incremental finite-step equations may have two solutions or no
solution. In the former case, switching between the two solutions is associated
with a jump in the overall stress. The discontinuities are encountered in a specific
range of overall strain increments in the vicinity of the elastic-to-plastic transition.

The related effects have been studied in detail for a special case of propor-
tional deviatoric loading in which the constitutive equations and the equations of
the micro–macro transition scheme can be formulated in a scalar form. As a re-
sult, the incremental equations can be solved in a closed form, and compact
expressions for the quantities characterizing the response discontinuities have
been derived.

The discontinuities constitute an undesirable feature of the incremental Mori–
Tanaka scheme that has not been discussed in the literature so far. In particular,
the discontinuities impose a severe constraint on the maximum strain incre-
ment that can effectively be employed in large-scale finite element computations
employing the incremental Mori–Tanaka scheme. Some remedies to the related
problems have been briefly discussed. In particular, a substepping strategy leads
to an efficient and robust finite element implementation, as demonstrated by
Sadowski et al. [39].
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A. Elasto-plastic tangent moduli and polarization tensor

In the analysis of Section 3, the matrix phase ‘0’ is assumed to obey the J2

plasticity model with linear isotropic hardening. The corresponding constitutive
relations are summarized as follows:

(A.1) σ̇0 = L
e
0(ε̇0 − ε̇

p
0), ε̇

p
0 = γ̇0

∂φ0

∂σ0
, φ0 ≤ 0, γ̇0 ≥ 0, γ̇0φ0 = 0,

where

(A.2) φ0 = ‖σ′

0‖ − (σy,0 +H0γ0), N0 =
∂φ0

∂σ0
=

σ
′

0

‖σ′

0‖
,

and σ
′

0 is the stress deviator. Note that, in the definition above, the yield stress

σy,0 is related to the uniaxial yield stress Y by σy,0 =
√

2
3Y , and the hardening

modulus H0 is defined accordingly.
The plastic multiplier γ̇0 is determined from the consistency condition φ̇0 = 0,

and the rate form (2.4) of the constitutive relation is obtained, in which the
elasto-plastic tangent stiffness tensor has the following form:

(A.3) L
ep
0 =

{

3Ke
0 I

P + 2Ge
0 I

D for γ̇0 = 0,

3Ke
0 I

P + 2Ge
0(I

D− N0 ⊗ N0) + 2Gp
0 N0 ⊗ N0 for γ̇0 > 0,

where

(A.4) Gp
0 =

Ge
0H0

2Ge
0 +H0

, I
P =

1

3
1 ⊗ 1, I

D = I − 1

3
1 ⊗ 1,

and I is the symmetrized fourth-order identity tensor.
As it is seen, L

ep
0 tensor is in general anisotropic (orthotropic), so that the

corresponding polarisation tensor P would have to be calculated employing nu-
merical integration. Anyway, isotropization of the elasto-plastic tangent is usu-
ally performed in order to avoid excessively stiff response, see Appendix B. The
isotropized tangent stiffness has the form:

(A.5) L
ep(iso)
0 = 3Ke

0 I
P + 2G

ep(iso)
0 I

D,

where specification of the modulus Gep(iso)
0 depends on the adopted isotropiza-

tion method, see Eqs. (B.1) and (B.2) in Appendix B. In the case of spherical
inclusions and isotropic stiffness tensor, the polarization tensor P is also isotropic
and is given in the following closed form:

(A.6) P
(iso) = P̂(L

ep(iso)
0 ) = P e

volI
P + P ep

I
D,
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where

(A.7) P e
vol =

1

3Ke
0 + 4G

ep(iso)
0

, P ep =
3

5G
ep(iso)
0

Ke
0 + 2G

ep(iso)
0

3Ke
0 + 4G

ep(iso)
0

.

The Hill tensor L
ep
∗ in the interaction equation (2.5) is then calculated from

Eq. (2.6) with P = P
(iso),

(A.8) L
ep
∗

= P
(iso)−1 − L

ep
0 ,

and an analogous treatment is applied in the case of the finite-step formulation
of Section 2.3.

Let us consider now the proportional deviatoric loading specified by the di-
rection N, see Eq. (3.1). Since the tensors L

ep
0 and L

ep
∗ are coaxial it can be

shown that the stress and strain rates in the phases also have the direction N,
see Eq. (3.4), and, in particular, in the plastic state we have

(A.9) N0 = N.

As a result, the process can be described by the set of scalar equations, as
discussed in Section 3. The elasto-plastic response of the matrix is then charac-
terized by the elasto-plastic tangent shear modulus Gep

0 defined by

(A.10) Gep
0 =

1

2
N · Lep

0 N =

{

Ge
0 for γ̇0 = 0,

Gp
0 for γ̇0 > 0,

while the coefficient in the scalar interaction equation (3.5) is given by

(A.11) Gep
∗

=
1

2
N · Lep

∗
N =

1

2P ep
−Gep

0 .

B. Isotropization

As mentioned in Section 2.2, the elasto-plastic tangent moduli tensor L
ep
0 is

usually isotropized, and the polarization tensor P is evaluated in terms of the
corresponding isotropic tensor L

ep(iso)
0 . As a result, an excessively stiff response

is avoided [23, 24, 42].
Two methods of isotropization are here briefly recalled. In both methods, the

bulk modulus of the isotropized tangent is equal to the elastic bulk modulus of
the matrix. As far as the isotropized shear modulus is concerned, in the first
method it is calculated as a projection of the tangent elasto-plastic stiffness onto
the unit normal N0 to the yield surface φ0 [24, 43],

(B.1) G
ep(iso)
0 =

1

2
N0 · Lep

0 N0, N0 =
n0

‖n0‖
, n0 =

∂φ0

∂σ0
.
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Consequently, the coefficient P ep derived from the polarization tensor P is given
by the formula (3.6)2. In the second method [23, 44], the isotropized shear mod-
ulus is determined according to

(B.2) G
ep(iso)
0 =

1

10

(

Lep
0,ijij −

1

3
Lep

0,iijj

)

and the coefficient P ep is then defined by Eq. (3.26). The first method leads to
softer predictions and is more often used in the literature [23, 24, 45] because it
gives more reliable predictions.
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