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The exact analytical expressions for the time-dependent cross-correlations
of the translational and rotational Brownian displacements of a particle with arbi-
trary shape were derived by us in [3, 4]. They are in this work applied to construct
a method to analyze the Brownian motion of a particle of an arbitrary shape, and
to extract accurately the self-diffusion matrix from the measurements of the cross-
correlations, which in turn allows to gain some information on the particle structure.
As an example, we apply our new method to analyze the experimental results of
D. J. Kraft et al. for the micrometer-sized aggregates of the beads [8]. We explicitly
demonstrate that our procedure, based on the measurements of the time-dependent
cross-correlations in the whole range of times, allows to determine the self-diffusion
(or alternatively the friction matrix) with a much higher precision than the method
based only on their initial slopes. Therefore, the analytical time-dependence of the
cross-correlations serves as a useful tool to extract information about particle struc-
ture from trajectory measurements.
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1. Introduction

The characteristic time scales of the translational and rotational Brownian
diffusion for nanoparticles are typically much smaller than the time resolution of
experiments. In this case, nanoparticles can be treated as point-like, and described
by the standard Brownian theory [1]. However, for microparticles, the character-
istic Brownian time scales are of the order of seconds, and therefore non-negligible
in comparison to the typical time scales of the measured Brownian motion. For
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microparticles of complex shapes, a more general theoretical approach is needed
to account for the time-dependent Brownian translational and rotational displace-
ments and their cross-correlations. Such an approach has been recently developed,
and new analytical expressions have been derived from the Smoluchowski equation
for the Brownian motion of a particle with an arbitrary shape [2–4].

Nowadays, there is a lot of interest in experimental studies ofBrownianparticles
of relatively large sizes [5–8]. Therefore, it seems useful to demonstrate explicitly
how to apply the theoretical scheme from [3, 4] to analyze the data from measure-
ments. In this work, we use the interesting experiment from [8] as the reference for
such a comparison. In [8], the Brownian motions of symmetric and non-symmetric
microparticles were investigated at time scales comparable with the characteristic
time of the rotational Brownian diffusion. The time-dependent cross-correlations
of the Brownian translational and orientational displacements of microparticles
with different shapes were measured and the initial slopes of these curves were
used to experimentally determine the friction matrices. Based on the details of the
particle shape, known from the experiment, these matrices were also evaluated
numerically with hydrosub [9], and then used as the input to time-dependent
numerical simulations of the Brownian displacement cross-correlations. Qualita-
tively, the results agree with each other, but there are significant quantitative
differences, which the authors explain were due to by the statistical uncertainty
of the measurements and irregularities in the actual particle shapes.

In this paper, we look at the results in [8] from a more general perspective. If
similar measurements are performed for a particle of unknown shape, how can the
experimental data be used to extract as much details of the particle structure as
possible? This information is contained in the mobility matrix (or, equivalently,
its inverse called the friction matrix). Therefore, the key point is to construct such
a theoretical scheme that allows to determine from the experiments the mobility
coefficients (and therefore some information on the particle structure) with the
best possible precision. The analytical expressions from [3, 4] serve this purpose:
they can be used to fit the friction (or, equivalently, mobility) coefficients of a
particle using its Brownian displacement cross-correlations in the whole range
of the measured times. This procedure allows to determine experimentally the
mobility coefficients (and therefore a more detailed structure of the particle) with
a significantly higher precision than taking into account only the initial slope of
the correlation functions, as in [8].

2. Goals and theoretical framework

It is worthwhile to consider two generic cases.
Case 1, analyzed in Section 3. The particle structure and size are known and

the goal is to study its translational and rotational Brownian motion.
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Case 2, described in Section 4. The particle structure is not known, and
the Brownian displacement cross-correlations are used to determine its mobility
coefficients which in turn provide information about the particle structure and
size.

Numerical computations performed in [8] correspond to the first case. How-
ever, analysis of experimental data is often related to the second case. The chal-
lenging question is if the cross-correlations measurements can be analyzed with
a precision high enough to provide information about the particle geometry.

In this paper, we apply the analytic expressions from [3, 4] to satisfy both
goals. In Section 3, we perform calculations that belong to the first case. In
Section 4, we generalize this approach to the second case.

The basic theoretical framework used in Section 3 is as follows. First, we
evaluate the mobility matrix µ, which, by definition, gives the particle transla-
tional and rotational velocities when multiplied by the hydrodynamic force and
torque exerted by the particles on the fluid [3, 10]. We do it for the particles at
their initial orientations. The inverse of µ, called the friction matrix, is denoted
as ηH, as in [8],

ηH = µ−1.(2.1)

Therefore, the translational-translational, rotational-translational and rotatio-
nal-rotational elements of H are given in terms of µm, µm2 and µm3, respec-
tively.

We also evaluate the diffusion tensor D, with all the translational-translatio-
nal, rotational-translational and rotational-rotational parts,

D =

[

Dtt Dtr

Drt Drr

]

,(2.2)

for the particles at their initial orientations,

D = kBTµ,(2.3)

where kB is the Boltzmann constant and T is the temperature.
Next, we use the elements of the diffusion matrix D to determine the cross-

correlation matrix C(t) of the time-dependent Brownian translational and ori-
entational displacements of these particles [3, 4]

C(t) =

[

〈∆R(t)∆R(t)〉0 〈∆R(t)∆u(t)〉0
〈∆u(t)∆R(t)〉0 〈∆u(t) ∆u(t)〉0

]

,(2.4)

with ∆R and ∆u(t) defined as in [3, 4, 8],

∆R(t) = R(t) − R(0),(2.5)

∆u(t) =
1

2

3
∑

p=1

u(p)(0) × u(p)(t),(2.6)



260 B. Cichocki, M. L. Ekiel-Jeżewska, E. Wajnryb

where R(t) denotes the time-dependent position of a reference center and u(p)(t),
p = 1, 2, 3, are three mutually perpendicular unit vectors describing the particle
orientation at time t [3, 8].

The initial slope of the cross-correlation matrix is related to the diffusion
matrix D,

dC(t)

dt

∣

∣

∣

∣

t=0

= 2D.(2.7)

The averages 〈. . .〉0 are taken with respect to the particle positions and ori-
entations, using the conditional probability which satisfies the Smoluchowski
equation [1, 11].

To determine the hydrodynamic friction matrix ηH and the diffusion tensor
D for a given particle (case 1), we solve the Stokes equations, supplemented
by the boundary conditions at the particle surface, using the multipole method
with the lubrication correction, implemented in the accurate numerical codes
HYDROMULTIPOLE [12]. We apply the multipole truncation order L = 20.
Then, we apply the expressions for the cross-correlations derived from the Smolu-
chowski equation in [3, 4].

For spheres or some other symmetric particle shapes, the mobility and friction
matrices are diagonal. Therefore, the mobility center [10] coincides with the
center of mass, we are in the frame in which the rotational-rotational diffusion
tensor is diagonal, and we can directly use the simple analytical expressions
derived in [3]. For irregular shapes, we first rotate the system of coordinates to the
reference frame in which the rotational-rotational diffusion matrix is diagonal.
Still, the translational-rotational coupling does not vanish, and therefore, we use
more complicated analytical expressions for the cross-correlations from [4]. To
compare with the experiments, we rotate back the frame of reference to the one
shown in Fig. 1.

In Section 3, this procedure (case 1) will be applied to an experimental
example. Section 4 considers the backward case 2, where the correlations are
known (experimentally) but the mobility matrix is not.

3. Case 1: Calculations

3.1. Particles

Following [8], we consider three particles: regular trimer, regular tetramer and
irregular trimer, made of spheres (labeled by i = 1, 2, 3, 4). For the regular trimer
and regular tetramer, the beads have equal diameters d and overlap, with equal
distances l between the closest bead centers, with d = 2.1 µm and l = 1.5 µm
for the trimer and d = 2.4 µm and l = 2.3 µm for the tetramer. For the irregular
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trimer, the beads have diameters d1 = 2.1 µm, d2 = 1.3 µm, d3 = 1.7 µm, they
do not overlap, and the distances between the bead centers are l13 = 2.2 µm,
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Fig. 1. Bead models of different rigid particles. For irregular trimer, the center of mass
(yellow triangle) does not coincide with the mobility center (cyan circle).
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l12 = 2.2 µm, l23 = 1.7 µm. The particles at their initial orientations with respect
to the chosen coordinate system are shown in Fig. 1; the centers of three beads
are in the plane x1 = 0. From now on we will choose the center of mass position
as the reference center position R(t), and will use the same notation as in [8], to
allow for the comparison with the experiments.

3.2. Fluid

In [8], the fluid dynamic viscosity was η = 2.22 mPa s and the temperature
T = 294 K. With these values, time is expressed in seconds and denoted as t.

3.3. Regular trimer

For the regular trimer at the chosen orientation shown in Fig. 1, the friction
matrix has the form

H =

















30.5 0 0 0 0 0
0 28.4 0 0 0 0
0 0 28.4 0 0 0
0 0 0 112 0 0
0 0 0 0 89.3 0
0 0 0 0 0 89.3

















,(3.1)

with the units of Hii equal to µm for i = 1, 2, 3 and µm3 for i = 3, 4, 5.
The cross-correlations are given by the same expressions as for axially sym-

metric shapes [3]:

C11 = 0.126 t − 0.0481(1 − e−0.123 t),(3.2)

C22 = C33 = 0.126 t + 0.0240(1 − e−0.123 t),(3.3)

C44 = 1
6 + 1

12e−0.123 t − 1
2e−0.106 t + 1

4e−0.0410 t,(3.4)

C55 = C66 = 1
6 − 1

6e−0.123 t − 1
4e−0.119 t + 1

4e−0.0367 t,(3.5)

where t denotes time in seconds, and the units of Cii are equal to µm2 for
i = 1, 2, 3 and are dimensionless for i = 3, 4, 5.

The expressions (3.2)–(3.5) are plotted versus time in seconds in the top row
of Fig. 2. The off-diagonal components vanish.

3.4. Regular tetramer

For the regular tetramer at the chosen orientation shown in Fig. 1, the friction
matrix has the form:
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H =

















39.7 0 0 0 0 0
0 39.7 0 0 0 0
0 0 39.7 0 0 0
0 0 0 248 0 0
0 0 0 0 248 0
0 0 0 0 0 248

















,(3.6)

with the units of Hii equal to µm for i = 1, 2, 3 and µm3 for i = 3, 4, 5.
The cross-correlations are given by the same expressions as for a spherical

particle [3]:

C11 = C22 = C33 = 0.0920 t,(3.7)

C44 = C55 = C66 =
1

6
− 5

12
e−0.0443 t +

1

4
e−0.0148 t,(3.8)

where t denotes time in seconds. The expressions (3.7)–(3.8) are plotted versus
time in the middle row of Fig. 2. The off-diagonal components vanish.

3.5. Irregular trimer

For the irregular trimer at the chosen orientation shown in Fig. 1, the friction
matrix has the form:

H =

















29.9 0 0 0 −4.06 −2.95
0 28.0 0.318 2.92 0 0
0 0.318 26.6 2.07 0 0
0 2.92 2.07 117 0 0

−4.06 0 0 0 101 8.51
−2.95 0 0 0 8.51 69.3

















,(3.9)

with the units of Hij equal to µm for i, j = 1, 2, 3 and µm3 for i, j = 3, 4, 5 and
µm2 for the t-r and r-t coefficients.

To determine the cross-correlations, we first go to the frame of reference where
the rotational-rotational part of the mobility matrix is diagonal, and evaluate
the correlation matrix Cdiag in this frame, using the explicit expressions from [4].
Then, with the use of the 3× 3 transformation matrix T , we transform it to the
original frame of reference,

Cn+i,m+l = T−1
ij Cdiag

n+j,m+kTlk.(3.10)

In Eq. (3.10), i, j, k, l = 1, 2, 3 are the Cartesian components, and n, m = 0, 3
label the translational and rotational parts of the correlation matrix. The expres-
sions are lengthy and therefore not explicitly written in this note. All the non-
vanishing translational-translational, translational-rotational and rotational-ro-
tational correlations are plotted in the bottom row of Fig. 2.
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Fig. 2. Cross-correlations Cij(t) for regular trimer (top row), regular tetramer (middle row)
and irregular trimer (bottom row). Translational-translational, translational-rotational and
rotational-rotational couplings are shown in the left, middle and right columns, respectively.

Horizontal line: C44(∞) = C55(∞) = C66(∞) = 1/6. Here, t denotes time in seconds.

3.6. Discussion

In general, the numerical friction tensors and cross-correlations of the Brow-
nian displacements presented in [8] agree well with our results presented in this
paper. No wonder, since they are obtained for the same sizes and relative posi-
tions of the spherical beads that model the particle shape. The only meaningful
differences are observed the rotational-translational couplings of the irregular
trimer which are small and difficult to be determined numerically. Comparing
the corresponding elements of the hydrodynamic friction matrices in Eqs. (3.1),
(3.6) and (3.9) with those given in Fig. 1 of [8], we need to take into account
different geometries and accuracies of the models. In the HYDROSUB algorithm
and numerical program, used in [8], the surface of the particle is represented by
a shell of small elements (“minibeads”); the results are extrapolated to a zero
minibead radius [9]. In this work, each sphere of the cluster is represented by
a single bead, and the accurate HYDROMULTIPOLE numerical codes based on
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a very precise multipole method corrected for lubrication are used to evaluate
the friction matrix elements [12].

4. Case 2: new method
We will now apply our analytical expressions from [4] to analyze the ex-

perimental results for the irregular trimer given in [8]. For this particle, the
non-linear deviations present in the analytical expressions from Section 3.5 are
very small, and the theoretical translational-translational correlations grow with
time almost linearly. We will now estimate the corresponding self-diffusion con-
stant that characterizes the isotropic mean square displacement at large times.
According to the results of [2], for times much longer that the characteristic
scales of the rotational self-diffusion, the mean square displacement is a linear
function of time, with the slope that does not depend on the choice of a refer-
ence point, and is equal to 6Dcm, where Dcm is the translational self-diffusion
coefficient for the center of mobility. The center of mobility is such a reference
point for which the translational-rotational mobility matrix is symmetric [10].
The explicit expression for Dcm (see Eq. (20) in [4]) reads:

Dcm =
1

3

[

Tr Dtt −
3
∑

α=1

(Drt
βγ − Drt

γβ)2

Dβ + Dγ

]

,(4.1)

where (α, β, γ) is a permutation of (1, 2, 3), Tr stands for the trace operation,
and Dµ are the rotational-rotational diffusion coefficients, defined in the frame
of reference in which Drr is diagonal, i.e.

Drr
µν = Dµδµν ,(4.2)

with µ, ν = 1, 2, 3.
Using the theoretical and experimental friction matrices, we obtain Dcm =

0.065 µm2/s and 0.073 µm2/s, respectively. However, the experimental results
shown in Fig. 2 in [8] correspond to value of Dcm which is around two times
smaller. There is a clear mismatch between the values that characterize essential
feature of the Brownian motion: the value deduced from the measured time-
dependent translational-translational correlations in a wide range of times and
the value determined from the initial slopes of these functions. This difference
can be understood by taking into account large statistical uncertainty of the
experimental results. However, there is no doubt that a method based on fitting
C(t) in the whole range of times is more accurate than the method based on the
initial slope.

Therefore, we propose the following new method to determine the self-diffu-
sion matrix D from the measured time-dependent cross-correlation matrix C(t).
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First, we determine (and go to) the frame of reference in which the matrix
〈∆u(t) ∆u(t)〉0 is diagonal. Then, we use the time-dependent analytic expres-
sions from [4] to determine in this frame D1, D2, D3, and the rest of the self-
diffusion coefficients. Finally, we can transform D back to the original frame of
reference. This procedure can be applied to particles of arbitrary shapes.

5. Conclusions

Summarizing, in this paper we have demonstrated the applicability of the new
method, using the recent experimental results of [8] as an illuminating example.
Even if the particles from [8] have only a small difference between the center of
mobility and center of mass it is worth further emphasizing that the described
procedure works for general particles tracking from an arbitrary tracking point.

It is very typical for experimentalists to use the initial slope of the cross-
correlations of the Brownian translational and rotational displacements (as in
Eq. (2) from [8]) to determine the diffusion matrix. However, the new method
proposed here is based on the full fit of the cross-correlations C(t) in the whole
range of time when the measurements have been performed. Therefore, it is much
more accurate.
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